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What are these New-Gen Big Data Applications?
• World has changed a lot since the 70s

• Automating business processes   AI everywhere
• But databases are still hot 
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And the apps want even more from the database!
-- Higher ingest and update rates  
-- versioning, time-travel
-- Ingest and Update anywhere, anytime (“AP” system)
-- More real-time analytics (HTAP)
-- tons of analytics

==> database cannot hold data in proprietary store
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And the apps want even more from the database!
-- Higher ingest and update rates  
-- versioning, time-travel
-- Ingest and Update anywhere, anytime (“AP” system)
-- More real-time analytics (HTAP)
-- tons of analytics 

==> database cannot hold data in proprietary store

But still want the traditional database goodies:
Updates
Transactions (not eventual consistency)
Point Queries / Indexes
complex queries (joins, optimizer, ..)



Example: Health Care
Convergence of   Prevention/Monitoring   (sensors on healthy people)

and  Cure                                    (healthcare setting)



Example: Health Care
Convergence of   Prevention/Monitoring   (sensors on healthy people)

and  Cure                                    (healthcare setting)

High ingest rates Want analytics on latest 
readings

Looking for outliers => 
cannot drop data, need 

durability

AP: cannot wait for 
mothership to be reachable

Lots of point queries

Complex queries, 
joins, ..

Eventual consistency is a pain
V1  lookup(k1);
V2  lookup(k1);
// if V1 finds match and V2 doesn’t, 
how to test this app?



Wildfire Goals
HTAP: transactions & queries on same data
• Analytics over latest transactional data
• Analytics over 1-sec old snapshot
• Analytics over 10-min old snapshot

Open Format
• All data and indexes 

in Parquet format  on shared storage
• No LOAD
• Directly accessible by platforms like Spark

Leapfrog transaction speed, with ACID
• Millions of inserts, updates / sec / node

• Multi-statement transactions
• With async quorum replication

(sync option)
• Full primary and secondary indexing

• Millions of gets / sec / node

Multi-Master and AP
• disconnected operation
• Snapshot isolation,

with versioning and time travel
• Conflict resolution based on timestamp
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• No LOAD
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Leapfrog transaction speed, with ACID
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• Multi-statement transactions
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• Full primary and secondary indexing

• Millions of gets / sec / node

Multi-Master and AP
• disconnected operation
• Snapshot isolation,

with versioning and time travel
• Conflict resolution based on timestamp

Challenge: getting all of these 
simultaneously
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analytics 
can tolerate slightly stale data

requires most recent data

high-volume
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Applications

shared file system

spark 
executor 

spark 
executor 

spark 
executor 

spark 
executor 

spark 
executor 

spark 
executor 

spark 
executor 

spark 
executor 

wildfire engine wildfire enginewildfire engine wildfire engine
SSD/NVM SSD/NVM

Wildfire architecture



OLTP nodes

groompostgroom

LIVE zone
(~1sec)

GROOMED zone
(~10 mins)

ORGANIZED zone
(PBs of data)

Data lifecycle

TIME

Grooming:  take consistent snapshots
resolve conflicts

Postgrooming: make data efficient for queries



OLTP nodes

HTAP (see latest: snapshot isolation)
1-sec old snapshot
Optimized snapshot (10 mins stale)
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Live Zone
per xsac logs

(uncommitted)

log (committed)

… …

What happens at Commit
1. append xsac deltas (Ins/Del/Upd) to common log; replicated in background
2. flush to local SSD
3. status-check if changes are quorum-visible  (via heartbeats)

-- can time-out
AP:  Commit does not wait  for other nodes; conflicts are resolved after commit

(have syncwrite option for higher durability)
Read monotonicity:    Queries always read quorum-visible state

- Hence, later queries see a superset of what prior queries saw

replicate
xsacs

xsacs



Grooming data (Live  Groomed zone)
per xsac logs

(uncommitted)

log (committed)

… …

• Grooming is when conflicts are resolved
-- take quorum-visible deltas, form data blocks, and publish to shared file system
-- groomed zone is always a consistent snapshot

• All deltas (insert/delete/update) are upserts: key, (values)*, beginTime
• beginTime initialized at commit as  (localTime | nodeID)

• No assumption about clock synchronization or speed of replication
-- yet, we get read monotonicity

• Idea:  groom sets beginTime groomTime|localTime|nodeID
• Conflict resolution:  versioning, based on beginTime

replicate
xsacs

xsacs

groom



groompostgroom

LIVE zone
(~1sec)

GROOMED zone
(~10 mins)

ORGANIZED zone
(PBs of data)

Postgrooming

TIME

LATEST (key, vals*, beginTime,
prevRID)

PRIORS (key, vals*,beginTime,
endTime, prevRID) Partitions

Other partitionsPartitions

Queries should run fast (BI and point)
• Compute endTime and prevRID

• And deal with immutable storage system!
• Partition (along multiple dimensions)
• Build primary and secondary indexes
Want ready access to latest version (for the simple readers)
• Separate latest and priors 

Groomed Blocks
(key, vals*, beginTime)



OLAP queries via SparkSQL
• Extensions to both Catalyst Optimizer  and Data Source API
• A new Spark context for SQL
• Catalyst Optimizer

• Query HCatalog for table schemas
• Identify plan to send to Wildfire
• Compose a compensation plan (if needed)

• Data Source API
• SparkSQL Logical plan Wildfire plan
• Plan submission to Wildfire & result passing 

• Compensation plan (if needed) executed in SparkSQL
• Paper has details about pushdown analysis



POST-TRUTH
• Big data needs  updates, indexes, complex queries, transactions
• AP is the reality
• PB databases will not live in proprietary storage
• It is possible to do ACID with AP
• DBMS can adopt open data formats and immutable stores – while still being fast

POST-ER-TRUTH
• Multi-shard transactions
• Serializability with AP
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