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What are these New-Gen Big Data Applications?

* World has changed a lot since the 70s
e Automating business processes > Al everywhere

e But databases are still hot technology
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SQL+ json +

ap + htap +.. notyetSQl

applications | SdCElull:
But still want the traditional database goodies:

Updates

Transactions (not eventual consistency)
Point Queries / Indexes

complex queries (joins, optimizer, ..)

DNN + Streaming
+ Xsacs



Example: Health Care

Convergence of Prevention/Monitoring (sensors on healthy people)
and Cure (healthcare setting)



Example: Health Care

Convergence of Prevention/Monitoring (sensors on healthy people)

and Cure (healthcare setting)
[ High ingest rates ] Want analytics on latest
readings
Complex queries, Looking for outliers =>
joins, .. cannot drop data, need
durability

[ AP: cannot wait for } (E entual consistency is a pai h

: ventu i yi in

mothership to be reachable V1 € lookup(kL):

V2 € lookup(kl);
// if V1 finds match and V2 doesn’t,
[ Lots of point queries } \how to test this app? )




Wildfire Goals

HTAP: transactions & queries on same data | Open Format

e Analytics over latest transactional data * All data and indexes
« Analytics over 1-sec old snapshot in Parquet format on shared storage
 Analytics over 10-min old snapshot No LOAD

Directly accessible by platforms like Spark

Leapfrog transaction speed, with ACID Multi-Master and AP

* Millions of inserts, updates / sec / node * disconnected operation
Multi-statement transactions * Snapshot isolation,
With async quorum replication with versioning and time travel
(sync option) Conflict resolution based on timestamp

e Full primary and secondary indexing
Millions of gets / sec / node
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* Millions of inserts, updates / sec / node * disconnected operation
Multi-statement transactions * Snapshot isolation,
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(sync option) Conflict resolution based on timestamp

e Full primary and secondary indexing

Millions of gets / sec / node Challenge: getting all of these

simultaneously




Wildfire architecture

_______________________________________________

Applications

analytics

: high-volume
can tolerate slightly stale data &

transactions

PO

_________________________________

spark spark spark spark spark spark spark spark spark
executor executor executor executor executor executor executor executor executor

NN

wildfire engine wildfire engine wildfire engine  wildfire engine

SSD/NVM SSD/NVM

shared file system



Data I|fecyc|e

Grooming: take consistent snapshots
resolve conflicts
Postgrooming: make data efficient for querles

postgroom gréom @Q

TIME ORGANIZED zone QMED zone LIVE zone

(PBs of data) (*10mins)  (“1sec)




Data Iifecyéle
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| HTAP (see latest: snapshot isolation) : :
| 1-sec old snapshot 5 ]
| Optimized snapshot (10 mins stale) ] '

— Analytics nodes
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Live Zone

Xsacs per xsac logs
(uncommitted)

!
log (committed) [ =>{TT->{>{I->

What happens at Commit

1. append xsac deltas (Ins/Del/Upd) to common log; replicated in background

2. flush to local SSD

replicate

3. status-check if changes are quorum-visible (via heartbeats)

-- can time-out

AP: Commit does not wait for other nodes; conflicts are resolved after commit

(have syncwrite option for higher durability)

Read monotonicity: Queries always read quorum-visible state

- Hence, later queries see a superset of what prior queries saw

Xsacs



Grooming data (Live = Groomec

Xsacs per xsac logs
(uncommitted)

!
log (committed) [ =>{TT->{>{I->

replicate

—)
T

zone)

Xsacs

e

e Grooming is when conflicts are resolved

-- take quorume-visible deltas, form data blocks, and publish to shared file system

-- groomed zone is always a consistent snapshot

e All deltas (insert/delete/update) are upserts: key, (values)*, beginTime
e beginTime initialized at commit as (localTime | nodelD)
* No assumption about clock synchronization or speed of replication

-- yet, we get read monotonicity

e |dea: groom sets beginTime < groomTime |localTime |nodelD

e Conflict resolution: versioning, based on beginTime



Postgroomlng

Queries should run fast (Bl and point)
e Compute endTime and prevRID
e And deal with immutable storage system!
e Partition (along multiple dimensions)
e Build primary and secondary indexes
Want ready access to latest version (for the simple readers)

e Separate latest and priors 5
EGroomed Blocks

(key, vals*, beginTime)

LATEST (key, vals*, beginTime,

prevRiD)  (ESHEEONSTEN.
PRIORS (key, vals*,beginTime, : --

endTime, prevRID) : :
postgroom groom

ORGANIZED zone {QME{ME_@OM

TIME

(PBs of data) (~10 mins) (~1sec)



OLAP queries via SparkSQL

* Extensions to both Catalyst Optimizer and Data Source API

* A new Spark context for SQL

Catalyst Optimizer
* Query HCatalog for table schemas
* |dentify plan to send to Wildfire
e Compose a compensation plan (if needed)

Data Source API
» SparkSQL Logical plan = Wildfire plan
* Plan submission to Wildfire & result passing

Compensation plan (if needed) executed in SparkSQL

Paper has details about pushdown analysis



POST-TRUTH

* Big data needs updates, indexes, complex queries, transactions

AP is the reality

PB databases will not live in proprietary storage

It is possible to do ACID with AP

DBMS can adopt open data formats and immutable stores — while still being fast

POST-ER-TRUTH

e  Multi-shard transactions
e Serializability with AP
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