Data Ingestion for the Connected World

John Meehan, Cansu Aslantas, Stan Zdonik (Brown University)

Nesime Tatbul (Intel Labs & MIT)

Jiang Du (University of Toronto)

The IoT Era

Traditional Data Ingestion (ETL)

- Brokerage firm
- 6 heterogeneous sources
- 3 key parts:
 - 1. Ingest raw data
 - 2. ETL transform
 - 3. Update warehouse

http://www.tpc.org/tpcdi/

- Brokerage firm
- 6 heterogeneous sources
- 3 key parts:
 - 1. Ingest raw data
 - ✓ Data collected into flat files
 - ✓ Heterogeneous data types
 - ✓ Incremental update from an OLTP source, once a day

- Brokerage firm
- 6 heterogeneous sources
- 3 key parts:
 - 1. Ingest raw data
 - 2. ETL transform
 - 3. Update warehouse
 - ✓ Storage for intermediate results
 - √ Transactional state management

- Brokerage firm
- 6 heterogeneous sources
- 3 key parts:
 - 1. Ingest raw data
 - 2. ETL transform
 - 3. Update warehouse

http://www.tpc.org/tpcdi/

Streaming Data Ingestion

- In modern apps such as IoT:
 - real-time streams of data from a large number of sources
 - majority of these sources report in the form of time-series
 - data currency & low latency is key for real-time decision making & control
- ✓ Need a stream-based ingestion architecture
- ✓ Must pay attention to time-series data type and operations (both during ingestion & analytics)

An Architecture for Streaming Data Ingestion

Implementation

Implementation

-Store: Shared Mutable State in Streaming

- A hybrid system for transaction & stream processing
 - combines main-memory OLTP with streaming constructs (windowing, triggers, dataflow graphs)
- Transactions as user-defined stored procedures (Java + SQL)
- Three complementary correctness guarantees
 - ACID, for individual transactions
 - Ordered execution, for streams and dataflow graphs
 - Exactly-once processing, for streams (no loss or duplicates due to failures/recovery)

Example: A TPC-DI Dataflow Graph in S-Store

Example: A TPC-DI Dataflow Graph in S-Store

Example: A TPC-DI Dataflow Graph in S-Store

Implementation

Data Migrator

- Provides durable migration into the data warehouse using an ack mechanism that simulates 2PC
- Leverages the BigDAWG polystore middleware (see Session 4)
 - can support a variety of destination warehouses
 - can participate in federated querying
- Supports both "push" and "pull" modes

TPC-DI Experiment: Push vs. Pull Tradeoffs

- How often to migrate? Push or pull?
- Impacts:
 - Maximum ingest latency in S-Store
 - Query execution time in Postgres
 - Staleness of the query results in Postgres
- Result summary: Push in small batches, every 1-5 seconds. Fine-grained ingestion performs well.

Ongoing Work

- Time-series data management (ingestion & beyond)
 - New ingestion challenges and opportunities (e.g., synchronization/alignment of time-series, using predictive techniques for dealing with missing/delayed values)
 - Append-based updates, window-based reads
 - Need to support complex analytics operations (forecasting/ prediction, pattern matching, anomaly detection, signal processing)
 - Exploit the resources on edge devices