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The loT Era
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e 3 key parts:
1. Ingest raw data

v' Data collected into flat files
v Heterogeneous data types

v’ Incremental update from an
OLTP source, once a day
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e 3 key parts:
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e 3 key parts:

3. Update warehouse

v" Bulk loading

(Business Intelligence, Data Warehouse,
Business Analytics, Mater Data Management)
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Streaming Data Ingestion

* In modern apps such as loT:
— real-time streams of data from a large number of sources
— majority of these sources report in the form of time-series

— data currency & low latency is key for real-time decision
making & control

v’ Need a stream-based ingestion architecture

v’ Must pay attention to time-series data type and
operations (both during ingestion & analytics)



An Architecture for Streaming Data Ingestion
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Implementation
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m: Shared Mutable State in Streaming

* A hybrid system for transaction & stream processing

— combines main-memory OLTP with streaming constructs
(windowing, triggers, dataflow graphs)

* Transactions as user-defined stored procedures (Java + SQL)

* Three complementary correctness guarantees
— ACID, for individual transactions
— Ordered execution, for streams and dataflow graphs

— Exactly-once processing, for streams (no loss or duplicates due
to failures/recovery)



Example: A TPC-DI Dataflow Graph in S-Store
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Example: A TPC-DI Dataflow Graph in S-Store

Transaction Execution (TE) =
An instance of a stored procedure
executing on an input batch
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Example: A TPC-DI Dataflow Graph in S-Store

Shared state
read or written by TEs

v \A |

Date Time -
Status Type

N~

DimTrade

7l
[
i




Implementation
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Data Migrator

* Provides durable migration into the data warehouse
using an ack mechanism that simulates 2PC
* Leverages the BigDAWG polystore middleware (see

Session 4)
— can support a variety of destination warehouses

— can participate in federated querying
e Supports both “push” and “pull” modes



TPC-DI Experiment: Push vs. Pull Tradeoffs

* How often to migrate? Push or pull?

* Impacts:
— Maximum ingest latency in S-Store
— Query execution time in Postgres
— Staleness of the query results in Postgres

e Result summary: Push in small batches, every 1-5
seconds. Fine-grained ingestion performs well.



Ongoing Work

* Time-series data management (ingestion & beyond)

— New ingestion challenges and opportunities (e.g.,
synchronization/alignment of time-series, using predictive
techniques for dealing with missing/delayed values)

— Append-based updates, window-based reads

— Need to support complex analytics operations (forecasting/
prediction, pattern matching, anomaly detection, signal
processing)

— Exploit the resources on edge devices



