
The	Case	for	Heterogeneous	
HTAP

Raja	Appuswamy,	Manos Karpathiotakis,	
Danica Porobic,	and	Anastasia	Ailamaki
Data-Intensive	Applications	and	Systems Lab

EPFL
1

HTAP	– the	contract	with	the	hardware

Database

Hybrid	OLTP	&	OLAP	Processing

HTAP	DBMS

High-throughput	OLTP Low-latency	OLAP

Fresh	data

DRAM

Core

LLC

DRAM

Core

Core

Core

Core

Core

Core

Core

DRAM

Core

LLC

DRAM

Core

Core

Core

Core

Core

Core

Core

Massive	parallelism	=>	high	concurrency
Global	shared	memory	=>	data	sharing
System-wide	coherence	=>	synchronization

HTAP	on	multicores

2
Necessary	for	current	systems

Shifting	hardware	landscape	(1):	
Specialization	of	CPUs

DRAM

Core

LLC

PCIe

DRAM

Core

Core

Core

Core

Core

Core

Core

DRAM

Core

LLC

PCIe

DRAM

Core

Core

Core

Core

Core

Core

Core

1	coherence	domain

DRAM

Core

LLC

PCIe

DRAM

Core

Core

Core

Core

Core

Core

Core

DRAM

Core

LLC

PCIe

DRAM

Core

Core

Core

Core

Core

Core

Core

Multiple	coherence	domains

Multisocket multicores Intel	SCC,	ARM	v8,	Cell	SPE

CPUs:	general-purpose	à customizable	features
3

Shifting	hardware	landscape	(2):	
Generalization	of	GPUs

2008 2010 2012 2014 2016

0
4

8
16

20
N
or
m
al
ize

d	
SG

EM
M
/W

at
t

UVA

UM

Paging	UM
NVLink
(80-200GB/s)

Pascal

Maxwell

Kepler

Fermi

Tesla

Dynamic	
Parallelism
PCIe 3.0	(16	GB/s)

Programmability
Interface

GPUs:	Niche	accelerators	à general-purpose	processors4

Emerging	hardware:	Revisiting	the	contract

• Homogeneous Heterogeneous	parallelism
• Task-parallel	CPUs
• Data-parallel	GPUs

• System-wide Relaxed	cache	coherence
• OS	(FOS),	FS	(Hare)
• runtimes	(Cosh)

• Global	shared	memory
• Unified	address	space

CurrentEmerging hardware HTAP	software

• Shared-everything	OLTP:	N/A
• No	synch.	sans	coherence

• Cannot	exploit	heterogeneity
• HTAP	across	processors

• Server	as	distributed	system
• Fails	to	exploit	shared	memory

5
Clean	slate	redesign	in	order

Heterogeneous	HTAP	(H2TAP):	Caldera

• Store	data	in	shared	memory
•Run	OLTP	workloads	on	task-parallel	archipelago
•Run	OLAP	workloads	on	data-parallel	archipelago

Data-parallel archipelago (OLAP)Task-parallel archipelago (OLTP)

DRAM

In-memory data store

Core GPU

DRAMDRAM

Core

DRAM

Core

DRAM

Core

DRAM

Core

DRAM

Core GPU

DRAM

6
Loose	job-to-core	assignment	exploits	heterogeneity

H2TAP	Challenges
• Store	data	in	shared	memory	

• Choose	optimal	data	layout
• OLTP	on	task-parallel	archipelago	

• Make	up	for	(lack	of)	cache	coherence
• OLAP	on	data-parallel	archipelago	

• Share	transactionally-consistent	snapshots	across	processors
Data-parallel archipelago (OLAP)Task-parallel archipelago (OLTP)

DRAM
In-memory data store

Core GPU

DRAMDRAM

Core

DRAM

Core

DRAM

Core

DRAM

Core

DRAM

Core GPU

DRAM
7

C1

C1

C1

C2

C2

C2

C3

C3

C3

DSM	page

• Need	to	minimize	PCIe data	transfer	to	GPU
• Data	access	on	GPU	should	be	sequential	to	enable	“coalescing”
• Caldera	implements	NSM,	DSM,	and	PAX

Data	layout

C1 C2 C3 C4

C1 C2 C3 C4

C1 C2 C3 C4

NSM	page

C1 C1 C1

PAX	minipage

C2 C2 C2

PAX	minipage

C3 C3 C3

PAX	minipage
PAXpagePAX	fits	GPUs	best	(PCIe &	coalesced	accesses)

OLTP	without	cache	coherence

• Use	Data-Oriented	Transaction	Execution	principles
• Thread-to-data	assignment	leads	to	partitioned	data,	metadata	(2PL,	index)

Thd BThd A

9

2.	Reply(&k)

• Use	explicit	messaging	instead	of	implicit	latching
• Exploit	shared memory	by	exchanging pointers	instead of	data

OLTP	without	cache	coherence

1.	Msg (lookup,	k)

Thd BThd A
4.	Release(k)

3.	Access	*k

10

Enforce coherence in	software

Transactionally-consistent	data	sharing

• Data	sharing	across	workloads
• Use	Unified	Virtual	Addressing	(UVA)	for	CPU—GPU	sharing

• Consistent	data	sharing	via	hardware	snapshotting	(ex:	Hyper)
• CUDA	runtime	restricts	use	in	H2TAP	context

• Caldera	supports	lightweight	software	snapshotting
• OLAP	queries	run	on	immutable	snapshot
• Copy-on-write	performed	by	update	transactions

11Snapshots across GPU-CPU	archipelagos

Caldera	blueprint

Data-parallel archipelago

GPU

Task-parallel archipelago

DRAM DRAMDRAM DRAM
In-memory data store

Core Core

Scheduler
Query compiler

Core

Query runtime

Query parser & optimizer

12

Determine	ideal	
processor	for	

query

Elastic	core	to	
workload	
assignmentOLAP	on	database	

snapshot

OLTP	without	
cache	coherence

Compile	query	to	
X86	or	PTX	code

Experiments
Setup
• Two	12-core	Intel	Xeon	E5-2650L	v3	CPUs,	256GB	RAM
• GeForce	GTX	980	GPU	(PCIe 3.0)	with	4GB	memory
• TPC-C,	TPC-H,	YCSB	in	various	scale	factors
• Silo,	MonetDB,	DBMS-C

Goals
• Message	passing	and	Software	snapshotting	overhead	
• PAX	performance	compared	to	NSM	and	DSM	on	GPUs
• Caldera	performance	compared	to	state-of-the-art 13

OLTP	throughput

0

0.5

1

1.5

2

1 2 4 8 12 16 20 24

Th
ro
ug
hp

ut
	(M

Tp
s)

#	cores	running	TPC-C	NewOrder (1WH/core)

Caldera Silo

Message	passing-based	design	scales	well
Better	code	&	data	locality	(partitioning),	no	synchronization	overhead14

OLAP	response	time	(incl.	data	movement)

0

2

4

6

8

10

Caldera DBMS-C MonetDB

Ex
ec
ut
io
n	
Ti
m
e	
(s
ec
)

TPCH	SF	300	- Query	6
Bounded	by	PCIe bandwidth	(12GB/s)

Emerging	interconnects	(NVLink):	80-200	GB/s 15

Exploits	GPU	parallelism	
Saturates	PCIe b/w

Impact	of	snapshotting

0

50

100

150

200

1 2 4 8 16 32 64 100

O
LT
P	
Th
ro
ug
hp

ut
	(K

Tp
s)

%	records	touched	by	OLTP

q1
q1-10

9x

Ideal

3.5x

0

2

4

6

1 2 4 8 16 32 64 100

O
LA
P	
Re

sp
on

se
	T
im

e	
(s
ec
s)

%	records	touched	by	OLTP

Ideal

2x

16

Limitation:	Software	shadow copying imposes	a	high	overhead
Possible	fix:	data	classification,	snapshot sharing,	h/w	acceleration

Impact	of	data	layout
1	table	(i1	integer,	i2	integer,	….	i16	integer)
SELECT	SUM(colA +	colB)	FROM	table

Data	(16GB)	in	host	memory Data	(1GB)	in	GPU	memory

0

1

2

3

4

DSM PAX NSM
Ex
ec
ut
io
n	
Ti
m
e	
(m

se
c.
)

0

1

2

3

DSM PAX NSM

Ex
ec
ut
io
n	
Ti
m
e	
(s
ec
.)

PAX,	DSM	
saturate	PCIe

NSM	14x worse	
(non-coalesced	

accesses)
PAX	exploits	GPU	
memory	BW

NSM	only	2x worse	
(GPUs	have	reduced	
the	access	“tax”)

Hybrid	layouts	like	PAX	a	good	fit	for	H2TAP 17

Conclusion

• Hardware	architecture	is	changing
• New	opportunities:	massive	parallelism,	fast	interconnects
• New	challenges:	heterogeneity,	relaxed	coherence

• Databases	can	and	should	exploit	hardware	trends
• Exploit	hardware	heterogeneity	in	their	core	architecture	design
• Decouple	system-wide	coherence	from	shared	memory

• Time	to	move	from	HTAP	to	H2TAP
• H2TAP	architecture:	revisit	age-old	h/w—s/w	contract
• Caldera:	Preliminary	prototype	to	prove	that	H2TAP	is	possible

18

