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HTAP	– the	contract	with	the	hardware
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Massive	parallelism	=>	high	concurrency
Global	shared	memory	=>	data	sharing
System-wide	coherence	=>	synchronization

HTAP	on	multicores
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Necessary	for	current	systems



Shifting	hardware	landscape	(1):	
Specialization	of	CPUs
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Multiple	coherence	domains

Multisocket multicores Intel	SCC,	ARM	v8,	Cell	SPE

CPUs:	general-purpose	à customizable	features
3



Shifting	hardware	landscape	(2):	
Generalization	of	GPUs
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Emerging	hardware:	Revisiting	the	contract

• Homogeneous Heterogeneous	parallelism
• Task-parallel	CPUs
• Data-parallel	GPUs

• System-wide Relaxed	cache	coherence
• OS	(FOS),	FS	(Hare)
• runtimes	(Cosh)

• Global	shared	memory
• Unified	address	space

CurrentEmerging hardware HTAP	software

• Shared-everything	OLTP:	N/A
• No	synch.	sans	coherence

• Cannot	exploit	heterogeneity
• HTAP	across	processors

• Server	as	distributed	system
• Fails	to	exploit	shared	memory

5
Clean	slate	redesign	in	order



Heterogeneous	HTAP	(H2TAP):	Caldera

• Store	data	in	shared	memory
•Run	OLTP	workloads	on	task-parallel	archipelago
•Run	OLAP	workloads	on	data-parallel	archipelago

Data-parallel archipelago (OLAP)Task-parallel archipelago (OLTP)
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Loose	job-to-core	assignment	exploits	heterogeneity



H2TAP	Challenges
• Store	data	in	shared	memory	

• Choose	optimal	data	layout
• OLTP	on	task-parallel	archipelago	

• Make	up	for	(lack	of)	cache	coherence
• OLAP	on	data-parallel	archipelago	

• Share	transactionally-consistent	snapshots	across	processors
Data-parallel archipelago (OLAP)Task-parallel archipelago (OLTP)
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• Need	to	minimize	PCIe data	transfer	to	GPU
• Data	access	on	GPU	should	be	sequential	to	enable	“coalescing”
• Caldera	implements	NSM,	DSM,	and	PAX
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OLTP	without	cache	coherence

• Use	Data-Oriented	Transaction	Execution	principles
• Thread-to-data	assignment	leads	to	partitioned	data,	metadata	(2PL,	index)

Thd BThd A
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2.	Reply(&k)

• Use	explicit	messaging	instead	of	implicit	latching
• Exploit	shared memory	by	exchanging pointers	instead of	data

OLTP	without	cache	coherence

1.	Msg (lookup,	k)

Thd BThd A
4.	Release(k)

3.	Access	*k
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Enforce coherence in	software



Transactionally-consistent	data	sharing

• Data	sharing	across	workloads
• Use	Unified	Virtual	Addressing	(UVA)	for	CPU—GPU	sharing

• Consistent	data	sharing	via	hardware	snapshotting	(ex:	Hyper)
• CUDA	runtime	restricts	use	in	H2TAP	context

• Caldera	supports	lightweight	software	snapshotting
• OLAP	queries	run	on	immutable	snapshot
• Copy-on-write	performed	by	update	transactions

11Snapshots across GPU-CPU	archipelagos



Caldera	blueprint
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Experiments
Setup
• Two	12-core	Intel	Xeon	E5-2650L	v3	CPUs,	256GB	RAM
• GeForce	GTX	980	GPU	(PCIe 3.0)	with	4GB	memory
• TPC-C,	TPC-H,	YCSB	in	various	scale	factors
• Silo,	MonetDB,	DBMS-C

Goals
• Message	passing	and	Software	snapshotting	overhead	
• PAX	performance	compared	to	NSM	and	DSM	on	GPUs
• Caldera	performance	compared	to	state-of-the-art 13



OLTP	throughput
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OLAP	response	time	(incl.	data	movement)
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Impact	of	snapshotting
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Limitation:	Software	shadow copying imposes	a	high	overhead
Possible	fix:	data	classification,	snapshot sharing,	h/w	acceleration



Impact	of	data	layout
1	table	(i1	integer,	i2	integer,	….	i16	integer)
SELECT	SUM(colA +	colB)	FROM	table

Data	(16GB)	in	host	memory Data	(1GB)	in	GPU	memory
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Conclusion

• Hardware	architecture	is	changing
• New	opportunities:	massive	parallelism,	fast	interconnects
• New	challenges:	heterogeneity,	relaxed	coherence

• Databases	can	and	should	exploit	hardware	trends
• Exploit	hardware	heterogeneity	in	their	core	architecture	design
• Decouple	system-wide	coherence	from	shared	memory

• Time	to	move	from	HTAP	to	H2TAP
• H2TAP	architecture:	revisit	age-old	h/w—s/w	contract
• Caldera:	Preliminary	prototype	to	prove	that	H2TAP	is	possible
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