The Case for Heterogeneous HTAP

Raja Appuswamy, Manos Karpathiotakis, Danica Porobic, and Anastasia Ailamaki Data-Intensive Applications and Systems Lab FPFI

HTAP – the contract with the hardware

Hybrid OLTP & OLAP Processing

High-throughput OLTP

Low-latency OLAP

HTAP on multicores

Massive parallelism => high concurrency Global shared memory => data sharing System-wide coherence => synchronization

Shifting hardware landscape (1): Specialization of CPUs

Multisocket multicores

Intel SCC, ARM v8, Cell SPE

CPUs: general-purpose → customizable features

Pascal

Shifting hardware landscape (2): Generalization of GPUs

GPUs: Niche accelerators \rightarrow general-purpose processors

Emerging hardware: Revisiting the contract

Current Emerging hardware	HTAP software
 Homogeneous Heterogeneous parallelism Task-parallel CPUs Data-parallel GPUs 	 Cannot exploit heterogeneity HTAP across processors
 System-wide Relaxed cache coherence OS (FOS), FS (Hare) runtimes (Cosh) 	 Shared-everything OLTP: N/A No synch. sans coherence
 Global shared memory Unified address space 	 Server as distributed system Fails to exploit shared memory
Clean slate redesign in order	

Heterogeneous HTAP (H²TAP): Caldera

- Store data in shared memory
- Run OLTP workloads on task-parallel archipelago
- Run OLAP workloads on data-parallel archipelago

Loose job-to-core assignment exploits heterogeneity

H²TAP Challenges

- Store data in shared memory
 - Choose optimal data layout
- OLTP on task-parallel archipelago
 - Make up for (lack of) cache coherence
- OLAP on data-parallel archipelago
 - Share transactionally-consistent snapshots across processors

Data layout

- Need to minimize PCIe data transfer to GPU
- Data access on GPU should be sequential to enable "coalescing"
- Caldera implements NSM, DSM, and PAX

PAX fits GPUs best (PCIe & coalesced accesses)

OLTP without cache coherence

- Use Data-Oriented Transaction Execution principles
 - Thread-to-data assignment leads to partitioned data, metadata (2PL, index)

OLTP without cache coherence

- Use explicit messaging instead of implicit latching
- Exploit shared memory by exchanging pointers instead of data

Transactionally-consistent data sharing

- Data sharing across workloads
 - Use Unified Virtual Addressing (UVA) for CPU—GPU sharing
- Consistent data sharing via hardware snapshotting (ex: Hyper)
 - CUDA runtime restricts use in H²TAP context
- Caldera supports lightweight software snapshotting
 - OLAP queries run on immutable snapshot
 - Copy-on-write performed by update transactions

Snapshots across GPU-CPU archipelagos

Experiments

Setup

- Two 12-core Intel Xeon E5-2650L v3 CPUs, 256GB RAM
- GeForce GTX 980 GPU (PCIe 3.0) with 4GB memory
- TPC-C, TPC-H, YCSB in various scale factors
- Silo, MonetDB, DBMS-C

Goals

- Message passing and Software snapshotting overhead
- PAX performance compared to NSM and DSM on GPUs
- Caldera performance compared to state-of-the-art

OLTP throughput

OLAP response time (incl. data movement)

Impact of snapshotting

Impact of data layout

1 table (*i1 integer, i2 integer, i16 integer*) SELECT SUM(colA + colB) FROM table

Conclusion

- Hardware architecture is changing
 - New opportunities: massive parallelism, fast interconnects
 - New challenges: heterogeneity, relaxed coherence
- Databases can and should exploit hardware trends
 - Exploit hardware heterogeneity in their core architecture design
 - Decouple system-wide coherence from shared memory
- Time to move from HTAP to H²TAP
 - H²TAP architecture: revisit age-old h/w—s/w contract
 - Caldera: Preliminary prototype to prove that H²TAP is possible