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Mixed Workloads Are Everywhere 

Stream 
Processing 

TransacAon InteracAve 
AnalyAcs 
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mutating data 

Correlating and 
joining streams with 
large histories 

Maintaining state or 
counters while 

ingesting streams 



			

Mixed Workloads Are Everywhere 

    Enrich – 
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reference 
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TransacAon writes	
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Why SupporAng Mixed Workloads is Difficult? 

Data Structures 
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Lambda Architecture 

Query 

New      
Data 

Batch layer 

Master 
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Lambda Architecture is Complex 

Scalable Store HDFS,  
MPP DB 

Data-in-moAon 
AnalyAcs 

ApplicaAon 

STREAMS 

Alerts 
    

Enrich 

Reference DB 

Models 

InteracMve Queries 

Updates Storm, Spark 
Streaming, 
Samza…	

Enterprise DB – 
Oracle, Postgres..	

NoSQL – 
Cassandra, Redis, 
Hbase …. 

Teradata, Greenplum, 
VerMca, ... 

IOT 
Devices 



			

Lambda Architecture is Complex 

• Complexity 

- Learn and master mulMple products, 
data models, disparate APIs & configs 

 
• Wasted resources 

• Slower 

- Excessive copying, serializaMon, shuffles 
- Impossible to achieve interacMve-speed 
analyMcs on large or mutaMng data 
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Can	We	
Simplify	&	
Op0mize?	



			

Our SoluAon: SnappyData 

Deep Scale, 
High Volume 

MPP DB 

Real-Ame design 
Low latency, HA,  
concurrency 

 

Batch design, high 
throughput 

 

Rapidly Maturing Matured over 13 years 

Single Unified HA Cluster 
OLTP + OLAP + Streaming for Real-time Analytics 



			

•  Cannot update 
•  Repeated for each 

User/App 

USER 1 / APP 1 

Spark 
Master 

Spark Executor (Worker) 

Framework for 
streaming SQL, 
ML… 

Immutable 
CACHE 

USER 2 / APP 2 

Spark 
Master 

Spark Executor (Worker) 

Framework for 
streaming SQL, 
ML… 

Immutable 
CACHE 

HDFS 
SQL 

NoSQL 
 

BoOleneck 

We Transform Spark from This … 



			

… Into an “Always-On” Hybrid Database ! 

Deep Scale, 
High Volume 

MPP DB 

HDFS 
SQL 

NoSQL 
 

HISTORY 

Spark Executor (Worker) JVM 
- Long-lived 

Framework for 
streaming SQL, 
ML… 

Spark 
Driver 

In-Memory 
ROW + COLUMN 

Start with 
Indexing 

Store 

-  Mutable,  
-  Transactional Spark 

Cluster 

JDBC 

ODBC 

Spark Job 

Shared Nothing 
Persistence 

 



			

Unified Data Model & API 

Cluster Manager  
& Scheduler 

Snappy Data Server (Spark Executor + Store)  

Parser 

OLAP 

TRX 

Data Synopsis Engine 

Distributed Membership  
Service 

H
A

Stream Processing 

Tables ODBC/JDBC Data Frame 

RDD 

Low 
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High 
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Index 

Query 
OpMmizer 

Add / Remove 
Server 

•  Mutability (DML+Trx) 

•  Indexing 

•  SQL-based streaming 



			

Overview 
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Hybrid Store 
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Updates & Deletes on Column Tables 

Column Segment ( t1-t2) 

Column Segment ( t2-t3) 
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Summary Metadata 

Periodic Compaction 

One ParAAon 

Time 

WRITE 

Row Buffer 

MVCC 

New Segment 

Replicate 
for HA 
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ProbabilisAc Store: Synopses + Uniform & StraAfied Samples 

Higher resoluMon for more 
recent Mme ranges 

1. Streaming CMS 

(Count-Min-Sketch)  

[t1, t2)             [t2, t3)              [t3, t4)            [t4, now) Time 

4T	 2T	 T	 ≤T	

....	
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Maintain a small sample at each CMS cell 

2. Top-K Queries w/ Arbitrary Filters 

Tradi>onal CMS              CMS+Samples 
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ProbabilisAc Store: Synopses + Uniform & StraAfied Samples 

Higher resoluMon for more 
recent Mme ranges 

1. Streaming CMS 

(Count-Min-Sketch)  

[t1, t2)             [t2, t3)              [t3, t4)            [t4, now) Time 

4T	 2T	 T	 ≤T	

....	

Maintain a small sample at each CMS cell 

2. Top-K Queries w/ Arbitrary Filters 

Tradi>onal CMS              CMS+Samples 

3. Fully Distributed Stratified Samples 

Always include Mmestamp as a straMfied 
column for streams 

Streams Aging Row Store (In-memory) Column Store (Disk) 

timestamp 



			

Overview 
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SupporAng Real-Ame & HA 

Locator 

Lead Node 
Executor JVM (Server) 

Shared Nothing 
Persistence 

JDBC/
ODBC 

Catalogue Service 

Managed Driver 

SPARK  
Contacts 

 
SPARK  
Context 
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Cluster  

Manager 

REST 

SPARK JOBS 

SPARK  
Program 

Memory Mgmt 

BLOCKS SNAPPY STORE 

Stream SNAPPY 

Tables 

Tables 

DataFrame 

•  Spark Executors are long 
running. Driver failure 
doesn’t shutdown 
Executors 

•  Driver HA – Drivers are 
“Managed” by SnappyData 
with standby secondary 

•  Data HA – Consensus 
based clustering 
integrated for eager 
replicaMon 

DataFrame 
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Query OpAmizaAon 
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•  Bypass the scheduler for transacAons and low-latency jobs 

• Minimize shuffles aggressively 

- Dynamic replicaMon for reference data 
- Retain ‘join indexes’ whenever possible 
- Collocate and co-parMMon related tables and streams	

• OpAmized ‘Hash Join’, ‘Scan’, ‘GroupBy’ compared to Spark 
- Use more variables (eliminate virtual funcs) to generate beOer code 
- Use vectorized structures 
- Avoid Spark’s single-node boOlenecks in broadcast joins 
 

•  Column segment pruning through metadata 



			

Co-parAAoning & Co-locaAon 

Spark Executor Subscriber A-M 
Ref data 

Spark Executor Subscriber N-Z 
Ref data 

Linearly scale with partition pruning  

Subscriber A-M 

Subscriber N-Z 

KAFKA 
Queue 

KAFKA 
Queue 
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Approximate Query Processing (AQP): Academia vs. Industry 

25+ yrs of successful 
research in academia 

User-facing AQP almost  
non-existent in commercial world! 

Some approximate features in Infobright, Yahoo’s Druid, 
Facebook’s Presto, Oracle 12C, ... 

AQUA, Online AggregaMon, MapReduce Online, 
STRAT, ABS, BlinkDB / G-OLA, ... 

WHY ? 

BUT: 
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25+ yrs of successful 
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BUT: 

select geo, avg(bid)  
from adImpressions 
group by geo having avg(bid)>10 
with error 0.05 at confidence 95 

geo avg(bid) error prob_existence 

MI 21.5 ± 0.4 0.99 

CA 18.3 ± 5.1 0.80 

MA 15.6 ± 2.4 0.81 

... ... ... .... 



			

Approximate Query Processing (AQP): Academia vs. Industry 

25+ yrs of successful 
research in academia 

User-facing AQP almost  
non-existent in commercial world! 

Some approximate features in Infobright, Yahoo’s Druid, 
Facebook’s Presto, Oracle 12C, ... 

AQUA, Online AggregaMon, MapReduce Online, 
STRAT, ABS, BlinkDB / G-OLA, ... 

WHY ? 

BUT: 

select geo, avg(bid)  
from adImpressions 
group by geo having avg(bid)>10 
with error 0.05 at confidence 95 

geo avg(bid) error prob_existence 

MI 21.5 ± 0.4 0.99 

CA 18.3 ± 5.1 0.80 

MA 15.6 ± 2.4 0.81 

... ... ... .... 
1.  Incompatible w/ BI tools 

2.  Complex semantics 

3.  Bad sales pitch! 



A First Industrial-Grade AQP Engine 

1. Highlevel Accuracy Contract (HAC) 

•  User picks a single number p, where 0≤p≤1 (by 
default p=0.95)  

•  Snappy guarantees that s/he only sees things that 
are at least p% accurate 

•  Snappy handles (and hides) everything else!  

geo avg(bid) 

MI 21.5 

WI 42.3 

NY 65.6 

... ... 
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A First Industrial-Grade AQP Engine 

1. Highlevel Accuracy Contract (HAC) 

•  User picks a single number p, where 0≤p≤1 (by 
default p=0.95)  

•  Snappy guarantees that s/he only sees things that 
are at least p% accurate 

•  Snappy handles (and hides) everything else!  

2. Fully compatible w/ BI tools 

•  Set HAC behavior at JDBC/ODBC connecMon level 

•  Concurrency: 10’s of queries in shared clusters  
•  Resource usage: everyone hates their AWS bill  
•  Network shuffles  
•  Immediate results while waiMng for final results 

3. Better marketing! 

iSight (Immediate inSight) 

geo avg(bid) 

MI 21.5 

WI 42.3 

NY 65.6 

... ... 
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Benchmarks	



			

Benchmarks 

• Mixed Benchmark: Ad Analytics 

- Ad impressions arrive on a message bus 
- Aggregate by publisher and geo 
- Report avg bid, # of impressions, and # of uniques every few 

secs  
- Write to a parMMoned store 
- TransacMonally update the profiles during ingesMon 
- Q1: Top-20 ads receiving most impressions per region 
- Q2: Top-20 ads receiving largest bids per geo 
- Q3: Top-20 publishers receiving largest sum of bids overall 
 

• TPC - H 

St
re
am

in
g	

O
LA

P	
Tr
x	



			

Setup 
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• HW: 5 c4.2xlarge EC2 instances 

- 1 coordinator + 4 workers 

• Software: Latest GA versions avalable: 

- Kaxa 2.10_0.8.2.2 
- Spark 2.0.0 
- Cassandra 3.9 

w/ Spark-Cassandra connector 2.0.0_M3 

- MemSQL Ops-5.5.10 Community EdiMon 
w/ Spark-MemSQL Connector 2.10_1.3.3 

- SnappyData 0.6.1 



			

Ad AnalyAcs 

1.5-2x    faster ingestion 
7-142×  faster analytics (at 300M records) 



			

Data Synopsis Engine 



			

TPC-H 

SnappyData 
 
MemSQL 
 
Spark 

5.7s 

100 GB 

12.0s 

66.9s 

Avg Median 

2.5s 

6.4s 

55.1s 

SnappyData was 2.6x faster than MemSQL & 22.4x faster 
than Spark 2.0 



Conclusion	



			

Where Are We Today ? 

•  Current customers  

•  Current release 

•  Next funding round 

•  Upcoming features 

- Investment banking, Industrial IoT, Telco, Ad AnalyMcs, & healthcare 

- 0.7 (GA 1.0 in Q1-2017) 

- Q2-2017 

-  IntegraMon of Spark ML w/ our Data Synopsis Engine 
-  Cost-based query opMmizer 
-  Physical designer & workload miner (hOp://CliffGuard.org) 



			

Lessons Learned 

1. A unique experience marryings two different breeds of 
distributed systems 
 
lineage-based for high-throughput vs. (consensus-) replicaMon-based for low-latency 
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2. A unified cluster is simpler, cheaper, and faster 

- By sharing state across apps, we decouple apps from data servers and provide HA 
- Save memory, data copying, serializaMon, and shuffles 
- Co-parMMoning and co-locaMon for faster joins and stream analyMcs 
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Lessons Learned 

2. A unified cluster is simpler, cheaper, and faster 

- By sharing state across apps, we decouple apps from data servers and provide HA 
- Save memory, data copying, serializaMon, and shuffles 
- Co-parMMoning and co-locaMon for faster joins and stream analyMcs 

1. A unique experience marryings two different breeds of 
distributed systems 
 
lineage-based for high-throughput vs. (consensus-) replicaMon-based for low-latency 

3. Advantages over HTAP engines: Deep stream integration + AQP 

- Stream processing ≠ stream analyMcs 
- Top-k w/ almost arbitrary predicates +  1-pass straMfied sampling over streams 

4. Commercializing academic work is lots of work but also lots of fun 



THANK YOU ! 

Try our iSight cloud for free:  
htp://snappydata.io/iSight	


