
SnappyData	
A Unified Cluster for Streaming, Transactions, & Interactive Analytics
Version 0.7 | © Snappydata Inc 2017

www.Snappydata.io

Barzan Mozafari | Jags Ramnarayan | Sudhir Menon

Yogesh Mahajan | Soubhik Chakraborty | Hemant Bhanawat | Kishor Bachhav

			

Our Pedigree

GTD Ventures
Pune (25+)

Portland (5)

Ann Arbor (1)

			

Mixed Workloads Are Everywhere

Stream
Processing

TransacAon InteracAve
AnalyAcs

Analytics on
mutating data

Correlating and
joining streams with
large histories

Maintaining state or
counters while

ingesting streams

			

Mixed Workloads Are Everywhere

 Enrich –
requires
reference
data join
	

InteracAve OLAP
queries	

State – manage windows
with mutaMng state
AnalyAcs – Joins to history,
trend paOerns
Model maintenance	

TransacAon writes	
IOT
Devices

Scalable Store HDFS,
MPP DB

Data-in-moAon
AnalyAcs

ApplicaAon

STREAMS

Alerts

Enrich

Reference DB

Models

InteracMve Queries

Updates

			

Why SupporAng Mixed Workloads is Difficult?

Data Structures

Query Processing

Paradigm

Scheduling &

Provisioning

Columnar

Batch

Processing

Long-running

Row stores

Point

Lookups

Short-lived

Sketches

Delta /

Incremental

Bursty

			

Lambda Architecture

Query

New
Data

Batch layer

Master
Datasheet

2

Serving layer

Batch view
3

Batch view

Speed layer

4
Real-Ame View Real-Ame View

1

Query

5

			

Lambda Architecture is Complex

Scalable Store HDFS,
MPP DB

Data-in-moAon
AnalyAcs

ApplicaAon

STREAMS

Alerts

Enrich

Reference DB

Models

InteracMve Queries

Updates Storm, Spark
Streaming,
Samza…	

Enterprise DB –
Oracle, Postgres..	

NoSQL –
Cassandra, Redis,
Hbase ….

Teradata, Greenplum,
VerMca, ...

IOT
Devices

			

Lambda Architecture is Complex

• Complexity

- Learn and master mulMple products,
data models, disparate APIs & configs

• Wasted resources

• Slower

- Excessive copying, serializaMon, shuffles
- Impossible to achieve interacMve-speed
analyMcs on large or mutaMng data

9	

Can	We	
Simplify	&	
Op0mize?	

			

Our SoluAon: SnappyData

Deep Scale,
High Volume

MPP DB

Real-Ame design
Low latency, HA,
concurrency

Batch design, high
throughput

Rapidly Maturing Matured over 13 years

Single Unified HA Cluster
OLTP + OLAP + Streaming for Real-time Analytics

			

•  Cannot update
•  Repeated for each

User/App

USER 1 / APP 1

Spark
Master

Spark Executor (Worker)

Framework for
streaming SQL,
ML…

Immutable
CACHE

USER 2 / APP 2

Spark
Master

Spark Executor (Worker)

Framework for
streaming SQL,
ML…

Immutable
CACHE

HDFS
SQL

NoSQL

BoOleneck

We Transform Spark from This …

			

… Into an “Always-On” Hybrid Database !

Deep Scale,
High Volume

MPP DB

HDFS
SQL

NoSQL

HISTORY

Spark Executor (Worker) JVM
- Long-lived

Framework for
streaming SQL,
ML…

Spark
Driver

In-Memory
ROW + COLUMN

Start with
Indexing

Store

-  Mutable,
-  Transactional Spark

Cluster

JDBC

ODBC

Spark Job

Shared Nothing
Persistence

			

Unified Data Model & API

Cluster Manager
& Scheduler

Snappy Data Server (Spark Executor + Store)

Parser

OLAP

TRX

Data Synopsis Engine

Distributed Membership
Service

H
A

Stream Processing

Tables ODBC/JDBC Data Frame

RDD

Low
Latency

High
Latency

HYBRID Store

ProbabilisMc Rows Columns

Index

Query
OpMmizer

Add / Remove
Server

•  Mutability (DML+Trx)

•  Indexing

•  SQL-based streaming

			

Overview

Cluster Manager
& Scheduler

Snappy Data Server (Spark Executor + Store)

Parser

OLAP

TRX

Data Synopsis Engine

Distributed Membership
Service

H
A

Stream Processing

Data Frame

RDD

Low
Latency

High
Latency

HYBRID Store

ProbabilisMc Rows Columns

Index

Query
OpMmizer

Add / Remove
Server

Tables ODBC/JDBC

			

Hybrid Store

Unbounded
Streams IngesMon

Real Mme
Sampling

TransacMonal
State Update

ProbabilisMc

Index Rows

Row
Buffer Columns

Random Writes
(Reference data)

OLAP

Stream AnalyMcs

			

Updates & Deletes on Column Tables

Column Segment (t1-t2)

Column Segment (t2-t3)

0
1
0
0
0
0
1
1
0

K11
K12

.

.

.

.

.

C11
C12

.

.

.

.

.

C21
C22

.

.

.

.

.

Summary Metadata

Periodic Compaction

One ParAAon

Time

WRITE

Row Buffer

MVCC

New Segment

Replicate
for HA

		`	

ProbabilisAc Store: Synopses + Uniform & StraAfied Samples

Higher resoluMon for more
recent Mme ranges

1. Streaming CMS

(Count-Min-Sketch)

[t1, t2) [t2, t3) [t3, t4) [t4, now) Time

4T	 2T	 T	 ≤T	

....	

		`	

ProbabilisAc Store: Synopses + Uniform & StraAfied Samples

Higher resoluMon for more
recent Mme ranges

1. Streaming CMS

(Count-Min-Sketch)

[t1, t2) [t2, t3) [t3, t4) [t4, now) Time

4T	 2T	 T	 ≤T	

....	

Maintain a small sample at each CMS cell

2. Top-K Queries w/ Arbitrary Filters

Tradi>onal CMS CMS+Samples

		`	

ProbabilisAc Store: Synopses + Uniform & StraAfied Samples

Higher resoluMon for more
recent Mme ranges

1. Streaming CMS

(Count-Min-Sketch)

[t1, t2) [t2, t3) [t3, t4) [t4, now) Time

4T	 2T	 T	 ≤T	

....	

Maintain a small sample at each CMS cell

2. Top-K Queries w/ Arbitrary Filters

Tradi>onal CMS CMS+Samples

3. Fully Distributed Stratified Samples

Always include Mmestamp as a straMfied
column for streams

Streams Aging Row Store (In-memory) Column Store (Disk)

timestamp

			

Overview

Cluster Manager
& Scheduler

Snappy Data Server (Spark Executor + Store)

Parser

OLAP

TRX

Data Synopsis Engine

Distributed Membership
Service

H
A

Stream Processing

Data Frame

RDD

Low
Latency

High
Latency

HYBRID Store

ProbabilisMc Rows Columns

Index

Query
OpMmizer

Add / Remove
Server

Tables ODBC/JDBC

			

SupporAng Real-Ame & HA

Locator

Lead Node
Executor JVM (Server)

Shared Nothing
Persistence

JDBC/
ODBC

Catalogue Service

Managed Driver

SPARK
Contacts

SPARK
Context

SNAPPY
Cluster

Manager

REST

SPARK JOBS

SPARK
Program

Memory Mgmt

BLOCKS SNAPPY STORE

Stream SNAPPY

Tables

Tables

DataFrame

•  Spark Executors are long
running. Driver failure
doesn’t shutdown
Executors

•  Driver HA – Drivers are
“Managed” by SnappyData
with standby secondary

•  Data HA – Consensus
based clustering
integrated for eager
replicaMon

DataFrame

			

Overview

Cluster Manager
& Scheduler

Snappy Data Server (Spark Executor + Store)

Parser

OLAP

TRX

Data Synopsis Engine

Distributed Membership
Service

H
A

Stream Processing

Data Frame

RDD

Low
Latency

High
Latency

HYBRID Store

ProbabilisMc Rows Columns

Index

Query
OpMmizer

Add / Remove
Server

Tables ODBC/JDBC

			

Overview

Cluster Manager
& Scheduler

Snappy Data Server (Spark Executor + Store)

Parser

OLAP

TRX

Data Synopsis Engine

Distributed Membership
Service

H
A

Stream Processing

Data Frame

RDD

Low
Latency

High
Latency

HYBRID Store

ProbabilisMc Rows Columns

Index

Query
OpMmizer

Add / Remove
Server

Tables ODBC/JDBC

			

Query OpAmizaAon

24	

•  Bypass the scheduler for transacAons and low-latency jobs

• Minimize shuffles aggressively

- Dynamic replicaMon for reference data
- Retain ‘join indexes’ whenever possible
- Collocate and co-parMMon related tables and streams	

• OpAmized ‘Hash Join’, ‘Scan’, ‘GroupBy’ compared to Spark
- Use more variables (eliminate virtual funcs) to generate beOer code
- Use vectorized structures
- Avoid Spark’s single-node boOlenecks in broadcast joins

•  Column segment pruning through metadata

			

Co-parAAoning & Co-locaAon

Spark Executor Subscriber A-M
Ref data

Spark Executor Subscriber N-Z
Ref data

Linearly scale with partition pruning

Subscriber A-M

Subscriber N-Z

KAFKA
Queue

KAFKA
Queue

			

Overview

Cluster Manager
& Scheduler

Snappy Data Server (Spark Executor + Store)

Parser

OLAP

TRX

Data Synopsis Engine

Distributed Membership
Service

H
A

Stream Processing

Data Frame

RDD

Low
Latency

High
Latency

HYBRID Store

ProbabilisMc Rows Columns

Index

Query
OpMmizer

Add / Remove
Server

Tables ODBC/JDBC

			

Approximate Query Processing (AQP): Academia vs. Industry

25+ yrs of successful
research in academia

User-facing AQP almost
non-existent in commercial world!

Some approximate features in Infobright, Yahoo’s Druid,
Facebook’s Presto, Oracle 12C, ...

AQUA, Online AggregaMon, MapReduce Online,
STRAT, ABS, BlinkDB / G-OLA, ...

WHY ?

BUT:

			

Approximate Query Processing (AQP): Academia vs. Industry

25+ yrs of successful
research in academia

User-facing AQP almost
non-existent in commercial world!

Some approximate features in Infobright, Yahoo’s Druid,
Facebook’s Presto, Oracle 12C, ...

AQUA, Online AggregaMon, MapReduce Online,
STRAT, ABS, BlinkDB / G-OLA, ...

WHY ?

BUT:

select geo, avg(bid)
from adImpressions
group by geo having avg(bid)>10
with error 0.05 at confidence 95

geo avg(bid) error prob_existence

MI 21.5 ± 0.4 0.99

CA 18.3 ± 5.1 0.80

MA 15.6 ± 2.4 0.81

...

			

Approximate Query Processing (AQP): Academia vs. Industry

25+ yrs of successful
research in academia

User-facing AQP almost
non-existent in commercial world!

Some approximate features in Infobright, Yahoo’s Druid,
Facebook’s Presto, Oracle 12C, ...

AQUA, Online AggregaMon, MapReduce Online,
STRAT, ABS, BlinkDB / G-OLA, ...

WHY ?

BUT:

select geo, avg(bid)
from adImpressions
group by geo having avg(bid)>10
with error 0.05 at confidence 95

geo avg(bid) error prob_existence

MI 21.5 ± 0.4 0.99

CA 18.3 ± 5.1 0.80

MA 15.6 ± 2.4 0.81

...
1.  Incompatible w/ BI tools

2.  Complex semantics

3.  Bad sales pitch!

A First Industrial-Grade AQP Engine

1. Highlevel Accuracy Contract (HAC)

•  User picks a single number p, where 0≤p≤1 (by
default p=0.95)

•  Snappy guarantees that s/he only sees things that
are at least p% accurate

•  Snappy handles (and hides) everything else!

geo avg(bid)

MI 21.5

WI 42.3

NY 65.6

... ...

A First Industrial-Grade AQP Engine

1. Highlevel Accuracy Contract (HAC)

•  User picks a single number p, where 0≤p≤1 (by
default p=0.95)

•  Snappy guarantees that s/he only sees things that
are at least p% accurate

•  Snappy handles (and hides) everything else!

2. Fully compatible w/ BI tools

•  Set HAC behavior at JDBC/ODBC connecMon level

geo avg(bid)

MI 21.5

WI 42.3

NY 65.6

... ...

A First Industrial-Grade AQP Engine

1. Highlevel Accuracy Contract (HAC)

•  User picks a single number p, where 0≤p≤1 (by
default p=0.95)

•  Snappy guarantees that s/he only sees things that
are at least p% accurate

•  Snappy handles (and hides) everything else!

2. Fully compatible w/ BI tools

•  Set HAC behavior at JDBC/ODBC connecMon level

•  Concurrency: 10’s of queries in shared clusters
•  Resource usage: everyone hates their AWS bill
•  Network shuffles
•  Immediate results while waiMng for final results

3. Better marketing!

iSight (Immediate inSight)

geo avg(bid)

MI 21.5

WI 42.3

NY 65.6

... ...

33	

Benchmarks	

			

Benchmarks

• Mixed Benchmark: Ad Analytics

- Ad impressions arrive on a message bus
- Aggregate by publisher and geo
- Report avg bid, # of impressions, and # of uniques every few

secs
- Write to a parMMoned store
- TransacMonally update the profiles during ingesMon
- Q1: Top-20 ads receiving most impressions per region
- Q2: Top-20 ads receiving largest bids per geo
- Q3: Top-20 publishers receiving largest sum of bids overall

• TPC - H

St
re
am

in
g	

O
LA

P	
Tr
x	

			

Setup

35	

• HW: 5 c4.2xlarge EC2 instances

- 1 coordinator + 4 workers

• Software: Latest GA versions avalable:

- Kaxa 2.10_0.8.2.2
- Spark 2.0.0
- Cassandra 3.9

w/ Spark-Cassandra connector 2.0.0_M3

- MemSQL Ops-5.5.10 Community EdiMon
w/ Spark-MemSQL Connector 2.10_1.3.3

- SnappyData 0.6.1

			

Ad AnalyAcs

1.5-2x faster ingestion
7-142× faster analytics (at 300M records)

			

Data Synopsis Engine

			

TPC-H

SnappyData

MemSQL

Spark

5.7s

100 GB

12.0s

66.9s

Avg Median

2.5s

6.4s

55.1s

SnappyData was 2.6x faster than MemSQL & 22.4x faster
than Spark 2.0

Conclusion	

			

Where Are We Today ?

•  Current customers

•  Current release

•  Next funding round

•  Upcoming features

- Investment banking, Industrial IoT, Telco, Ad AnalyMcs, & healthcare

- 0.7 (GA 1.0 in Q1-2017)

- Q2-2017

-  IntegraMon of Spark ML w/ our Data Synopsis Engine
-  Cost-based query opMmizer
-  Physical designer & workload miner (hOp://CliffGuard.org)

			

Lessons Learned

1. A unique experience marryings two different breeds of
distributed systems

lineage-based for high-throughput vs. (consensus-) replicaMon-based for low-latency

			

Lessons Learned

2. A unified cluster is simpler, cheaper, and faster

- By sharing state across apps, we decouple apps from data servers and provide HA
- Save memory, data copying, serializaMon, and shuffles
- Co-parMMoning and co-locaMon for faster joins and stream analyMcs

1. A unique experience marryings two different breeds of
distributed systems

lineage-based for high-throughput vs. (consensus-) replicaMon-based for low-latency

			

Lessons Learned

2. A unified cluster is simpler, cheaper, and faster

- By sharing state across apps, we decouple apps from data servers and provide HA
- Save memory, data copying, serializaMon, and shuffles
- Co-parMMoning and co-locaMon for faster joins and stream analyMcs

1. A unique experience marryings two different breeds of
distributed systems

lineage-based for high-throughput vs. (consensus-) replicaMon-based for low-latency

3. Advantages over HTAP engines: Deep stream integration + AQP

- Stream processing ≠ stream analyMcs
- Top-k w/ almost arbitrary predicates + 1-pass straMfied sampling over streams

			

Lessons Learned

2. A unified cluster is simpler, cheaper, and faster

- By sharing state across apps, we decouple apps from data servers and provide HA
- Save memory, data copying, serializaMon, and shuffles
- Co-parMMoning and co-locaMon for faster joins and stream analyMcs

1. A unique experience marryings two different breeds of
distributed systems

lineage-based for high-throughput vs. (consensus-) replicaMon-based for low-latency

3. Advantages over HTAP engines: Deep stream integration + AQP

- Stream processing ≠ stream analyMcs
- Top-k w/ almost arbitrary predicates + 1-pass straMfied sampling over streams

4. Commercializing academic work is lots of work but also lots of fun

THANK YOU !

Try our iSight cloud for free:
htp://snappydata.io/iSight	

