
Indexing in Distributed Actor Systems

Philip Bernstein
Microsoft

Mohammad Dashti
EPFL

Tim Kiefer
TU Dresden

David Maier
Portland State Univ

8th CIDR
January 9, 2017

Stateful Object-Oriented Applications

 Today’s interactive apps are built around a stateful, object-oriented middle tier

 Multi-player games, IoT, social networking, mobile, telemetry

 They comprise a large fraction of new app development

 Naturally object-oriented, modeling real-world objects

 Examples of objects

 Gaming: players, games, grid positions, lobbies, player profiles,
leaderboards, in-game money, and weapon caches

 Social: chat rooms, messages, photos, and news items

 IoT: sensors, virtual sensors (flood, break-in), buildings, vehicles, locations

2

Application Properties

 Properties of these apps

 Objects are active for minutes to days, sometimes forever

 App manages a lot of state: millions of objects, knowledge graphs, images, videos

 App does heavy computation: complex actions, render images, compute over graphs, …

 Properties of the system

 Scale out to large number of servers

 Compute servers must scale out independently of storage servers

 Geo-distributed for worldwide low-latency access

3

Middle-tier Objects Comprise a Distributed DB

 Many objects outlive the processes that created them

 Many (but not all) objects are persistent

 Latest state is in main memory. Storage might be stale

 Active objects are in-memory for fast response

4

Actor Systems

 Many of these apps are implemented using actor systems

 Simplifies distributed programming

 Actors are objects that …

 Communicate only via asynchronous message-passing

 Messages are queued in the recipient's mailbox

 No shared-memory state between actors

 Process one message at a time

 No multi-threaded execution inside an actor

5

Orleans Actor Programming Framework

 Orleans is an open-source actor framework built on C#

 Ensures apps are fault tolerant and scalable

 https://dotnet.github.io/orleans/

 Virtual actor model

 Each actor has a unique location-independent ID, always valid

 Actors are transparently activated on invocation

 On activation, actor invokes its constructor to initialize its state (e.g., read from storage)

 Actor can save state at any time (e.g., to storage)

 Runtime automates fault-tolerance, load balancing, actor lifecycle, …

6

Actor-Oriented Database System (AODB)

 Current distributed actor systems lack DB functionality

 But users frequently ask for it (and hack it)

 Vision: Actor-Oriented DB System

 Indexes, queries, streams, transactions,
replication, geo-distribution, views, triggers

 AODB’s main distinguishing features

 Compatible with actor framework’s
programming model (developer friendly)

 In-memory and elastically scales out to hundreds of servers

 Agnostic to the storage system, e.g., cloud storage services
7

Frontend
Clients

Transactions

Persistence

Geo-
distribution

Indexing

Actor
Middle-Tier

AODB
Plug-ins

Cloud
Storage

Scalable and Storage-Agnostic

 Elastic scalability implies

 Limited ability to co-locate functionality

 Functionality must be parallelizable

 Scale-out is more important than a fast path

 Storage agnostic implies each DB feature

 Must work for persisted and non-persisted objects

 Must not require the storage system to support it

 Should benefit from a storage system that does support it

 Must cope with storage latency of cloud storage

8

Requirements for AODB Indexes

 Statically choose indexed fields

 Optional uniqueness constraints (e.g., ensure Player.Email is unique)

 Index is eventually-consistent with actor and fault tolerant

 Can index active actors only (e.g., offer a tournament to certain on-line players)

 Can index persistent and non-persistent actors

 Leverage actor storage that supports indexing

 Support actor storage that does not support indexing

9

Challenges

 Lookup should avoid activating actors

 No type extents

 No multi-actor transactions

10

Fault Tolerance

12

HashIndex on
Player.Location in Storage

PlayerA

HashIndex on
Player.Location

Player Storage

2. Update index

1. Update storage 3. Update index storage

 Index is comprised of actors, to gain benefits of Orleans

 Suppose we have an index on Player.Location

 Ensure recoverability after each write to storage

Our solution: Multi-step Fault-tolerant Workflow

13

PlayerA
HashIndex on

Player.Location

Player
Storage

HashIndex on
Player.Location in Storage

Local
workflow queue

Workflow queue
Storage

Our solution: Multi-step Fault-tolerant Workflow

14

PlayerA
HashIndex on

Player.Location

Player
Storage

6. Remove
workflow
record ID

4.2. Update

1. Add update to queue

Local
workflow queue

Workflow queue
Storage

4. Batch update the index

4.1. Check if Player has the workflow record, too

Batch write
to Storage

2. 5.

Cont.

3. Update storage
including
workflow record ID

HashIndex on
Player.Location in Storage

Index Physical Representation

15

HashIndex on
Player.Location

PlayerA

PlayerC

PlayerE

PlayerD

PlayerB

PlayerF

PlayerA

PlayerC

PlayerE

PlayerD

PlayerB

PlayerF

HashIndex on
Player.Location for
actors on Server 1

HashIndex on
Player.Location for
actors on Server 2

PlayerA
PlayerC

PlayerE

PlayerD

PlayerB

PlayerF

HashIndex on
Player in Redmond

HashIndex on
Player in Bellevue

Entire index in one actor One index-actor per index bucket One index-actor per server

public class PlayerProperties
{

public int Rank { get; set; }

[Index]
public string Location { get; set; }

}

public class Player :
IndexableGrain<PlayerState, PlayerProperties>, IPlayer

{
public Task Move(Direction d)
{

State.Location =
d.GetDestination(State.Location);

return WriteStateAsync();
}

public Task<string> GetLocation()
{

return Task.FromResult(State.Location);
}

}

public interface IPlayer : IIndexableGrain<PlayerProperties>
{

Task Move(Direction d);

Task<string> GetLocation();
}

Programming Interface: Index Definition

16

public class PlayerState
{

public string Name { get; set; }
public int Rank { get; set; }
public string Location { get; set; }

}

Programming Interface: Index Lookup

17

IOrleansQueryable<IPlayer> activePlayersInRedmond =
from player in GrainFactory.GetActiveGrains<IPlayer, PlayerProperties>()
where player.Location == "Redmond"
select player;

//IOrleansQueryable extends IQueryable interface
foreach(IPlayer player in activePlayersInRedmond)
{

Console.WriteLine(player.GetPrimaryKeyLong());
}

 Use LINQ to access the index

Performance

18

20

30

40

50

60

70

80

90

5 10 15 20

Th
ro

u
gh

p
u

t
(k

ilo
 r

e
q

u
e

st
s/

se
co

n
d

)

Number of middle-tier servers

none one-bucket perkey persilo

5

10

15

20

25

30

0 1 2 3 4

Th
ro

u
gh

p
u

t
(k

ilo
 r

e
q

u
e

st
s/

se
co

n
d

)

Number of Indexes

1

2

3

4

5

6

7

not
indexed

A-index NFT
I-index

FT
I-index

SM
index

Th
ro

u
gh

p
u

t
(k

ilo
 r

eq
u

es
ts

/s
ec

o
n

d
)

Index Type

Future Work on Indexing

 Transactionally update actor and index

 Range indexes

 Richer materialized views

 Offer indexing with other AODB features, e.g., transactions, queries, geo-dist’n

19

Status of Orleans’ AODB Features

 Stream processing (January 2015)

 Geo-distribution and multi-master replication (January 2016)

 Distributed transactions (preview, this month) [MSR Technical Report]

 Indexing (prototype, August 2016)

20

Acknowledgments

 Sebastian Burckhardt, Sergey Bykov, Julian Dominguez, Tova Milo, Jorgen Thelin,
Microsoft Studios and the Orleans community.

 More at https://dotnet.github.io/orleans/

21

https://dotnet.github.io/orleans/

22

Thank you!

