
Indexing in Distributed Actor Systems

Philip Bernstein
Microsoft

Mohammad Dashti
EPFL

Tim Kiefer
TU Dresden

David Maier
Portland State Univ

8th CIDR
January 9, 2017

Stateful Object-Oriented Applications

 Today’s interactive apps are built around a stateful, object-oriented middle tier

 Multi-player games, IoT, social networking, mobile, telemetry

 They comprise a large fraction of new app development

 Naturally object-oriented, modeling real-world objects

 Examples of objects

 Gaming: players, games, grid positions, lobbies, player profiles,
leaderboards, in-game money, and weapon caches

 Social: chat rooms, messages, photos, and news items

 IoT: sensors, virtual sensors (flood, break-in), buildings, vehicles, locations

2

Application Properties

 Properties of these apps

 Objects are active for minutes to days, sometimes forever

 App manages a lot of state: millions of objects, knowledge graphs, images, videos

 App does heavy computation: complex actions, render images, compute over graphs, …

 Properties of the system

 Scale out to large number of servers

 Compute servers must scale out independently of storage servers

 Geo-distributed for worldwide low-latency access

3

Middle-tier Objects Comprise a Distributed DB

 Many objects outlive the processes that created them

 Many (but not all) objects are persistent

 Latest state is in main memory. Storage might be stale

 Active objects are in-memory for fast response

4

Actor Systems

 Many of these apps are implemented using actor systems

 Simplifies distributed programming

 Actors are objects that …

 Communicate only via asynchronous message-passing

 Messages are queued in the recipient's mailbox

 No shared-memory state between actors

 Process one message at a time

 No multi-threaded execution inside an actor

5

Orleans Actor Programming Framework

 Orleans is an open-source actor framework built on C#

 Ensures apps are fault tolerant and scalable

 https://dotnet.github.io/orleans/

 Virtual actor model

 Each actor has a unique location-independent ID, always valid

 Actors are transparently activated on invocation

 On activation, actor invokes its constructor to initialize its state (e.g., read from storage)

 Actor can save state at any time (e.g., to storage)

 Runtime automates fault-tolerance, load balancing, actor lifecycle, …

6

Actor-Oriented Database System (AODB)

 Current distributed actor systems lack DB functionality

 But users frequently ask for it (and hack it)

 Vision: Actor-Oriented DB System

 Indexes, queries, streams, transactions,
replication, geo-distribution, views, triggers

 AODB’s main distinguishing features

 Compatible with actor framework’s
programming model (developer friendly)

 In-memory and elastically scales out to hundreds of servers

 Agnostic to the storage system, e.g., cloud storage services
7

Frontend
Clients

Transactions

Persistence

Geo-
distribution

Indexing

Actor
Middle-Tier

AODB
Plug-ins

Cloud
Storage

Scalable and Storage-Agnostic

 Elastic scalability implies

 Limited ability to co-locate functionality

 Functionality must be parallelizable

 Scale-out is more important than a fast path

 Storage agnostic implies each DB feature

 Must work for persisted and non-persisted objects

 Must not require the storage system to support it

 Should benefit from a storage system that does support it

 Must cope with storage latency of cloud storage

8

Requirements for AODB Indexes

 Statically choose indexed fields

 Optional uniqueness constraints (e.g., ensure Player.Email is unique)

 Index is eventually-consistent with actor and fault tolerant

 Can index active actors only (e.g., offer a tournament to certain on-line players)

 Can index persistent and non-persistent actors

 Leverage actor storage that supports indexing

 Support actor storage that does not support indexing

9

Challenges

 Lookup should avoid activating actors

 No type extents

 No multi-actor transactions

10

Fault Tolerance

12

HashIndex on
Player.Location in Storage

PlayerA

HashIndex on
Player.Location

Player Storage

2. Update index

1. Update storage 3. Update index storage

 Index is comprised of actors, to gain benefits of Orleans

 Suppose we have an index on Player.Location

 Ensure recoverability after each write to storage

Our solution: Multi-step Fault-tolerant Workflow

13

PlayerA
HashIndex on

Player.Location

Player
Storage

HashIndex on
Player.Location in Storage

Local
workflow queue

Workflow queue
Storage

Our solution: Multi-step Fault-tolerant Workflow

14

PlayerA
HashIndex on

Player.Location

Player
Storage

6. Remove
workflow
record ID

4.2. Update

1. Add update to queue

Local
workflow queue

Workflow queue
Storage

4. Batch update the index

4.1. Check if Player has the workflow record, too

Batch write
to Storage

2. 5.

Cont.

3. Update storage
including
workflow record ID

HashIndex on
Player.Location in Storage

Index Physical Representation

15

HashIndex on
Player.Location

PlayerA

PlayerC

PlayerE

PlayerD

PlayerB

PlayerF

PlayerA

PlayerC

PlayerE

PlayerD

PlayerB

PlayerF

HashIndex on
Player.Location for
actors on Server 1

HashIndex on
Player.Location for
actors on Server 2

PlayerA
PlayerC

PlayerE

PlayerD

PlayerB

PlayerF

HashIndex on
Player in Redmond

HashIndex on
Player in Bellevue

Entire index in one actor One index-actor per index bucket One index-actor per server

public class PlayerProperties
{

public int Rank { get; set; }

[Index]
public string Location { get; set; }

}

public class Player :
IndexableGrain<PlayerState, PlayerProperties>, IPlayer

{
public Task Move(Direction d)
{

State.Location =
d.GetDestination(State.Location);

return WriteStateAsync();
}

public Task<string> GetLocation()
{

return Task.FromResult(State.Location);
}

}

public interface IPlayer : IIndexableGrain<PlayerProperties>
{

Task Move(Direction d);

Task<string> GetLocation();
}

Programming Interface: Index Definition

16

public class PlayerState
{

public string Name { get; set; }
public int Rank { get; set; }
public string Location { get; set; }

}

Programming Interface: Index Lookup

17

IOrleansQueryable<IPlayer> activePlayersInRedmond =
from player in GrainFactory.GetActiveGrains<IPlayer, PlayerProperties>()
where player.Location == "Redmond"
select player;

//IOrleansQueryable extends IQueryable interface
foreach(IPlayer player in activePlayersInRedmond)
{

Console.WriteLine(player.GetPrimaryKeyLong());
}

 Use LINQ to access the index

Performance

18

20

30

40

50

60

70

80

90

5 10 15 20

Th
ro

u
gh

p
u

t
(k

ilo
 r

e
q

u
e

st
s/

se
co

n
d

)

Number of middle-tier servers

none one-bucket perkey persilo

5

10

15

20

25

30

0 1 2 3 4

Th
ro

u
gh

p
u

t
(k

ilo
 r

e
q

u
e

st
s/

se
co

n
d

)

Number of Indexes

1

2

3

4

5

6

7

not
indexed

A-index NFT
I-index

FT
I-index

SM
index

Th
ro

u
gh

p
u

t
(k

ilo
 r

eq
u

es
ts

/s
ec

o
n

d
)

Index Type

Future Work on Indexing

 Transactionally update actor and index

 Range indexes

 Richer materialized views

 Offer indexing with other AODB features, e.g., transactions, queries, geo-dist’n

19

Status of Orleans’ AODB Features

 Stream processing (January 2015)

 Geo-distribution and multi-master replication (January 2016)

 Distributed transactions (preview, this month) [MSR Technical Report]

 Indexing (prototype, August 2016)

20

Acknowledgments

 Sebastian Burckhardt, Sergey Bykov, Julian Dominguez, Tova Milo, Jorgen Thelin,
Microsoft Studios and the Orleans community.

 More at https://dotnet.github.io/orleans/

21

https://dotnet.github.io/orleans/

22

Thank you!

