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Stateful Object-Oriented Applications

 Today’s interactive apps are built around a stateful, object-oriented middle tier

 Multi-player games, IoT, social networking, mobile, telemetry

 They comprise a large fraction of new app development

 Naturally object-oriented, modeling real-world objects

 Examples of objects

 Gaming: players, games, grid positions, lobbies, player profiles, 
leaderboards, in-game money, and weapon caches 

 Social: chat rooms, messages, photos, and news items 

 IoT: sensors, virtual sensors (flood, break-in), buildings, vehicles, locations
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Application Properties

 Properties of these apps

 Objects are active for minutes to days, sometimes forever

 App manages a lot of state: millions of objects, knowledge graphs, images, videos

 App does heavy computation: complex actions, render images, compute over graphs, …

 Properties of the system

 Scale out to large number of servers

 Compute servers must scale out independently of storage servers

 Geo-distributed for worldwide low-latency access
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Middle-tier Objects Comprise a Distributed DB

 Many objects outlive the processes that created them

 Many (but not all) objects are persistent

 Latest state is in main memory. Storage might be stale

 Active objects are in-memory for fast response
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Actor Systems

 Many of these apps are implemented using actor systems

 Simplifies distributed programming 

 Actors are objects that …

 Communicate only via asynchronous message-passing

 Messages are queued in the recipient's mailbox

 No shared-memory state between actors

 Process one message at a time

 No multi-threaded execution inside an actor 
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Orleans Actor Programming Framework

 Orleans is an open-source actor framework built on C#

 Ensures apps are fault tolerant and scalable

 https://dotnet.github.io/orleans/

 Virtual actor model

 Each actor has a unique location-independent ID, always valid

 Actors are transparently activated on invocation

 On activation, actor invokes its constructor to initialize its state (e.g., read from storage)

 Actor can save state at any time (e.g., to storage)

 Runtime automates fault-tolerance, load balancing, actor lifecycle, …
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Actor-Oriented Database System (AODB)

 Current distributed actor systems lack DB functionality

 But users frequently ask for it (and hack it)

 Vision: Actor-Oriented DB System

 Indexes, queries, streams, transactions, 
replication, geo-distribution, views, triggers

 AODB’s main distinguishing features 

 Compatible with actor framework’s 
programming model (developer friendly)

 In-memory and elastically scales out to hundreds of servers

 Agnostic to the storage system, e.g., cloud storage services
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Scalable and Storage-Agnostic

 Elastic scalability implies

 Limited ability to co-locate functionality

 Functionality must be parallelizable 

 Scale-out is more important than a fast path

 Storage agnostic implies each DB feature

 Must work for persisted and non-persisted objects

 Must not require the storage system to support it

 Should benefit from a storage system that does support it

 Must cope with storage latency of cloud storage

8



Requirements for AODB Indexes

 Statically choose indexed fields

 Optional uniqueness constraints (e.g., ensure Player.Email is unique)

 Index is eventually-consistent with actor and fault tolerant

 Can index active actors only (e.g., offer a tournament to certain on-line players)

 Can index persistent and non-persistent actors

 Leverage actor storage that supports indexing

 Support actor storage that does not support indexing
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Challenges

 Lookup should avoid activating actors

 No type extents

 No multi-actor transactions
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Fault Tolerance
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Our solution: Multi-step Fault-tolerant Workflow
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Our solution: Multi-step Fault-tolerant Workflow
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Index Physical Representation
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public class PlayerProperties
{

public int Rank { get; set; }

[Index]
public string Location { get; set; }

}

public class Player : 
IndexableGrain<PlayerState, PlayerProperties>, IPlayer

{
public Task Move(Direction d)
{

State.Location =
d.GetDestination(State.Location);

return WriteStateAsync();
}

public Task<string> GetLocation()
{

return Task.FromResult(State.Location);
}

}

public interface IPlayer : IIndexableGrain<PlayerProperties>
{

Task Move(Direction d);

Task<string> GetLocation();
}

Programming Interface: Index Definition
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public class PlayerState
{

public string Name { get; set; }
public int Rank { get; set; } 
public string Location { get; set; }

}



Programming Interface: Index Lookup
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IOrleansQueryable<IPlayer> activePlayersInRedmond = 
from player in GrainFactory.GetActiveGrains<IPlayer, PlayerProperties>()
where player.Location == "Redmond"
select player;

//IOrleansQueryable extends IQueryable interface
foreach(IPlayer player in activePlayersInRedmond)
{

Console.WriteLine(player.GetPrimaryKeyLong());
}

 Use LINQ to access the index



Performance
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Future Work on Indexing

 Transactionally update actor and index

 Range indexes

 Richer materialized views

 Offer indexing with other AODB features, e.g., transactions, queries, geo-dist’n
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Status of Orleans’ AODB Features

 Stream processing (January 2015)

 Geo-distribution and multi-master replication (January 2016)

 Distributed transactions (preview, this month) [MSR Technical Report]

 Indexing (prototype, August 2016)
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Thank you!


