
Data Civilizer

by 

A Collection of Folks at MIT, QCRI, 
Waterloo and TU Berlin



The Problem

•Mark Schreiber (Merck) reports that his 
data scientists spend 98% of their time

• Locating data of interest
• Accessing data of interest
• Cleaning and transforming data of interest

•I.e. 39 hours a week of “mung work” and 
1 hour a week doing the job for which 
they were hired

•NOBODY reports less than 80% mung work!



Data Civilizer

•Goal is to make Mark Schreiber happy
• i.e. drive down the 98%



Data Civilizer

•Enterprise crawling to enable next steps
•Data Discovery

• Find tables of interest to a data scientist

•Transformations
• Syntactic (e.g. European dates to US dates)
• Semantic (e.g. Merck has five different ID systems for 

chemical compounds)

•Join path identification and choice
•Data cleaning



Our Demo

•Enterprise crawling to enable next steps
•Data Discovery

• Find tables of interest to a data scientist

•Transformations
• Syntactic (e.g. European dates to US dates)
• Semantic (e.g. Merck has five different ID systems for 

chemical compounds)

•Join path identification and choice
•Data cleaning



Context

•Merck has ~4000 Oracle data bases
•Plus a data lake
•Plus untold files
•Plus untold spreadsheets
•Plus they are interested in public data 

from the web

•Any solution has to work at scale!!!!!!



We Can’t Do a Merck Demo

•They are protective of their data
• We haven’t cracked the problem of getting access to 

much of their data

•Ergo we don’t have a suitable crawler



Instead…..

• We are using the MIT Data Warehouse
• 2400 tables in an Oracle database
• Students, courses, buildings, …
• 160 are “semi-public”

• Campus personal have ad-hoc questions
• For example:

• How many employees work in degree granting 
departments?



Analysts spend more time finding relevant data 
than analyzing it



Data Civilizer Discovery Module

• Goal: Find data relevant to the question at hand
• Challenges of scale and varied discovery needs
• Approach to large scale data discovery:

• Data Summarization
• Mining relationships: Linkage graph
• Discovery algebra: express different queries



Data Civilizer Discovery Module

• Goal: Find data relevant to the question at hand
• Challenge: scale and varied discovery needs
• Approach to large scale data discovery:

• Data Summarization
• Mining relationships: Linkage graph
• Discovery algebra: express different queries



Data Civilizer Discovery Module

• Goal: Find data relevant to the question at hand
• Challenge: scale and varied discovery needs
• Approach to large scale data discovery:

• Data Summarization
• Mining relationships: Linkage graph
• Discovery algebra: express different queries



Demo



Which Join Path is the Best?

•Each join path leads to a different view
• different size – coverage
• different quality – cleanliness

•Combine the two metrics to pick the path
•But, how to estimate cleanliness?



Estimating cleanliness

•Estimate the cleanliness of source data
• Outlier detection
• Check integrity constraints
• New method based on relationships in linkage graph

•Propagate cleanliness from source to view



View Cleaning with a Budget

•Where to clean
• Clean sources may waste budget on irrelevant 

cells
• Clean view may waste budget on duplicates
• Only clean source cells that affect the view

•Which cell to clean?
• Clean cells with the biggest impact to the view.
• Leverage cleanliness propagation to calculate 

the impact



Demo



What’s Coming

•Eye Candy!!!!!

•Semantic transformations
• Using Data Xformer (CIDR 2015, SIGMOD 2015)
• Inside the firewall as well as out on the web

•Partner to get syntactic ones

•Workflow system
• Data Civilizer has to be iterative



What’s Coming

•Join path clustering
• To identify ones with the same semantics
• Will require human input!

•Data cleaning cannot be totally manual
• QCRI has done a lot of work in this area
• We have a bunch of ideas on how to move forward

•Provenance
• Mark is interested in what is derived from what



What’s Coming

•Cannot copy all data of interest into a 
data lake

• There is simply too much of it
•Have to access data “in situ” and on 

demand
• Requires a polystore
• And we have built one (BigDAWG)



Stay Tuned for a Complete 
System


