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The production job “JobA” failed...
impact? debug? re-run?
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But don’t bother them too much...




The Problem

Focused analyses of massive, loosely structured, evolving
data has prohibitive cognitive and computational costs.
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Cost of understanding raw data Cost of processing raw data



A better vantage point?



Dependency Driven Analytics (DDA)

DDA vision

Automation
Language-integration
Real-time

 Derive a dependency graph (DG) from raw data

The DG serve as:

e Conceptual Map, and
* Sparse Index for the raw data



DDA: infrastructure logs “incarnation™

Q1% “JobA’s impact?”

Query Interface

* The DG stores:
provenance + telemetry
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* EDGES: job-reads-file, task-runs-on-machine
* PROPERTIES: timestamps / resources usage / ...

Raw data (logs)



Current implementation
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Extract “jobs processing hours”

extStart = EXTRACT * FROM "ProcStarted %Y¥Y%m%d.log"
USING EventExtractor ("ProcStarted") ;

startData = SELECT ProcessGuid AS ProcesslId,

CurrentTimeStamp.Value AS StartTime,
JobGuid AS JobId
FROM extStart

WHERE ProcessGuid !'= null AND JobGuid '= null AND
CurrentTimeStamp.HasValue;

procH = SELECT endData.JoblId,
SUM( (End - Start) .TotalMs)/1000/3600 AS procHours,
FROM startData INNER JOIN endData ON startData.ProcessId ==

endData.ProcessId AND startData.JobId == endData.JobId
GROUP BY JoblId;

OUTPUT (SELECT JobId, procHours FROM procH) TO "processingHours.csv";



graph. traversal () .V()
.has ("JobTemplateName", "JobA *")
.local (
emit () .repeat (out()) .times (100)
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DDA: Initial Experiments

Q3: “Average Count of inputs per Job”
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* Heavy under-representation of hardness of baseline



Not all queries are as easy...

Simple search/browsing

Local or agg. queries on
telemetry / provenance

Complex/AdHoc queries
(e.g., debugging)

- Ul (keyword search)

- Graph queries on DG
(i.e., covering index)

- Mix of DG and raw data
querying (clumsy today)




DDA: open challenges

* Automatically “map” the raw data
* Real-time log ingestion at scale

* Scale-out graph management
* Leverage specialized graph structures

* Integrated language for
graph+relational+unstructured




Scope

Infrastructure logs Internet of Things Enterprise Search




Conclusions

Problem:

* Focused analyses of massive, loosely structured, evolving data has
prohibitive costs

DDA solution:

 Extract a Dependency Graph (DG) = conceptual map + sparse index
e Current impl. leverages existing BigData/Graph tech

Open challenges:
e automation / real-time / scalable graph tech / integrated language



