
Dependency Driven Analytics
a Compass for Uncharted Data Oceans/Jungles

Ruslan Mavlyutov, Carlo Curino, Boris Asipov, Phil Cudre-Mauroux

The production job “JobA” failed…
impact? debug? re-run?

1) look in the logs

PBs of daily

2) ask local experts
(they know “how” to look)

But don’t bother them too much…

The Problem

Focused analyses of massive, loosely structured, evolving
data has prohibitive cognitive and computational costs.

Focused analyses of massive, loosely structured, evolving
data has prohibitive cognitive and computational costs.

The Problem

Cost of understanding raw data Cost of processing raw data

A better vantage point?

Dependency Driven Analytics (DDA)

• Derive a dependency graph (DG) from raw data

The DG serve as:
• Conceptual Map, and

• Sparse Index for the raw data

DDA today DDA vision

• Automation
• Language-integration
• Real-time
• …

DDA: infrastructure logs “incarnation”

• The DG stores:
provenance + telemetry

• NODES: jobs / files / machines / tasks / …

• EDGES: job-reads-file, task-runs-on-machine

• PROPERTIES: timestamps / resources usage / …

Raw data (logs)

Query Interface

“JobA’s impact?”

Current implementation

Raw
Data

Extraction

Dependency
Definition

Storage

Querying

Scope/
Cosmos Neo4J

dependency
graph

Schema +
extr. rules

Big Data
System

Graph
System

Raw
Data

Raw
Data

Extract “jobs processing hours”

extStart = EXTRACT * FROM "ProcStarted_%Y%m%d.log"

USING EventExtractor("ProcStarted");

startData = SELECT ProcessGuid AS ProcessId,

CurrentTimeStamp.Value AS StartTime,

JobGuid AS JobId

FROM extStart

WHERE ProcessGuid != null AND JobGuid != null AND

CurrentTimeStamp.HasValue;

…

procH = SELECT endData.JobId,

SUM((End - Start).TotalMs)/1000/3600 AS procHours,

FROM startData INNER JOIN endData ON startData.ProcessId ==

endData.ProcessId AND startData.JobId == endData.JobId

GROUP BY JobId;

OUTPUT (SELECT JobId, procHours FROM procH) TO "processingHours.csv";

Example: “Measure JobA’s impact”

graph.traversal().V()

.has("JobTemplateName","JobA_*")

.local(

emit().repeat(out()).times(100)

.hasLabel("job").dedup()

.values(“procHours").sum()

).mean()

…

DDA: Initial Experiments

Improvements of up to:

• 7x less LoC*

• 700x less run-time

• > 50,000x less CPU-time

• > 800x less I/O

* Heavy under-representation of hardness of baseline

Not all queries are as easy…

Simple search/browsing

Local or agg. queries on
telemetry / provenance

 Graph queries on DG
(i.e., covering index)

Complex/AdHoc queries
(e.g., debugging)

 Mix of DG and raw data
querying (clumsy today)

 UI (keyword search)

Neo4J

Scope/
Cosmos Neo4J

+

DDA: open challenges

• Automatically “map” the raw data

• Real-time log ingestion at scale

• Scale-out graph management
• Leverage specialized graph structures

• Integrated language for
graph+relational+unstructured

Scope

Enterprise Search Internet of ThingsInfrastructure logs

…

Conclusions

Problem:
• Focused analyses of massive, loosely structured, evolving data has

prohibitive costs

DDA solution:
• Extract a Dependency Graph (DG)  conceptual map + sparse index

• Current impl. leverages existing BigData/Graph tech

Open challenges:
• automation / real-time / scalable graph tech / integrated language

