Dependency Driven Analytics

a Compass for Uncharted Data Oceans/Jungles

Ruslan Mavlyutov, Carlo Curino, Boris Asipov, Phil Cudre-Mauroux

The production job “JobA” failed...
impact? debug? re-run?

2) ask local experts

to look)

14

(they know “how

But don’t bother them too much...

The Problem

Focused analyses of massive, loosely structured, evolving
data has prohibitive cognitive and computational costs.

The Problem

Focused analyses of massive, loosely structured, evolving
data has prohibitive cognitive and computational costs.

Cost of understanding raw data Cost of processing raw data

A better vantage point?

Dependency Driven Analytics (DDA)

DDA vision

Automation
Language-integration
Real-time

 Derive a dependency graph (DG) from raw data

The DG serve as:

e Conceptual Map, and
* Sparse Index for the raw data

DDA: infrastructure logs “incarnation™

Q1% “JobA’s impact?”

Query Interface

* The DG stores:
provenance + telemetry

A} . .
sentities,

* NODES: jobs / files / machines / tasks / Machinep | relationships,
_Dependency graph @) ¢

* EDGES: job-reads-file, task-runs-on-machine
* PROPERTIES: timestamps / resources usage / ...

Raw data (logs)

Current implementation

Raw
Data

Raw

Data |

l Raw

Data

Schema +
extr. rules

dependency
graph

Extract “jobs processing hours”

extStart = EXTRACT * FROM "ProcStarted %Y¥Y%m%d.log"
USING EventExtractor ("ProcStarted") ;

startData = SELECT ProcessGuid AS ProcesslId,

CurrentTimeStamp.Value AS StartTime,
JobGuid AS JobId
FROM extStart

WHERE ProcessGuid !'= null AND JobGuid '= null AND
CurrentTimeStamp.HasValue;

procH = SELECT endData.JoblId,
SUM((End - Start) .TotalMs)/1000/3600 AS procHours,
FROM startData INNER JOIN endData ON startData.ProcessId ==

endData.ProcessId AND startData.JobId == endData.JobId
GROUP BY JoblId;

OUTPUT (SELECT JobId, procHours FROM procH) TO "processingHours.csv";

graph. traversal () .V()
.has ("JobTemplateName", "JobA *")
.local (
emit () .repeat (out()) .times (100)
.hasLabel ("job") .dedup ()
.values (“procHours") .sum()
) .mean ()

DDA: Initial Experiments

Q3: “Average Count of inputs per Job”

[Raw [GraphonDFS
LoC 50

25 7
Improvements of up to: Run-time 58min I Imin 4.9sec
e 7x less LoC* CPU-time 563h 25h <40sec
_ I10s 18.6TB 61GB | <24GB (RAM)
e 700x less run-time
* > 50,000x less CPU-time Q4: “Ratio of recurring vs Ad-hoc Jobs”
+ > 800x less 1/0 | Raw [Graphon DFS
LoC 22 21 3

Run-time 10.9sec
CPU-time <90sec
I0s <24GB

* Heavy under-representation of hardness of baseline

Not all queries are as easy...

Simple search/browsing

Local or agg. queries on
telemetry / provenance

Complex/AdHoc queries
(e.g., debugging)

- Ul (keyword search)

- Graph queries on DG
(i.e., covering index)

- Mix of DG and raw data
querying (clumsy today)

DDA: open challenges

* Automatically “map” the raw data
* Real-time log ingestion at scale

* Scale-out graph management
* Leverage specialized graph structures

* Integrated language for
graph+relational+unstructured

Scope

Infrastructure logs Internet of Things Enterprise Search

Conclusions

Problem:

* Focused analyses of massive, loosely structured, evolving data has
prohibitive costs

DDA solution:

 Extract a Dependency Graph (DG) = conceptual map + sparse index
e Current impl. leverages existing BigData/Graph tech

Open challenges:
e automation / real-time / scalable graph tech / integrated language

