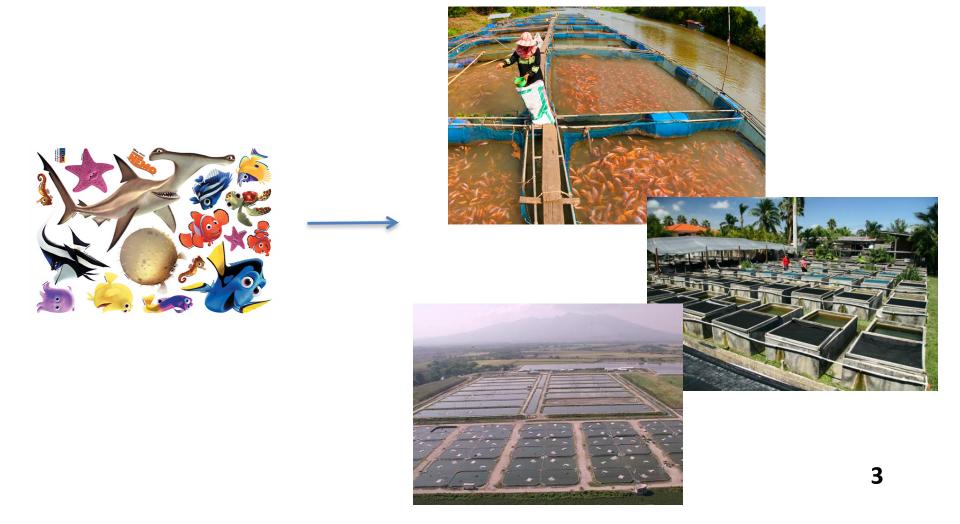
William Spoth^b, Bahareh Sadat Arabⁱ, Eric S. Chan^o, Dieter Gawlick^o, Adel Ghoneimy^o, Boris Glavicⁱ, Beda Hammerschmidt^o, Oliver Kennedy^b, Seokki Leeⁱ, Zhen Hua Liu^o, Xing Niuⁱ, **Ying Yang^b**

b: University at Buffalo i: Illinois Inst. Tech. o: Oracle



Classic relational database

• Navigational and organizational purpose

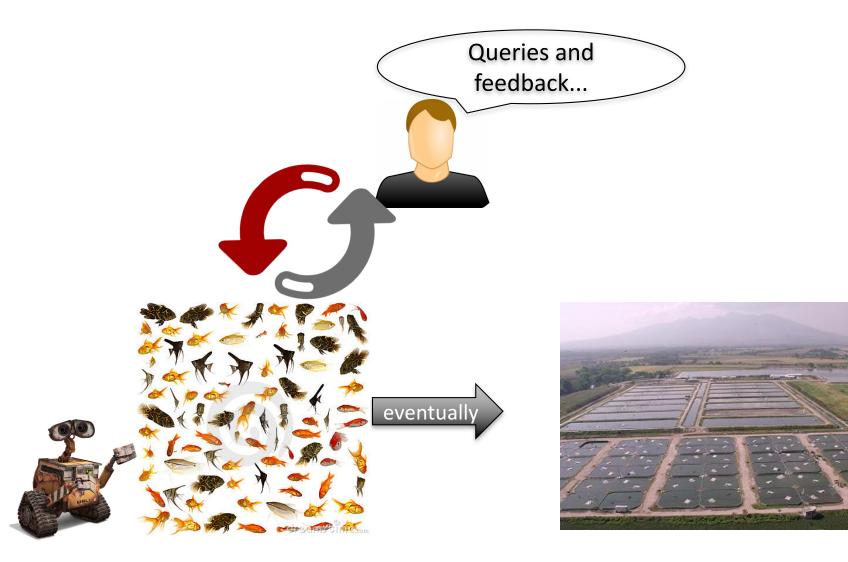
retain discovery, good performance and space, reusable.

Classic relational database

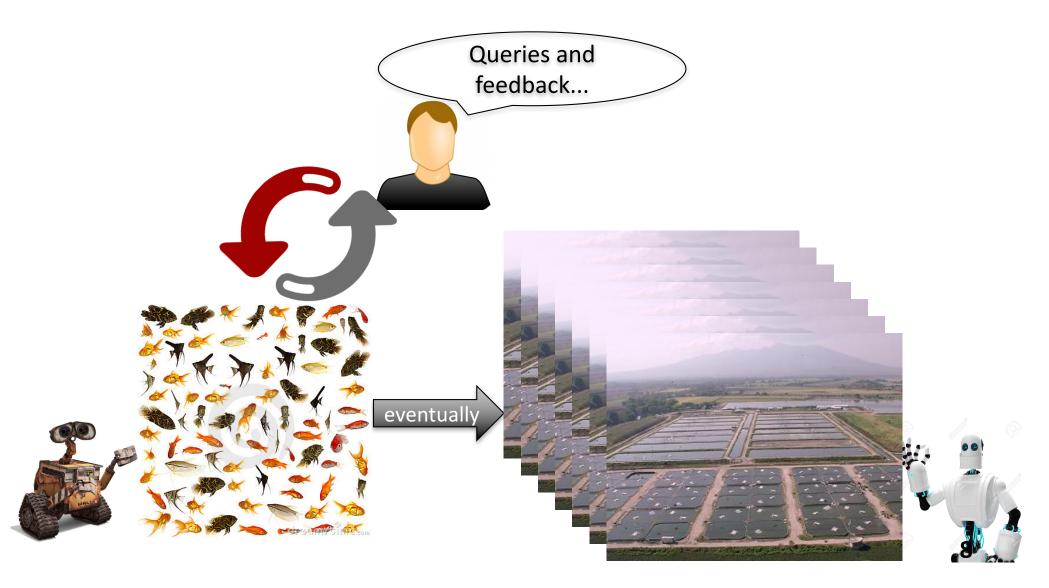
• But... High upfront cost and inflexible

BigData/NOSQL

• Data can be used immediately.

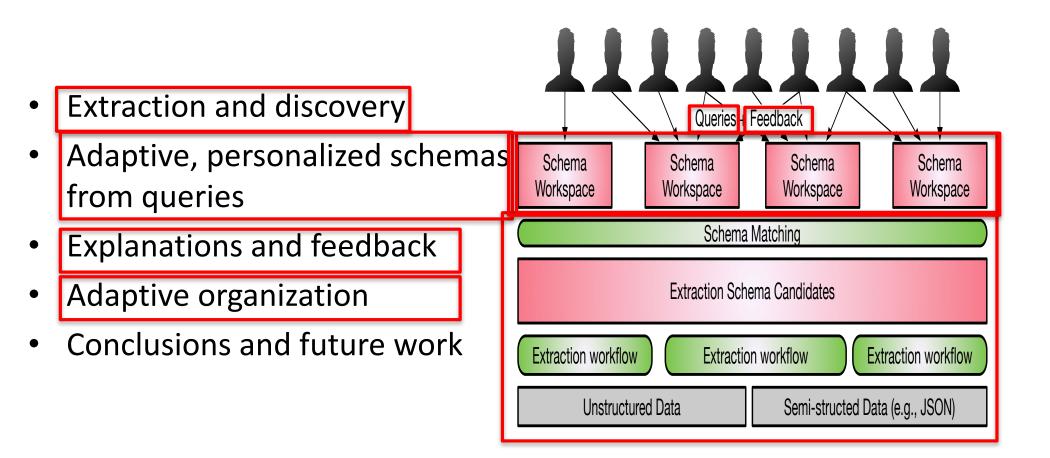


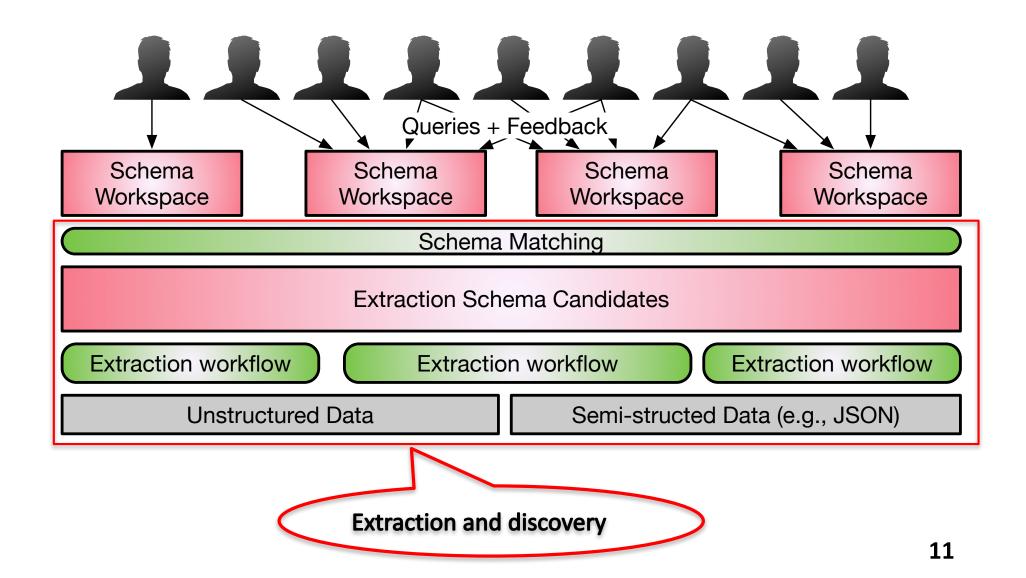
BigData/NOSQL


• But... Sacrifice navigational and Performance benefit and may end up with duplicate of work

• Bridge the gap between relational database and NoSQI.

• Bridge the gap between relational database and NoSQI.

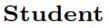

```
Input:
{"grad":{"students":[
    {name:"Alice",deg:"PhD",credits:"10"},
    {name:"Bob",deg:"MS"}, ...]},
"undergrad":{"students":[
    {name:"Carol"},{name:"Dave",deg:"U"}, ...]}}
```


Queries: SELECT name FROM Undergrad UNION SELECT name FROM Grad

SELECT deg FROM Grad

SELECT name FROM Student

Outline

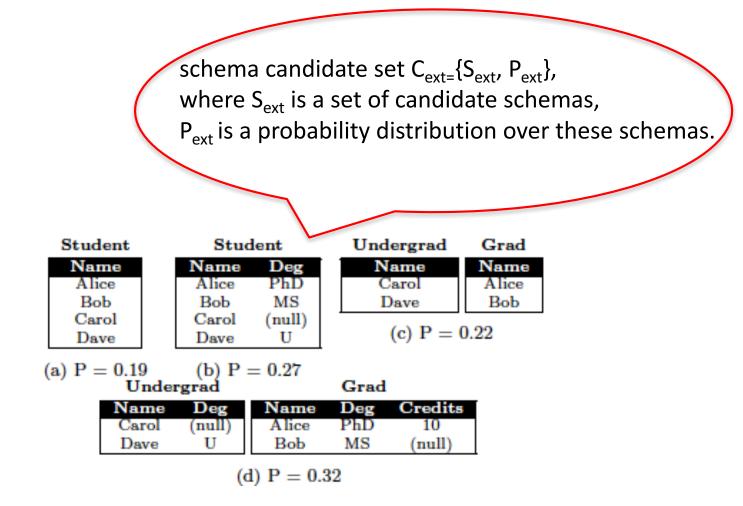

```
Given input:
{"grad":{"students":[
    {name:"Alice",deg:"PhD",credits:"10"},
    {name:"Bob",deg:"MS"}, ...]},
"undergrad":{"students":[
    {name:"Carol"},{name:"Dave",deg:"U"}, ...]}}
```

$\mathbf{Undergrad}$	\mathbf{Grad}
$\mathbf{N}\mathbf{a}\mathbf{m}\mathbf{e}$	$\mathbf{N}\mathbf{a}\mathbf{m}\mathbf{e}$
Carol	Alice
Dave	Bob

```
Given input:
{"grad":{"students":[
    {name:"Alice",deg:"PhD",credits:"10"},
    {name:"Bob",deg:"MS"}, ...]},
"undergrad":{"students":[
    {name:"Carol"},{name:"Dave",deg:"U"}, ...]}}
```

Undergrad		\mathbf{Grad}		
$\mathbf{N}\mathbf{a}\mathbf{m}\mathbf{e}$	\mathbf{Deg}	Name	\mathbf{Deg}	${f Credits}$
Carol	(null)	Alice	PhD	10
Dave	U	Bob	MS	(null)

```
Given input:
{"grad":{"students":[
    {name:"Alice",deg:"PhD",credits:"10"},
    {name:"Bob",deg:"MS"}, ...]},
"undergrad":{"students":[
    {name:"Carol"},{name:"Dave",deg:"U"}, ...]}}
```


```
Given input:
{"grad":{"students":[
    {name:"Alice",deg:"PhD",credits:"10"},
    {name:"Bob",deg:"MS"}, ...]},
"undergrad":{"students":[
    {name:"Carol"},{name:"Dave",deg:"U"}, ...]}}
```

$\mathbf{Student}$

Name	\mathbf{Deg}
Alice	PhD
Bob	MS
Carol	(null)
Dave	U

Discovery

Discovery

Student Name Alice Bob Carol Dave	StudentNameDegAlicePhDBobMSCarol(null)DaveU	Undergrad Name Carol Dave (c) P = 0.	Grad Name Alice Bob
(a) $P = 0.19$ Under	(b) P = 0.27 ergrad	Grad	-
Name Carol Dave	Deg Name (null) Alice U Bob	Deg Credits PhD 10 MS (null)	
	(d) P = 0.5	32	
		Sma	ax:
		the	best guess schema
			17

Adaptive, personalized schemas from queries

Adaptive, personalized schemas

• ASD maintains a set of schema workspaces W={W_{1,...}W_n}.

Initially, W={}

Finding Schemas from Queries

• ASD maintains a set of schema workspaces W={W_{1,...}W_n}.

Query 1: SELECT name FROM Undergrad UNION SELECT name FROM Grad

Finding Schemas from Queries

• ASD maintains a set of schema workspaces W={W_{1,...},W_n}.

Query 1: SELECT name FROM Undergrad UNION SELECT name FROM Grad

Undergrad	\mathbf{Grad}
$\mathbf{N}\mathbf{a}\mathbf{m}\mathbf{e}$	Name
Carol	Alice
Dave	Bob

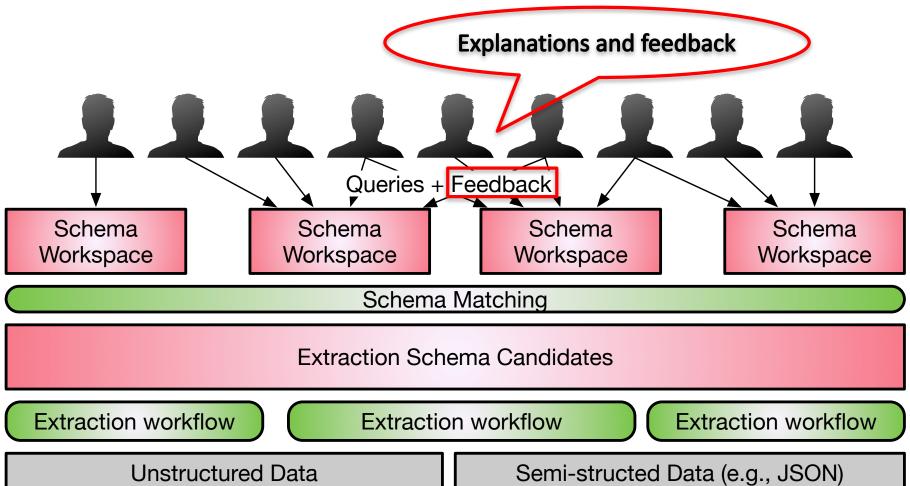
Finding Schemas from Queries

• ASD maintains a set of schema workspaces W={W_{1,...}W_n}.

Query 2: SELECT deg FROM Grad

Undergrad	\mathbf{Grad}	
$\mathbf{N}\mathbf{a}\mathbf{m}\mathbf{e}$	Name	\mathbf{Deg}
Carol	Alice	PhD
Dave	Bob	MS

Synthesizing Tables


• ASD maintains a set of schema workspaces W={W_{1,...},W_n}.

Query 3: SELECT name FROM Student

Undergrad	Grad	${f Student}$
Chuergrau	Grau	$\mathbf{N}\mathbf{a}\mathbf{m}\mathbf{e}$
\mathbf{Name}	\mathbf{Name}	Alice
Carol	Alice	Bob
Dave	Bob	Carol Dave
2310	200	Dave

$$W_1 = (S_1 = \{Undergrad(name)\}, P_1 = 0.27),$$

(S_1 = {Grad(name)}, P_1 = 0.23),
(S_1 = {Undergrad(name), Grad(name)}, P_1 = 0.5)

Explanations and feedback

What might go wrong

Extraction errors appear in three forms:

- (1) A query incompatible with S_{max}
- (2) An update with data that violates S_{max}
- (3) An extraction error presented to user

We provide: (1) explanation of results

- (2) provenance
- (3) Warn the analyst with ambiguity
- (4) Explain the ambiguity
- (5) Evaluate the magnitude of ambiguity
- (6) Assist the analyst to resolve the ambiguity

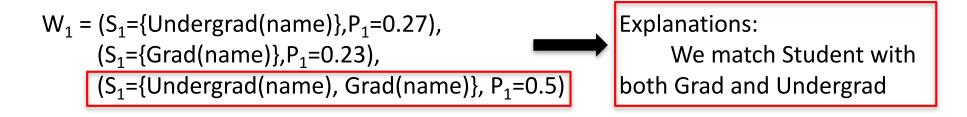
Types of errors

ASD interacts with the outside world: Schema, Data, and Update.

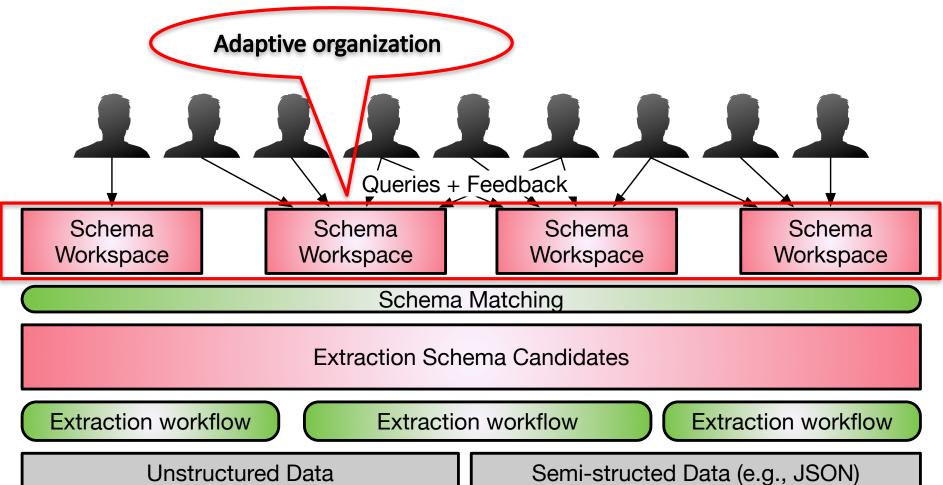
Schema interactions: When a query incompatible with $\ensuremath{\mathsf{S}_{\mathsf{max}}}$ and the workspace

Data interactions: provenance for attribute and row level ambiguity.

Update interactions:


- represent schema mismatches as missing values.
- resolve data errors with a probabilistic repair.
- upgrade her schema to match the changes.
- checkpoint her workspace and ignore new updates.

Explanations and feedback


Condition 2: Query from unknown schema elements:

SELECT name FROM Student

Undergrad	Grad	${f Student}$
Chuergrau	Grau	$\mathbf{N}\mathbf{a}\mathbf{m}\mathbf{e}$
\mathbf{Name}	\mathbf{Name}	Alice
Carol	Alice	Bob
Dave	Bob	Carol Dave

Adaptive organization

Trade-off between storing data in its native format and based on a specific schema.

What is the challenge? Many workspaces, add table to the schema,

Challenges and Possible Solutions:

• We want multiple personalized schemas

1. Relational workspace schema is essentially a *view* over raw data. Materializing view can be used.

2. Use existing *adaptive physical design* and *caching* techniques.

• Shared materializations

1. Incremental materialized view maintenance. Leverage techniques from revision control systems.

2. View selection problem.

Conclusions and future work

ASD bridges the gap between relational databases and NoSQL.

- **Discovery**: Help user explore and understand new data by providing an outline of the available information. **Done**
- *Materialization*: Adopt work on adaptive data structures. *Partially done*
- Data Synthesis: Synthesis new tables and attributes from existing data.
 Done
- Conflict Response:
 - Versioning or branching the schema.
 - Log analysis to help users assess the impact of schema revisions.