Not Your Father’s Big Data

Carl Nuessle
University at Buffalo
carlnues@buffalo.edu

ABSTRACT

Embedded database libraries provide developers with a com-
mon and convenient data persistence layer. They have spread
to many systems, including interactive devices like smart-
phones, appearing in all major mobile systems. Their perfor-
mance affects the response times and resource consumption of
millions of phone apps and billions of phone users. It is thus
critical that we better understand how they work, so they can
be used more efficiently, and so developers can make faster
libraries. Mobile databases differ significantly from server-
class storage in terms of platform, usage, and measurement.
Phones are multi-tenant, end-user devices that the database
must share with other apps. Contrary to traditional database
design goals, workloads on phones are single-app, bursty, and
rarely saturate the CPU. We argue that mobile storage de-
sign should refocus on what matters on the mobile platform:
latency and energy. As accurate performance measurement
tools are necessary to evaluation of good database design, this
uncovers another issue: Traditional database benchmarking
methods produce misleading results when applied to mo-
bile devices, due to evaluating performance at saturation.
Development of databases and measurements specifically de-
signed for the mobile platform is necessary to optimize user
experience of the most common database usage in the world.

Introduction.

There are 2 billion+ smartphones on Earth, each averaging
2 queries per second [1]. Databases furnish an abstraction
to query persistent storage in a structured fashion. Data
management is a bottleneck for mobile workloads [3], so im-
proving mobile databases performance is critical. To do so, we
need to understand the environment and behavior of smart-
phone databases. There are several key differences between
embedded platforms and traditional database environments
that affect DB behavior and measurement.

The pH is Too High: Database guarantees need to
become less Acid and more Basic.

Phone databases default to correct over performant be-
havior, for example by implementing full ACID guarantees.
Smartphones can harvest the performance gains from imple-
menting a simpler set of safety guarantees. To be sure, phone
databases will still need to assure data integrity (Atomicity)
and storage invariants (Consistency).

But do we really need Durability on phones? Batteries are
typically soldered in with little chance of a power cut. The
Isolation guarantee is unnecessary in most cases. While mod-
ern server-class databases, to maximize throughput, support
simultaneous connections, smartphone databases are per-app.
Additionally, apps have low throughput requirements. We

speculate most phone apps never implement internal data-
base threading, and that the threading and locking overhead
can be eliminated from most phone databases.

Workloads are bursty.

Server-class databases must expect continuous operation
requests; transaction rate is a key performance metric[2].
Embedded databases, however, should not: Query patterns
are irregular and bursty. A tpm of 112k can be obtained
with dedicated hardware costing $100k+ [2]. Yet, we have
observed rate bursts of 36k tpm on phones costing $500 — 1/3
the rate for less than .1% the cost. The key is that phones
do not need to sustain this rate.

Rather, latency is paramount: mobile is an end-user plat-
form, and latency directly affects app responsiveness. They
need to focus on designing DB engines to optimize burst re-
sponse, with smart cache pre-fetching to yield low latency for
the duration of the current burst, and a large enough caches
to serve the next burst request. They can safely discount
access patterns exhausting the cache — the activity burst will
likely end before that.

Mobile power and performance are suboptimal.

Resource-limited phones are always concerned with power
usage, and power-performance tradeoffs are common. Surpris-
ingly, the default settings on Android are often not optimal
for database usage. Often, non-default settings outperform
the system defaults in both areas. We have found that optimal
CPU policy depends strongly on the nature of the database
workload — in most cases studied, the setting is a non-default
one. Likely, implementation of better system policies, advised
by database workload semantics, will yield increased database
performance and/or decreased energy cost.

Mobile needs its own benchmarks.

In order to evaluate and tune any database, representative
benchmarks are necessary. The different conditions and aims
of mobile platforms, however, mean that traditional bench-
mark metrics can produce misleading results. The database
which scales better under more workload processes would
normally seen as better. Mobile databases are per-app, and
it is the base single-app case that is relevant. The database
offering best performance in this case is frequently different
from the one that scales better. The standard benchmark
evaluation would produce misleading results.

REFERENCES

[1] Oliver Kennedy, Jerry Antony Ajay, Geoffrey Challen, and Lukasz
Ziarek. 2015. Pocket Data: The Need for TPC-MOBILE. In TPC-
TC.

[2] tpc.org. 2018. TPC. (2018). http://www.tpc.org/tpcc/results/
tpcc_results.asp

[3] Yan Wang and Atanas Rountev. 2016. Profiling the responsiveness
of Android applications via automated resource amplification. In
MOBILESoft. ACM, 48-58.

http://www.tpc.org/tpcc/results/tpcc_results.asp
http://www.tpc.org/tpcc/results/tpcc_results.asp

	Abstract
	References

