
CIDR2: Crazier Innovations in
Databases & Reinforcement-learning Research

Eugene Wu
Columbia University, ewu@cs.columbia.edu

One does not polish a round ball. The ball polishes itself.

Since CIDR 2017, advances in reinforcement learning (RL) and
neural networks have promised a world where robots excel at games
(e.g., Go, Chess, Atari, Defense of the Ancients) to such an extent
that humans are finally relieved from the burden of manually play-
ing games. This has sparked a deep yearning for RL to similarly
relieve humans from the burden of manually optimizing databases.

To this end, intrepid database researchers have proposed to re-
place or augment bits and pieces of the DBMS with RL: join order
optimization, cardinality estimation, database driving, and even the
humble index structure have been targeted, and shown improved
performance, optimization overhead, and/or DBA costs. As the
hockey stick curve in Figure 1.a forecasts, every corner of the DBMS
must be illuminated by the warm glow of RL. However, the au-
thors worry about a looming scalability challenge. Namely, that
the database is a big piece of software1 and growing at a tremen-
dous pace. In contrast, the set of DB researchers only grows at a
linear or possibly even sublinear rate. Thus, automated techniques
are needed to scale ML for Systems and Systems for ML research.

Es
t. 

D
em

an
d 

fo
r D

B
 p

ap
er

s
w

/ R
L

Year

Now

(a) Est. demand for DB papers that use
RL over time.

HyperparamTuner
DB Code

RL Instrumenter
FASTER DB Code

DB Researcher Crowd

CIDR2DBMS below

above

Live 
Workloads

(b) CIDR2 System Architecture.

Figure 1

This abstract2 outlines a world where the database is reinforced
so hard that we never have to touch database code ever again. The
primary idea is as follows: rather than point solutions that apply
RL to specific components of the DBMS, CIDR2 reinforces every-
thing. Similar to Mike Tyson’s legendary defense, we will rein-
force DBMSes so hard that DBMSes never have to worry about
performance issues nor developers (in expectation). Amazingly,
reinforcement learning algorithms such as UTC will guarantee that
our regret over this entire exercise is bounded.
1Just the query specification was 1400+ pages over 10 years ago and its size has certainly withstood the test of time.
2References available after publication as a generative RNN model.

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

“Wait," you may wonder, “Isn’t this Andy’s self-driving database?”
Please stay in your lane. It’s more like everything is driving every-
where, all the time. “Bu..but,”, you now ask, “How?”

We will use an advanced program analysis technique called “pat-
tern matching”. RL is really applied in two ways: to train a stand-
alone prediction model and to learn a search policy. Thus, CIDR2

is an automated system that identifies any and all code fragments in
the database that smell like a prediction decision or a search algo-
rithm, and replaces such code with RL. Any binary branching logic
(e.g., if()) will be replaced with RL to train a binary predictor;
switching logic with RL to train a multi-class classifier; numeric
functions with RL to train a regression model; you get the point.
Similarly, any function that behaves like a state machine or search
process will be replaced with RL to learn a search policy. Note that
these functions can be as small as a single arithmetic expression
buried deep in the bowels of the codebase, or as high-level as the
ODBC driver handlers. Nested instrumentation is called a Cascade.

Figure 1.b presents the system architecture, which takes as input
a DBMS codebase and a live workload from a centralized blockchain
service (a cloud DB), and instruments the codebase. Using recent
performance profiling techniques such as VProfiler, CIDR2 will
identify all code paths that affect database performance and rein-
force that code. The hyperparameter tuner uses a state-of-the-art
technique called random search via DICE rolling to toggle RL at
different locations and to learn parameters.

The lynchpin in RL is the reward function. CIDR2 leverages the
power of lineage to trace and identify the program state that influ-
ences the replaced code fragments. For if(a > b), we extract
input state that contributed to a and b using backwards lineage
queries and use their linear combination as the reward. Naturally,
the linear weights are learned using RL. However, imperfect re-
ward functions lead to robot uprisings, or Marios that gobble coins
all day instead of saving the princess (did she really need saving?)

No sweat, we have hybrid technique to the rescue! If automated
tuning is too slow or wrong, we employ a hierarchical crowd to
both tune the reward functions and toggle instrumentation points.
The crowd employs experts with varying expertise and cost: from
DB admins (accurate, medium cost), researchers (possibly accu-
rate, expensive, paid in citations), to stackoverflow participants (un-
predictable accuracy, low cost). Hybrid is always better.

In case hybrid does not perform well, or the query result is “in-
correct”, CIDR2 uses adversarial generation (often called data clean-
ing) to modify the database contents so that the data consistent with
the (now correct) results.


