
Using Deep Reinforcement Learning for Distributed Query
Optimization

Rebecca Taft
Cockroach Labs

becca@cockroachlabs.com

ABSTRACT

Modern database systems are increasingly moving to the
cloud to take advantage of economies of scale, fault toler-
ance, and high availability. In this new environment, tra-
ditional methods for query optimization perform subopti-
mally. Prior work [2] has shown that most optimizers per-
form poorly even on a single node when optimizing complex
queries with 5 or more joins. A distributed execution envi-
ronment increases the complexity several-fold. In addition
to I/O and CPU utilization, distributed query optimizers
must take into account data partitioning, network latency,
and the possibility of network partitions and machine fail-
ures when determining the cost of a plan. The optimal plan
for a single-node database may bear little resemblance to
the optimal plan for a distributed database.

At Cockroach Labs, we are building a query optimizer for
CockroachDB, which is an open-source, globally distributed
SQL database. Our current query optimizer is a state-of-
the-art cascades-style optimizer, and similar to most modern
optimizers, it uses a statistics-based cost model in combina-
tion with a dynamic programming algorithm to guide the
search for the best query plan. The optimizer performs well
for many workloads, but for the reasons mentioned above,
complex workloads on a globally distributed database may
not perform well without careful manual tuning.

The goal of this project is to build a query optimizer for
distributed databases such as CockroachDB that can per-
form well in a distributed setting and adapt to changes in
the data distribution and execution environment. The fun-
damental challenge of building a query optimizer for a dis-
tributed database is in defining an accurate cost model that
takes many constantly-changing parameters into considera-
tion. In our approach, we avoid this issue altogther. Instead
of designing a cost-model a priori, we learn it directly from
the input queries and their actual execution performance.

The gist of our approach is as follows. We have a con-
trol loop system which takes a query as input, makes a
sequence of transformations to the query plan based on a

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

c© 2018 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

policy, executes the query in the cluster, and observes its
execution performance to tune the policy. Specifically, we
apply deep reinforcement learning (DRL) because it fits well
with our control system modeling of the problem, and it can
learn a complex function definition of the query transfor-
mation policy. The advantages of such a model are: (1)
we avoid the error-prone process of defining the complex
cost model for distributed query optimization, and (2) the
model keeps learning continuously, hence adapting to the
always changing workloads and data characteristics. Re-
cent research projects [4, 3, 1] have seen promising results
using reinforcement learning for single-node query optimiza-
tion on a subset of relational algebra. We propose to extend
this idea to distributed query optimization and apply it to
the full set of queries supported by CockroachDB.
Trying to find the optimal query tree directly, given an

input query, has the complication of proving logical equiva-
lence between the output plan and the original plan, which in
the general case is an unsolved problem. Instead, we aim to
produce a sequence of transformations, with each transfor-
mation corresponding to an inference, and enforce that each
transformation leads to a logically equivalent query plan.
This work has several challenges. First, collecting suf-

ficient training data is expensive, because each data point
involves executing a query to completion. However, we can
bootstrap the process with the estimates from the existing
CockroachDB query optimizer. Second, determining which
queries to execute during the training period in order to
most effectively learn the underlying data distribution is
challenging. We can take a cue from the curriculum learn-
ing literature by carefully crafting queries that maximize the
amount of information we learn from the queries and data.
Therefore, despite the challenges ahead, we are confident
that distributed query optimization is a tractable problem.
If this proposal is accepted for CIDR 2019, we look forward
to showcasing our preliminary results at the conference.

1. REFERENCES

[1] S. Krishnan, Z. Yang, et al. Learning to Optimize Join
Queries With Deep Reinforcement Learning. ArXiv,
2018.

[2] V. Leis, A. Gubichev, et al. How Good Are Query
Optimizers, Really? VLDB, 2015.

[3] R. Marcus and O. Papaemmanouil. Deep reinforcement
learning for join order enumeration. In aiDM, 2018.

[4] J. Ortiz, M. Balazinska, et al. Learning State
Representations for Query Optimization with Deep
Reinforcement Learning. In DEEM, 2018.


