

Serverless Event-Stream Processing over Virtual Actors
Philip A. Bernstein, Todd Porter, Rahul Potharaju, Alejandro Z. Tomsici,

Shivaram Venkataramani, Wentao Wu
Microsoft Corp.

{philbe, tporter, rapoth}@microsoft.com, alejandro.tomsic@lip6.fr,
shivaram@cs.wisc.edu, wentwu@microsoft.com

1. GOAL
A serverless event-stream processing service with pay-for-use and
SLA's must be scalable, highly available, and low cost.

• Scalable – It must handle millions of streams with a high-
variance ingestion rate and millions of continuous queries
that are added and removed dynamically.

• Low cost – To use resources efficiently, it needs to optimize
queries automatically, to grow and shrink elastically, to adapt
automatically to changes in the workload, and to support
billing for usage, not just for reserved capacity.

• High availability – It needs to detect and recover quickly
from component failures. It must also be able to alter query
plans of running queries without shutting them down.

Our goal here is to argue that the virtual actor model is an ideal
platform on which to build such a stream processing system.

2. ACTORS & VIRTUAL ACTORS
Actors are single-threaded objects that do not share memory and
communicate via asynchronous messages. They are lightweight in
their memory and computational overhead. They are typically
implemented by a programming framework (i.e., a runtime
library) that executes at user-level. Among other things, this
makes context-switching fast.

In traditional actor systems, an application explicitly creates an
actor and places it on a named server. By contrast, in the virtual
actor model [5], an actor is automatically activated on demand, as

follows: An RPC is sent to an actor K based on K’s location-

independent id. If K is not currently loaded, then the runtime picks

a server S, runs K’s constructor at S, and invokes K. K remains

active for future calls. After a period of inactivity, the runtime
deactivates K to free up its resources.

The placement algorithm that picks S can optimize the choice, for
example, to load balance across servers. The use of location-
independent id’s enables K to be reactivated on another server
without disrupting actors that are communicating with K. This
simplifies migration of actors to other servers. Activation-on-

demand also simplifies actor recovery from server failures, since
the actor will be re-activated the next time it is invoked.

3. WHY VIRTUAL ACTORS?
The following properties of an actor system make it an appealing
platform for event-stream processing:

• Actors are lightweight – For efficiency, a system that runs a
large number of queries needs the query execution context to
be lightweight. Since actors are lightweight, one can assign
each actor to run just one query or a sub-query of a larger

query (i.e., one actor runs a stage or a set of operators).

• Actors do not share memory – This enables fine-grained
control of queries. Each actor can be independently assigned
to any processor. A control function can start, stop, or
migrate a query without affecting other queries.

• Actors communicate via asynchronous messages. – This
enables a query executing in one actor to pipeline a stream of
messages to another query. It also enables sub-queries to
execute in parallel, since each sub-query can send many
messages in parallel. Parallel execution is needed for
scalability across cores and servers.

• Each actor has a unique identity – This enables each query,
to be controlled independently. It can be configured to send
streams to or receive streams from particular queries.

• Stateful and stateless actors – Supports queries that do or do
not maintain state. A stateless actor can be freely replicated,
without synchronization, which enlarges the range of

possible query execution plans (e.g., the degree of
parallelism for a filter operator).

• Plug-in storage – An actor can use any storage system to
save its state.

• Threads – Actors are single-threaded, which simplifies
application programming.

The on-demand activation mechanism and automatic actor place-
ment of the virtual actor model adds more benefits:

• Resource efficiency – a query is activated only when input
data arrives, and its resources are released after a period of
inactivity. This on-demand usage model simplifies usage-
based cost accounting.

• Load Balancing – queries can be load-balanced across
servers by the actor placement algorithm that assigns queries

to servers. On-demand activation simplifies the migration of
running queries to other servers to balance the load.

• Recovery – every query, Q, that was running on a failed
server will be reactivated automatically by a stream or query
that sends an event to Q.

• Elasticity – if a lightly-loaded server is deprovisioned or a

new server is added to a cluster, on-demand activation and
automatic actor placement will dynamically adjust the sys-
tem to the new configuration without additional mechanisms.

4. OPPORTUNITES & CHALLENGES
Although the virtual actor model automates the re-activation of

queries that were running on a failed server, it leaves open the
well-known challenge of recovering each query’s state. The
storage plug-in should be chosen to minimize recovery time [2].

The ability to handle a large number of ad hoc continuous queries
enables interactive monitoring and debugging of IoT and teleme-
try systems. However, it requires automated query optimization,
including sharing of subqueries [3] and in-place re-optimization of
running queries. The latter requires plan migration [4], which
should be non-disruptive.

An actor-oriented database can enable indexed access and ad hoc
queries over intermediate output of continuous queries running as
actors [1], for example, to enable inspection of partial results of
queries over large windows.

5. REFERENCES
[1] Philip A. Bernstein, Mohammad Dashti, Tim Kiefer, David

Maier: Indexing in an Actor-Oriented Database. CIDR 2017
[2] Jeong-Hyon Hwang, Magdalena Balazinska, Alex Rasin,

Ugur Çetintemel, Michael Stonebraker, Stanley B. Zdonik:
High-Availability Algorithms for Distributed Stream
Processing. ICDE 2005: 779-790

[3] Alekh Jindal, Konstantinos Karanasos, Sriram Rao, Hiren
Patel: Selecting Subexpressions to Materialize at Datacenter
Scale. PVLDB 11(7): 800-812 (2018)

[4] Luo Mai, Kai Zeng, Rahul Potharaju, Le Xu, Steve Suh,
Shivaram Venkataraman, Paolo Costa, Terry Kim, Saravanan
Muthukrishnan, Vamsi Kuppa, Sudheer Dhulipalla, Sriram
Rao. Chi: A Scalable and Programmable Control Plane for
Distributed Stream Processing Systems. PVLDB 11(10):

1303-1316 (2018)
[5] Orleans, http://dotnet.github.io/orleans.

i Work done at Microsoft Research

