
Storing and Querying Social Graph Data on a Variety of
Distributed Systems

Christine F. Reilly
Skidmore College

Saratoga Springs, New York, USA
creilly@skidmore.edu

1. INTRODUCTION
We propose the exploration of a data model for social

graph data that can be implemented on a variety of dis-
tributed storage systems. Online social networks provide
many benefits to our society, but also have a number of
drawbacks and negative impacts. Currently, a small num-
ber of companies hold private information about the opera-
tion of the majority of online social network services. The
lack of publicly available information leads to difficulties in
understanding and asking questions about the impacts that
online social networks have on society.

The storage system that supports an online social net-
work platform must be able to store graph data at a huge
scale, have a fast query response, and support frequent up-
dates. By providing a knowledge about how to deploy a
data model for social graph data using publicly available dis-
tributed storage systems, database systems experts can use
our knowledge to help society gain improved understanding
and control of online social networks. The information that
has been published by the companies that operate social net-
work services [2, 3, 4], as well as systems for distributed data
storage (Apache Hadoop) and graph storage (JanusGraph,
Neo4j, and [6, 7]) provide a starting point. Prior research
has demonstrated that the distributed graph storage sys-
tems that are publicly available do not have the capacity to
support the fast query response and frequent updates that
are required for large scale social network workloads [1, 5].

2. DATA MODEL
A data model for social graph data, along with a corre-

sponding application programming interface (API), provides
the ability for applications to interact with any storage sys-
tem that utilizes this data model. The abstract data model
and API that has been published by researchers from Face-
book is simple and supports the operations that are typical
in a online social network application [2, 4]. This model rep-
resents social network objects (users, places, photographs,
events, etc.) as graph nodes, and connections between ob-

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2019.
9th Biennial Conference on Innovative Data Systems Research (CIDR ‘19)
January 13-16, 2019 , Asilomar, California, USA.

jects as graph edges. Two logical tables store the social
graph data: one table for nodes and one table for edges.

3. CHALLENGES
The database systems community faces a number of chal-

lenges related to implementing this social graph data model
using publicly available storage systems.

Benchmarks: In order to test and compare storage sys-
tems, benchmark workloads and datasets must be published.
These benchmarks should mimic a variety of typical social
network use patterns. Generated datasets need to represent
the social graph structure size.

Distributed Database Systems: The abstract data model
can be implemented as a database schema, and the API can
be implemented as database queries. The data distribution
algorithms must account for the social graph structure in
order to support fast queries.

Distributed File Systems: The abstract data model can
be mapped onto flat files using the slotted page approach,
similar to that used by relational database systems. The
API can be implemented as methods that read and write
these flat files. By considering the social graph structure
when determining what file the data about a node or edge
is placed into, the write methods in the API can account for
the social graph structure. Index structures are required in
order to support fast queries.

4. REFERENCES
[1] I. Abdelaziz et al. A survey and experimental

comparison of distributed SPARQL engines for very
large RDF data. Proceedings of the VLDB Endowment,
10(13), 2017.

[2] T.G. Armstrong et al. LinkBench: A database
benchmark based on the Facebook social graph. In
SIGMOD, 2013.

[3] D.F. Bacon et al. Spanner: Becoming a SQL system. In
SIGMOD, 2017.

[4] N. Bronson et al. TAO: Facebook’s distributed data
store for the social graph. In USENIX ATC, 2013.

[5] A. Khandelwal et al. ZipG: A memory-efficient graph
store for interactive queries. In SIGMOD, 2017.

[6] B. Shao et al. Trinity: A distributed graph engine on a
memory cloud. In SIGMOD, 2013.

[7] K. Zhao and J.X. Yu. All-in-one: Graph processing in
RDBMSs revisited. In SIGMOD, 2017.


