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ABSTRACT

The fastest plans in MPP databases are usually those with
the least amount of data movement across nodes, as data
is not processed while in transit. The network switches
that connect MPP nodes are hard-wired to perform packet-
forwarding logic only. However, in a recent paradigm shift,
network devices are becoming “programmable.” The quotes
here are cautionary. Switches are not becoming general pur-
pose computers (just yet). But now the set of tasks they can
perform can be encoded in software.

In this paper we explore this programmability to accel-
erate OLAP queries. We determined that we can offload
onto the switch some very common and expensive query
patterns. Thus, for the first time, moving data through
networking equipment can contribute to query execution.
Our preliminary results show that we can improve response
times on even the best agreed upon plans by more than 2x
using 25 Gbps networks. We also see the promise of linear
performance improvement with faster speeds. The use of
programmable switches can open new possibilities of archi-
tecting rack- and datacenter-sized database systems, with
implications across the stack.

1. INTRODUCTION

Networking is an area in constant evolution. New pro-
tocols keep arising from emerging fields such as virtualiza-
tion [20], cloud computing [6], or the Internet-of-Things [27].
Many such protocols are implemented in hardware-based
switches. In the past, support for a new protocol would re-
quire a new version of a switching silicon — something very
costly and time consuming. Recently, however, chips such
as Barefoot Tofino [1], Cavium Xpliant [2], and Cisco Quan-
tum Flow [3] started to support programming protocols via
software.

At the core of this innovation is a packet-processing hard-
ware called Match-Action Unit (MAU). A MAU combines
a match engine with an action engine. The match engine
holds data in a table format and can match a packet’s fields
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field: dest MAC addr action
06:05:04:03:02:01 |forward(port1)
01:02:03:04:05:06 | forward(port4)
11:22:33:44:55:66 | drop()
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Figure 1: (a) A match-action table programmed to forward
or to drop a packet according to its destination MAC ad-
dress. (b) Architecture of a programmable switch dataplane
holding that table.

with a row in this table using, for instance, exact match-
ing. Other types of matches are also possible. The action
engine executes simple instructions over a packet or table
data. Examples of such instructions are simple arithmetic
or moving data within a packet. The MAU is programmable
in the sense that one can specify its table layout, the type
of lookup to perform, and the processing done at a match
event, as we illustrate in Figure a). We say that a MAU
implements a match-action table (or, simply, a table) ab-
straction.

Such a table abstraction is powerful enough to express
very common computations in networking protocols. For
example, it can encode many variations of IP lookup [26] or
packet classification [15] — two of the most recurring prob-
lems in packet forwarding. To support full protocols, sev-
eral MAUs can be combined in a pipelined fashion to form
a programmable dataplane. The dataplane is complete with
a programmable packet parser/deparser [13] and a traffic
manager (e.g. a buffered, routing element that moves pack-
ets across switch lanes). We depict such a dataplane in Fig-
ure b). Some tables may use fields from the very packet
routing decision made by the traffic manager. Therefore,
there are MAUs in both the ingress and the egress sides of
the routing element. Incidentally, the traffic manager itself
can also be a programmable. [25].

From a database perspective, the switch was historically
a passive element, routing packets for networking purposes.
From a networking perspective, tuples generated by query
execution were opaque payload. We argue here that a pro-
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Figure 2: TPC-H Query 20 is shown in (a). Its best plan, one that minimizes data motion |24], is depicted in (b) in a simplified
way. (Operators with asterisks perform scan and filtering.) We note that there is a distinct pattern that appears twice in the
plan. We show in (c) how to offload that pattern onto the switch by altering the query plan and using special operators.

grammable dataplane can be a bridge to better integrate
these two views.

Motivating Example: Consider TPC-H Query 20, listed
in Figure a), stripped of its order-by clause. The query is
essentially a join of five relations, usually partitioned across
MPP nodes. The best agreed upon plan, shown in Figure
b)7 chooses a join order to minimize data motion generated
by the broadcast or redistribute operators [24].

A particular operator pattern is used twice in that plan —
a join, followed by a local group-by, a tuple redistribution,
and a global group-by. We show in Figure c) that some
segments of the query could be offloaded onto the switch by
introducing an alternative query plan.

The new plan uses a new operator called deparse instead
of the traditional data motion operators. This operator is
responsible for enqueuing tuple data for transmission, which
will then be manipulated by the switch. Furthermore, the
new plan deploys an arrangement of MAUs on the switch
to store and update the intermediate state of the join and
group-by operators (i.e., their hash tables), effectively im-
plementing specialized versions of these operators on the
dataplane.

To illustrate one such operator, consider a hash-based
equi-join. It builds a hash table over the outer relation of
a join using a (MAU) table. The MAU is programmed to
match the relevant inner relation tuples against its table.
The action upon finding a match would be to annotate the
inner tuple as having passed the join condition. A default
action would be to mark that tuple to be dropped. In prac-
tice, there are a number of aspects to consider. How are the
specific tuples that participate in this join to be recognized
inside a packet? How is the state of the operator, its hash ta-
ble, built up? What if it does not fit in the available space?
To address these aspects respecting the peculiar program-
ming model imposed by MAUSs, we redesigned basic query
operators for this environment from scratch.

For the first time, entire segments of a query plan can
be performed on the switch, with potentially strong conse-
quences to data placement, query execution and optimiza-
tion. The tuples are processed on the switch at “line-speed”

— up to 100 Gbps in our case — yielding performance im-
provements that increase with network speed.

Contributions: The main contributions of this paper are
as follows:

e We assess the viability of using programmable switches
as MPP nodes. This effort is orthogonal — and can
coexist — with other attempts to rethink distributed
query execution on high speed networks (8}, |9} [28]. To
the best of our knowledge, this is the first work in-
corporating programmable network devices in a SQL
query execution setting.

e Even if we have an optimistic lookout, several areas of
further research are necessary. The second contribu-
tion of this paper is to broadly map such areas.

In the remainder of the paper, Section [2| gives a brief
overview of programmable switches. We propose a network-
accelerated MPP system in Section and describe a proto-
type database implementing the main aspects of this system
in Section@ Next, we discuss issues raised by the use of this
technology in Section [5] and explore a number of potential
research avenues in Section [] Finally, we discuss related
work in Section [7] before concluding in Section

2. BACKGROUND

A MAU is carefully architected to spend a fixed amount of
time per packet only, as it must sustain the determined bit
rate of the protocol being run — e.g., 100 Gbps Ethernet. To
do so, a MAU must be able to realize table matches in con-
stant time. If a table requires only exact matches, a MAU
usually resorts to SRAM storage and matching via hashing.
More advanced matching techniques such as longer-prefix
match rely on Ternary Content Addressable Memories [29],
or TCAMs, to deliver similar constant-time lookups. Differ-
ent MAU implementations exist. Some examples include the
Reconfigurable Match Tables [11], with its variants Disaggre-
gated RMT |12, and FlezPipes [22]. Each uses a different
combination of memory types and arrangements to support
matches.

Action engines are also designed with deterministic speed



in mind. They achieve so by limiting the number of in-
structions that can be issued per match (though they allow
instructions to run in parallel). It is common to structure
the action engine as a Very Long Instruction Word (VLIW)
machine.

A programmer is shielded from these implementation de-
tails by coding at the match-action table abstraction level.
One language that allows such coding is P4 [10]. A P4 com-
piler can analyze dependencies among tables and decide how
to best allocate tables to MAUs [17]. P4 resembles C in its
structure, but had a few new constructs added and quite
some features suppressed. Although the language itself is
quite simple, a variety of challenges arise from its program-
ming model. Almost all of these challenges can be traced
back to two aspects.

First, compared to a regular CPU, a programmable dat-
aplane requires specific code placement. A program needs
to separate clearly the code for parsing from code for a ta-
ble. Moreover, a table is specifically designed to operate
on either the ingress or egress side of the pipeline. Certain
hardware units are only available to certain sections of the
code. For instance, there are typically no Arithmetic Logic
Unit inside a packet parser. Therefore, arithmetic opera-
tions in that section of the code are not supported. P4’s
syntax embodies those restrictions.

The second interesting aspect is that there is no fast or
slow program on a switch. In a sense, a P4 program is a
description of an assembly-line protocol through which each
packet goes. That assembly line may use more or less steps
— meaning the latency varies among programs — but the
conveyor belt runs at a predetermined, constant speed built
into the hardware. We say that the code must work at line
speed. For this reason, loops and other constructs such as
dynamic resource allocation that make a program’s runtime
non-deterministic are not present in the language.

P4’s limitations allow a compiler to verify, for a given tar-
get, that a program can run there properly. A program
may be capable of running at line speed but the hardware
may not have enough MAUs to run it. (Currently, we know
of dataplanes with 12 to 20 MAUs.) The compiler would
flag such a situation. Another reason for a program to fail
is allocating tables that are larger than even what a set of
MAUs could hold. (MAUs that offer 0.5 MB of SRAM, for
example, can be found in some current models.)

As we discuss next, in order to take advantage of a pro-
grammable switch, we need to revisit a number of aspects
of classical database architecture.

3. NETACCEL: A NETWORK-ACCELER-
ATED MPP DATABASE SYSTEM

We introduce NETACCEL, the first Network-Accelerated
MPP database system. NETACCEL is a full-fledged MPP
database with three novel components that take advantage
of programmable switches (see Figure [3): 1) a Network
Scheduler that identifies appropriate queries, determines
the placement of network-accelerated operators on the
programmable switch, and monitors their execution; 2)
a Deparser taking care of the communication between
the MPP nodes and the switch; and 3) a set of new
network-accelerated query operators that are instantiated
on the switch and that can be combined in order to execute
segments of the query. We present each component below.
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Figure 3: NETACCEL’s high-level architecture.

3.1 Network Scheduler

The Network Scheduler is responsible for making the dat-
aplane available to queries and for mediating its usage. The
first task of the Network Scheduler is to pre-allocate and
program a number of MAUs on the switch. The decision
of how many and which logic to assign to MAUs is static.
Changing that decision requires reprogramming the switch
— and some downtime.

One simple strategy to organize the MAUs is to have them
implement a fixed query pattern — a join-and-group-by for
instance. Ideally, the pattern should be common enough
that many queries would benefit. A P4 program running
on the switch would set up a pipeline with the operators
that implement the chosen pattern. The program is pa-
rameterized over a query instance number and the input
relations within it. We call such meta-information about a
query its query context. The program expects to find the
join and group-by column values in an agreed upon position
in the packet. At run-time, the Network Scheduler looks
for a query instance with a segment that fits the allocated
pattern. When it finds one, it informs the switch about the
chosen query context. (We discuss how a query sends data
to the switch in the following section.) The Network Sched-
uler then monitors the switch for the end of that query.

An alternative strategy for MAU utilization can be more
adaptive. In this scenario, there would be no pattern estab-
lished a priori. A P4 program running on the switch would
set up a number of MAUs independently, and give each of
them the ability to execute certain commands, e.g., insert
a value into its table, probe a value against its table, incre-
ment a value of its table, etc. In this scenario, the program
would not be parameterized at all. Instead, whenever the
Network Scheduler decides to assign one or more MAUs to
a query pattern, it would alter the query plan to point to
those MAUs. The plan would transmit both the commands
and the tuples on which they should act in the same packet.
In this sense, one is reminded of adaptive query processing
techniques, like Eddies |7].

Irrespective of the MAU allocation strategy, the Network
Scheduler has to determine how large the tables in each



MAU should be. That space is used to store an operator’s
state. The larger the space, the bigger an operator’s state
can fit. (We will talk about how each operator uses its space
in Section [3.3])

But estimating an operator’s state size is notoriously
error-prone. Instead of relying on accuracy, we put in
place provisions to handle the excess tuples, should they
occur. We call this mechanism overflowing and task the
Network Scheduler with setting it up. Omne convenient
area in which to overflow is the switch local control plane,
if the switch is an SDN-capable one [18]. Usually, the
control plane is itself a general-purpose computer with
its own CPU. Alternatively, we can engage one or more
MPP nodes to help. Still, we could decide to revert to a
non-network-accelerated query plan. Regardless of the
chosen strategies, the Network Scheduler puts them in
place before the query starts running, as shown in Figure[3]
This avoids any coordination overhead to handle overflow
at run-time. We discuss overflowing options in more detail

in Section B.41

3.2 Deparser

The Deparser is the component that manages the commu-
nication between an MPP node and the switch. An impor-
tant consideration here is the choice of a network protocol.
For instance, simply making a tuple be the payload of a
TCP packet would not work. The switch drops many pack-
ets as part of our normal processing, e.g., when building a
hash table (see below Section. Moreover, the switch also
creates new packets dynamically, e.g., when forwarding the
results from a group-by MAU. TCP being stateful making
such changes to the packet flow without a receiver equating
them to anomalies would be an overhead.

Better network protocol stacks exist for our case. We
could use a traditional IP stack and a connectionless pro-
tocol such as UDP. Or use a light protocol directly atop of
Ethernet. We are currently exploring the latter, which gives
us some advantages. For one, we can design packet headers
that are more appropriate for our usage. The Deparser uses
the header to convey a tuple’s query context. The packet
is structured in a way that is straightforward for the switch
to parse. For example, if a MAU is executing a join, that
column appears in the packet at an expected position.

Another advantage of having a special protocol is perfor-
mance. At 100 Gbps and assuming tuples of less than 40
bytes, this may mean forwarding more than 148 millions tu-
ples per second per port onto the wire. Currently, normal
OS and TCP/IP stacks cannot operate at this pace. We
bypass both.

The Deparser interfaces with a query plan via the similarly
named deparse operator. The operator deparse enqueues
data for the Deparser component to dispatch. This separa-
tion allows all the details of the communication to be ready
when data actually needs to be transmitted.

3.3 Network-Accelerated Operators

Implementing an operator requires fitting its algorithm
into match-action tables, that is, into a pattern of table
lookups and state/packet transformations. A match-action
table can only perform a limited number of operations before
the packet on which it is acting advances to the next MAU.
The more complex an operator’s algorithm, the more MAUs
are required. Our first design consideration is thus to keep

to a reasonable number of MAUs. Another important con-
sideration is the size of the state an operator maintains. As
every MAU can only offer a limited amount of memory, we
may need to pool several MAUs to implement a given opera-
tor. Both these aspects make designing network-accelerated
operators challenging.

As we stated before, we believe it is impractical to as-
sume that state size estimates are accurate. QOwverflowing
excess tuples may occasionally be necessary. Instead of re-
quiring every operator to handle overflow itself, we make
this facility available at the system level. An operator need
simply to identify a tuple that overflowed and to keep track
that it occurred. (We will show an example shortly.) In
the following, we give an overview of some of the operators
we have considered and discuss how they were made to fit
into a packet-forwarding programming model. We leave the
presentation of overflowing techniques to Section [3:4]

Hash-Join: We designed a hash-join algorithm that re-
quires as few as two MAUs — one to store a hash table and
one to keep track of overflow. But up to N MAUSs can be
used to store larger hash tables, if they are available. The
Network Scheduler has the flexibility to size the join how-
ever it sees fit. We note also that this is an equi-join, and
that we assume the outer table’s join values are unique.

The algorithm’s hash table uses a closed-addressing
scheme (collision chains) as we illustrate in Figure
Instead of allowing variable-length chains, a fixed length of
N is defined. The algorithm preallocates all chains, as the
programming model prevents dynamic use of resources. If
an insertion finds an occupied slot at MAU k&, we let the
packet proceed to the next MAU. The algorithm attempts
the insertion there, and continues trying until successful or
when k = N.

If the insertion fails at all the MAUs, the packet should
overflow. We emphasize that the algorithm does not need
to handle that packet. All it needs to do is reflect in the
packet metadata that indeed an insertion was not possible.
It should also record that the chain to which the packet
hashes is full. We describe the insertion and the probing
procedures in detail in Algorithm [T}

Hash-Based Aggregation: As with the join, the aggre-
gation operation can be centered around a hash-table, one
that keeps track of unique groups. For illustration purposes,
we consider a group-by over a compound column henceforth.
(There is one such group-by in TPC-H Query 20. In the pro-
cess of de-correlating lineitem, a group-by over 1_partkey
and 1_suppkey is introduced.) Normally, a single table can
express the logic to find the group to which a tuple belongs
and to calculate the aggregation. But if the group itself is
compound, we cannot express the extra comparison and the
aggregation in single MAU.

Our solution is to identify early on if we are inserting a
group into an empty slot (skip the comparison) or into a non-
empty one (mandatory comparison))’| We thus initiate the
aggregation with a preliminary stage, called group-by pres-
ence, which identifies when a given hash position is empty.
The following stage holds a compound table, and inserts or
compares groups accordingly. The aggregation table itself
lies in a third stage, indexed by the same hash as the group

!This has shown, in practice, to be a common programming
pattern. We handle a complex action thanks to a prelimi-
nary test that can then choose between two simpler actions.
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Figure 4: Stage layout for a hash table based on fixed-sized
collision chain. The k-th stage, 1 < k < N, keeps track of
the keys in the k-th position of every collision chain. An
extra stage flags the collision chains having more elements
than stages. Elements that do not fit are handled in the
overflow area.

table. We present this procedure in detail in Algorithm

Data Motion: Data motion operators on the switch go be-
yond implementing the usual tuple broadcast, redistribute,
and gather patterns. After the switch updates an opera-
tor’s state, the packet that contributed its value is dropped.
Thus when the operation is over, the switch must itself pro-
duce packets to forward the results downstream. We call the
mechanism that moves the results of a completed operation
off of the switch draining. Data motion operators are built
atop of draining, by specifying what distribution pattern to
use across the MPP nodes downstream.

Draining starts when the switch processed all input tuples
for a running query pattern. Essentially, draining imple-
ments an iterator over an operator’s results. It reads the first
value of the result and puts it into a draining packet. We
proceed by resorting to two packet manipulation facilities
the switch provides. One is packet cloning. Before sending
the draining packet out, we copy it. The second mechanism,
packet recirculation, allows us to forward the copy back into
the ingress side of the switch. We keep iterating this way
until the last result is sent out.

Data Reloading: This is an operator dedicated to relocat-
ing data within the switch. It is the cornerstone for support-
ing composition over patterns. There is such an opportunity
in TPC-H Query 20 for example, when two instances of a
join-and-group-by pattern appear. With data reloading, we
only need to allocate one of the patterns on the switch at a
time. We perform the first join-and-group-by as if it were
the sole pattern. We then transfer the state between the
group-by stages and the next join stages from the second
join-and-group-by. The important detail here is that those
stages are the same as the ones that the first join used. The
join can be reparameterized prior to reloading.

In practice, data reloading uses a similar iterating process
as draining. The only addition here is logic that writes data
to MAUs with results coming from draining packets. In
other words, the results of the previous pattern behave as if
they were the outer relation in the next join.

3.4 Overflowing Techniques

We call overflowing the moving of part of an ongoing op-
erator’s state out of the dataplane. Overflowing may start
at any point in query execution. For instance, in our closed-
addressed hash table, we may need to insert a new item in
a collision chain that is full.

Algorithm 1 Hash-join with Fixed-sized Chains

1: stage 1..N(tbl:int[SIZE])
2: upon receiving pkt, metadata m do
3: match pkt.outer A -m.found
4: if tbl[m.hash] = then
5: tbl[m.hash] < pkt.join_key
6: m. found < true
7 mark pkt as dropped
8: else if tbl[m.hash] = pkt.join_key then
9: m. found < true
10: mark pkt as dropped
11: else
12: m.found < false
13: match pkt.inner A —-m. found
14: m. found < tbl[m.hash] = pkt.join_key
15: stage N+1(flag:bool[SIZE])
16: upon receiving pkt, metadata m do
17: match pkt.outer A =m.found
18: flaglm.hash] + true
19: match pkt.inner A —-m. found
20: if = flaglm.hash] then
21: mark pkt as dropped

Algorithm 2 Hash-Based Aggregation
1: stage 1(flag:bool[SIZE])

2: upon receiving pkt, metadata m do

3: match pkt.inner

4: m.gby_present < flag[m.hash]

5: flag[m.hash] + true

6: stage 2(gby:int[SIZE][2])

7 upon receiving pkt, metadata m do

8: match pkt.inner

9: if —m.gby_present then

10: gby[m.hash][0] < pkt.gby_vall

11: gby[m.hash][1] < pkt.gby_val2
12: m.gby_inserted < true

13: else by {m.hash][0] S

. . gby[m.hash]|[0] = pkt.gby_vall A

14: if ( gby[m.hash][1] = pkt.gby_val2 ) then
15: m.gby_inserted < true

16: else
17: m.gby_inserted < false

18: stage 3(aggr:int[SIZE])

19: upon receiving pkt, metadata m do
20: match pkt.inner A m.gby_inserted
21: aggr[m.hash|+ = pkt.aggr_val

A convenient area in which to overflow is the control plane
of a switch. The dataplane can reach the control plane sim-
ply by routing packets to itE| In that sense, the control plane
could be seen as any other connected server. The advantage
is that the control plane has direct access to all the data-
plane state, if needed. The main limitation is the speed of
the connection, which is implementation-dependent. Com-
monly, we expect a single port’s worth of bandwidth, some-
times even less.

2A similar communication occurs when handling the ARP
protocol. When the dataplane learns about a new MAC
address, it sends it to the control plane which itself adds
that address to the appropriate tables.
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Once a tuple is redirected to the control plane, any further
operation to that tuple is handled there. This can change
the flow of other tuples as well, if they are indirectly asso-
ciated with the overflowed tuples. For instance, if we of-
floaded a join-and-group-by pattern onto the switch, tuples
that match an overflowed key on the join hash table will also
be aggregated by the control plane. We depict this scenario
in Figure [f

Overflowing onto the control plane is efficient as long as
there is no queue build up. If the control plane detects a
build up, it may opt to handle the overflow outside of the
switch also. This would require having the Network Manager
make that alternative available. It would have done so by in-
stalling a variant of the non-accelerated query plan on some
MPP nodes and by having the dataplane route overflowed
state to those servers. We call such an alternative plan a
fall-forward plan to emphasize the fact that we do not dis-
card any of the work performed so far. A fall-forward plan is
able to handle both the unprocessed tuples the switch might
overflow and the results already processed by the switch.

Deciding on when to use and how to rewrite an accelerated
query into an efficient fall-forward plan is still a work in
progress.

4. PROTOTYPE

To evaluate our proposed architecture and the design al-
ternatives we discussed above, we implemented a prototype
system to serve as a test-bed for our strategies. We chose to
start with the variation where we pre-assign MAUs to a com-
mon query pattern, the join-and-group-by one. Our hash-
table implementation resorts to fixed-sized collision chains.
In addition, we also built some further overflow logic such
that tuples that fall in longer chains would be routed to the
switch’s control plane. All our work was performed on an
actual programmable switch based on the Tofino silicon [11].
Figure |§| describes the implementation of the query pattern
running on the switch down to the MAUs allocation.

For brevity, we do not elaborate on the data mo-
tion/reloading here. But we note that we have MAUs to
gather, redistribute, or broadcast results to the MPP nodes
(or, in the future, to recycle them into a following query
pattern without leaving the switch.)

We also made initial steps to implement a Deparser com-

ponent that injects tuples into the network using a protocol
we programmed the switch to recognize. This Deparser by-
passes the OS stack by using Intel’s DPDK [4], though we
are currently working on an RDMA |[5] version.

4.1 Preliminary Experiments

Our experiments focus on three key points: (1) the poten-
tial gains when offloading query segments onto the switch,
(2) the impact of overflowing, and (3) the scalability as the
network speed increases.

Our experimental setting is as follows: A programmable
switch connects a cluster of 2.1 GHz dual-socket Xeon
E5-2620(v4) each with 128GB of memory and a 100 Gbps
network card. We run the Greenplum Parallel Database
“segment nodes” (i.e., MPP nodes) on three machines and
leave a dedicate machine for the “control node” (i.e., Master
node). The data used in our experiments was generated by
the TPC-H benchmark tooling with a scale factor of 100.
We distributed the data uniformly across the MPP nodes.
We use P4 to program the switch’s dataplane.

In our first experiment, we compare the effects of running
a query with and without network acceleration. We use
the most expensive join-and-group-by segment of TPC-H
Query 20, over part and lineitem, as our query pattern.
We show the normal and the accelerated query plans used
in Figure a) and (b), respectively, including the response
times obtained running our network at 25 Gbps. To isolate
any disturbing factor, both versions of the query start
with the same data content, but formatted differently.
Recall that in Query 20 the part relation is filtered over
p_name and projected over p_partkey. The lineitem
relation is filtered over 1_shipdate and projected over
1_partkey, l_suppkey, l_quantity. We created relations
part_FP and lineitem_FP — Filtered and Projected — to
store the initial data in Greenplum. These are used by
the non network-accelerated plan. For the accelerated
one, we created part_FP’ and lineitem_FP’ in a format
our deparse operator can read. The pairs of relations
are distributed in the exact same way, over 1_partkey,
l_suppkeyE|

In the normal plan, Greenplum tries to move as little
data as possible and to perform the join-and-group-by lo-
cally. This is the accepted best practice for distributed plans
|24]. Conversely, the accelerated plan pushes both relations
onto the switch. The effective network speed the deparse
achieved in that case was within 2% of the nominal maxi-
mum of 25 Gbps. The accelerated plan ran 2.04x faster.

In our second experiment, we wanted to quantify the over-
flow in the previous experiment’s query and determine its
impact on response time. Note that the overflow can occur
in three different cases, as depicted in Figure The num-
ber of rows overflowed heavily depends on the distribution of
stages among the operators of a given pattern. We started
our experiments using two (main) stages for the join and two
for the group-by. If, instead, we had a total of six stages to
use between them, we would have the overflow scenarios de-
scribed in Table[I] That table shows that, in terms of sheer
amount of overflow, it is more advantageous to assign extra
stages to the join rather than to the group-by. As this join is

3Because we are now distributing lineitem_FP over the
same columns as the group-by, there is no need to split that
operation into a local and global operators. This is to the
advantage of the normal, non network-accelerated plan.
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Figure 6: The join/group-by/reshuffle logic, as compiled from P4 sources, takes 10 MAUs. We are using hash-tables with
fixed collision chains of two elements for both the join and the group-by. (Single column for the join and double for the group
by.) Incoming tuples from the MPP nodes are processed at (i) and (v) where a tuple’s join and group-by hash indices are
computed. The outer relation tuple (in red) reads the first entry in the collision chain (i7). That entry is occupied, so the
tuple moves on to the next stage and gets inserted as a collision (#77). The tuple then gets marked to be dropped in (iv). The
inner relation tuple (in blue) first probes the join hash-table. It matches a key in the first entry of the collision chain (vi) and
so is allowed to proceed down the pipeline. In (vii), it identifies that its corresponding group-by table index is empty. It sets
a bitmap to indicate it will take the position and gets inserted into the group-by hash table in (vi#i). It moves to the next

stage where the initial aggregation value for that group is recorded (iz) before the tuple is marked to be dropped at (z).

very selective, the more join state we keep on the dataplane,
the more tuples can be dropped there that failed the join.

We further broke down the number of rows that overflowed
because of each of the cases described in Figure 5| The re-
sults are shown in Table[2] As expected, giving more stages
to the join reduces the overflow at the join stage. More
rows were then processed on the dataplane. As a result,
the overflow of the group-by increased, but by a negligible
amount. Not surprisingly, the decision on how to distribute
the available stages was a cost-based one.

To evaluate the overflow numbers, one should consider:
(a) how large of a connection between the dataplane and
control plane is needed to transfer tuples without queuing;
and (b) how powerful a CPU is required to process the over-
flow, also without queuing. In our experiments, if we assign
4 or 5 stages to the join, the bandwidth necessary to over-
flow is largely within that of a 10 Gbps card and within
a servers-class server’s reach. Our current programmable
switch control plane has the ability to process it using a
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Figure 7: The (a) normal and (b) accelerated plans for the
first join/group-by pattern of TPC-H Query 20. The bars
indicate response times.

single thread. In contrast, the more stages we give to the
group-by, the more bandwidth and CPU power is required
to not slow down the computation on the switch.

In the third experiment, we investigate the effects of vary-
ing the network speed. The results are shown in Figure [§]
We use the full TPC-H Query 20 in four different plans: the
plan originally chosen by Greenplum (“orig”), the agreed
upon best plan of the query (“normal”), an offload sim-
ulation where all the joins/group-by’s would be performed
on the switch without overflow queuing (“accel”), and lastly
the lower-bound response time of the network-accelerated
plan achievable if one systematically saturated the network
(“min”).

We observe that the results for the original and normal
plans vary very little. This is not surprising, as they were
designed to minimize network traffic. Still, the performance
discrepancy between the original plan and the normal plan
is considerable. That’s because the original plan starts by

orig normal  m— accel m—mm min g
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Figure 8: Effects of varying the network speed on four plans
for TPC-H Query 20. Accelerated plans respond better to
speed increases.



# of join # of group-by stages
stages 1 2 3 4 5
1 49.5% 49.3% 49.2% 49.2% | 49.1%
2 23.5% 23.4% 23.3% | 23.2%
3 9.33% 9.21% | 9.09%
4 3.58% | 3.46%
5 1.62%

Table 1: Percentage of overall number of tuples overflowed as
a result of varying the number of stages assigned to the join
and the group by. Assigning more stages to the group by, in
this scenario, increases the number of tuples overflowed. We
show the breakdown of the five cases in gray in Table

joining part with partsupp, instead of the much more se-
lective join between part and lineitem. Another difference
— likely related to the choice above — is that we suspect
that Greenplum misses an essential transformation the nor-
mal plan uses. It does not push a join across a group-by.
(Whereas it does the other way around.)

In turn, the plan variants that engage the switch see a
linear speed up from 10 to 25 Gbps. Past that point, the
accelerated scenario gains little of the potential speedup be-
cause the current version of our deparse operator plateaus
at 29 Gbps. Realizing the potential speed — the difference
between the “min” bar at a given speed and the “accel” one
— requires some future work (e.g., by using RDMA).

5. DISCUSSION

Despite the potential performance gains, the adoption of
network-acceleration in query execution raises a number of
questions. The first one concerns the cost of such a spe-
cial switch. The complexity added to the chip area of a
programmable MAU versus a fixed-function equivalent unit
was determined to be 14.2%; the additional power require-
ment, 12.4% [11]. Thus in terms of cost of acquisition and
operation, the technology is competitive.

The second common question refers to usability. Once
some MAUs are assigned to query execution, how much of
the dataplane is left for actual packet forwarding? There’s
no question that table area given to the database competes
with routing needs. But the query in our running example,
for instance, never reached above 60% of a MAU’s resources
in terms of SRAM usage. And there were several MAUs in
which our usage was under 20%. It seems that the share of
the switch that we took could be compatible with the usage
a top-of-rack switch would require. Then again, depending
on the fabric of a datacenter, TOR switches can have very
large L2-related tables. Assigning switch resources to an
application should then be planned in conjunction with a
datacenter interconnect.

A third question is about the network efficiency that our
techniques achieve. The sacrifice we made was to use as
short a packet as needed to hold a single tuple, as P4 does not
naturally support iterating over an array of objects inside a
packet. The Ethernet frame header represents a significant
overhead in such small packets. Even if there are ways to
mitigate the overhead (e.g., by re-purposing header fields),
we cannot eliminate it altogether.

The fourth question is about security. There is currently

# of stages overflow points
join x group-by (@) (1) (i)
1x5 51.1% | 49.0% 0.07%
2x4 21.3% | 22.7% 0.38%
3x3 7.36% | 8.45% 0.65%
4x2 2.16% | 2.64% 0.82%
5x1 0.52% | 0.67% 0.96%

Table 2: Breakdown of the overflow when we assign n x m
stages to the join and group-by, respectively. The label ()
refers to percentage of overflowed tuples of the outer relation;
(it) and (u7) are inner relation percentages, at join or at
group-by, respectively (cf. Figure [5)).

no support on the switch for it to participate in secure com-
munication channels. The data the switch manipulates can-
not be encrypted. There are, however, mechanisms that
would prevent such data from being tampered with. There
are also ways to prevent the queries from being altered or
sent by unauthorized users. The point here is that even if
privacy can be difficult to handle, other aspects of security
such as authentication and integrity can be supported.

6. RESEARCH AGENDA

We believe NETACCEL serves as a foundation for future
systems that can fully incorporate programmable switches
into MPP systems. This work opens several fundamental
research directions that need to be explored, including;:

CPU Offloading: Executing full query segments on the
switch allows us to save CPU on the MPP nodes. This how-
ever assumes that the extra work performed to move tuples
onto the network does not offset the gains. Deparsing tuples
onto the network without CPU assistance is then critical.
We are currently exploring techniques such as RDMA for
deparsing. Another alternative we are considering is using
smart NICs to aid in the deparsing.

Data Overflowing: The control plane overflow techniques
we described are but a first step. We can further exploit
the control plane’s seamless access to the dataplane. When
redistributing the results of a query, for example, the con-
trol plane can move its share back onto the dataplane. This
may be possible because, as some stages finish their role in
a given query, their tables get freed. Draining could then
be done from the dataplane only, rather than needing to
include the overflow area. We also mentioned fall-forward
plans, which could present a second degree of overflowing
after the control plane. Finding plans to join the final and
intermediate results on the switch with unprocessed rows
should be possible and efficient. Then again, as query exe-
cution speeds increase, the extra result-gathering overhead
might hurt the data processing effort itself. Lastly, we sus-
pect that other variations of well-known algorithms we de-
scribe here (e.g., streaming) would need less and less state
on the switch. The long-term vision is to co-design both
operators and data structures with strict space constraints
and overflow in mind.

Efficient and Flexible MAU allocation: We would like
to identify other common query patterns than join-and-
group-by’s that could be preloaded on the switch. Obvious
choices are different combinations of these operations, e.g.,



join-and-join, group-by-and-join-and-group-by, etc. We are
looking for representative workloads from which to uncover
such patterns. We are also considering more dynamic use
of the MAUs by carrying information on how to process a
tuple in its packet directly, rather than preloading a query
pattern on the switch.

Switch Parallelism: One facet of fast switches we have
not explored thus far is the fact that they can have several
parallel pipeline instances. A switch with 64 ports can ac-
tually be composed of four distinct groups of 16 ports that
share nothing but a traffic manager. (The equipment that
we are experimenting with is built that way.) As we scale
the number of MPP nodes, distributing the work across sev-
eral pipelines becomes unavoidable. We could also scale the
number of MPP nodes via a fabric of switches. These ques-
tions open at least two areas of future research: paralleliza-
tion of network-accelerated operators and network topolo-
gies for network-accelerated systems.

Query Optimization: Both the query optimizer and its
cost model need to be rethought in our context. Traditional
MPP query optimization aims to minimize data movement.
But faster network-accelerated strategies come from mini-
mizing the size of intermediate states in a plan. We suspect
that these two goals can be conflicting. We know of at least
one plan for TPC-H Query 20 that moves more data than the
normal one, and yet uses much smaller intermediate states
and executes faster on the switch. We also note that it would
be useful to explore query plans with predictable intermedi-
ate sizes. Our goal is to develop a systematic approach to
reason about such trade-offs and to equip a modern query
optimizer with the means to enumerate and select optimized
network-accelerated query plans.

7. RELATED WORK

To the best of our knowledge, this is the first work to
offload full SQL query segments onto a programmable dat-
aplane. But other examples of in-network data processing
exist. In-band Telemetry, the closer body of work to ours,
analyzes network transmission metadata — e.g., queue sizes
on the switches or packet transmission delay averages — gen-
erated by the programmable switches. Queries in telemetry
aim to detect problems (such as network congestion) fast
enough to act before the problem propagates.

In-network aggregation for telemetry data was discussed
in [21]. A programmable switch acts as a cache for ongoing
aggregations. If the switch tables fill up, a group entry is
evicted and sent to a full-fledged backing store charged with
merging that group’s intermediate results. In contrast, our
overflowing technique partitions the work across the data-
plane and other overflow areas.

Exploring query plans that aggregate data while using less
state is discussed in [14]. Their dynamic query refining takes
advantage of the hierarchical properties of some attributes,
such as an IP address (i.e., hierarchy of sub-nets). This
aggregation can be done at incremental levels of granularity
using the attribute’s hierarchy.

The scenarios which an MPP database and a telemetry
application are designed for are different, though. Network
monitoring involves but a small fraction of all data being
transmitted, its schema opportunities are known at switch
compile time, and the data is generated by the switches
themselves. In contrast, MPP databases may offload any

portion of the data onto the switch, their schemas may not
be known until after the switch is deployed, and data is
generated by MPP nodes.

Our work joins an ongoing effort of revisiting how the
network and database systems interact. One such approach
appeared in [28|. The authors suggest how to use SDN —
the control plane of the network — to obtain information rel-
evant to the query optimization process. We complement
this approach by making the dataplane of SDN networks an
active portion of the query execution engine, whenever pro-
grammability is available. Another approach involves lever-
aging the network speed increases. An architectural redesign
of databases in response to that appears in [8] [23]. With
the advent of RDMA, the authors argue that networking is
no longer the bottleneck in distributed query execution. We
agree. The authors then describe distributed algorithms, for
instance for joins, that take better advantage of the network.
Here too, our approach is complementary, as operating with
RDMA packets on the dataplane is viable. Lastly, other
frameworks than SQL have been considered for acceleration
as well. Map-reduce based ones are an example [9]. These
frameworks target a fabric of switches rather than individual
instances.

Programmable switches have also been used in aspects
of data management beyond query execution. There are
a number of techniques for in-network support for concur-
rency. A resource coordination service based on in-network
access requests is presented in [16]. By moving the pro-
cessing of such requests to the switch, the number of round
trips a resource acquisition protocol uses can be vastly re-
duced. The protocol being lightweight, this allows for lower
contention scenarios. A technique to serialize sharded trans-
actions via an in-network sequencer is presented in [19]. By
virtue of listening to all transaction requests at line speed,
a serial order for a class of one-shot transactions can be
determined without any coordination between the partici-
pants. Having database operations beyond query execution
be executed in-network can only increase the chances that
future commercial databases would be designed with pro-
grammable network devices in mind.

8. CONCLUSIONS

In this paper, we introduced NETACCEL, the first
network-accelerated DBMS. Our system takes advantage
of new physical operators to run entire segments of a
query plan at line-speed on a programmable switch. While
realizing the full potential of our vision will take years, we
are excited by the prospect of NETACCEL and by the new
data processing avenues opening up with the advent of
next-generation networking equipment.
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