
Automated Performance Management
for the Big Data Stack

Anastasios Arvanitis, Shivnath Babu, Eric Chu,
Adrian Popescu, Alkis Simitsis, Kevin Wilkinson

Unravel Data Systems
{tasos,shivnath,eric,adrian,alkis,kevinw}@unraveldata.com

ABSTRACT
More than 10,000 enterprises worldwide today use the big
data stack that is composed of multiple distributed systems.
At Unravel, we have worked with a representative sample of
these enterprises that covers most industry verticals. This
sample also covers the spectrum of choices for deploying the
big data stack across on-premises datacenters, private cloud
deployments, public cloud deployments, and hybrid combi-
nations of these. In this paper, we aim to bring attention
to the performance management requirements that arise in
big data stacks. We provide an overview of the requirements
both at the level of individual applications as well as holis-
tic clusters and workloads. We present an architecture that
can provide automated solutions for these requirements and
then do a deep dive into a few of these solutions.

1. BIG DATA STACK
Many applications in fields like health care, genomics, fi-

nancial services, self-driving technology, government, and
media are being built on what is popularly known today
as the big data stack. What is unique about the big data
stack is that it is composed of multiple distributed systems.
The typical evolution of the big data stack in an enterprise
usually goes through the following stages (also illustrated in
Figure 1).

Big Data Extract-Transform-Load (ETL): Storage sys-
tems like HDFS, S3, and Azure Blob Store (ABS) are used
to store the large volumes of structured, semi-structured,
and unstructured data in the enterprise. Distributed pro-
cessing engines like MapReduce, Tez, and Pig/Hive (usually
running on MapReduce or Tez) are used for data extraction,
cleaning, and transformations of the data.

Big Data Business Intelligence (BI): MPP SQL sys-
tems like Impala, Presto, LLAP, Drill, BigQuery, RedShift,
or Azure SQL DW are added to the stack; sometimes along-
side incumbent MPP SQL systems like Teradata and Ver-
tica. Compared to the traditional MPP systems, the newer
ones have been built to deal with data stored in a different

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2019.
9th Biennial Conference on Innovative Data Systems Research (CIDR ‘19)
January 13-16, 2019 , Asilomar, California, USA.

Figure 1: Evolution of the big data stack in an enterprise

distributed storage system like HDFS, S3, or ABS. These
systems power the interactive SQL queries that are common
in business intelligence workloads.

Big Data Science: As enterprises mature in their use of
the big data stack, they start bringing in more data-science
workloads that leverage machine learning and AI. This stage
is usually when the Spark distributed system starts to be
used more and more.

Big Data Streaming: Over time, enterprises begin to un-
derstand the importance of making data-driven decisions in
near real-time as well as how to overcome the challenges in
implementing them. Usually at this point in the evolution,
systems like Kafka, Cassandra, and HBase are added to the
big data stack to support applications that ingest and pro-
cess data in a continuous streaming fashion.

Industry analysts estimate that there are more than 10,000
enterprises worldwide that are running applications in pro-
duction on a big data stack comprising three or more dis-
tributed systems [1]. At Unravel, we have worked closely
with around 50 of these enterprises, and have had detailed
conversations with around 350 more of these enterprises.
These enterprises cover almost every industry vertical and
run their stacks in on-premises datacenters, private cloud de-
ployments, public cloud deployments, or in hybrid combina-
tions (e.g., regularly-scheduled workloads like the Big Data



ETL runs in on-premises datacenters while the non-sensitive
data is replicated to one or more public clouds where ad-hoc
workloads like Big Data BI run). Sizes of these clusters vary
from few tens to few thousands of nodes. Furthermore, in
some of the production deployments on the cloud, the size
of an auto-scaling cluster can vary in size from 1 node to
1000 nodes in under 10 minutes.

The goal of this paper is to bring attention to the per-
formance management requirements that arise in big data
stacks. A number of efforts like Polystore [7], HadoopDB
[3], and hybrid flows [18] have addressed challenges in stacks
composed of multiple systems. However, their primary focus
was not on the performance management requirements that
we address. We split these requirements into two categories:
application performance requirements and operational per-
formance requirements. Next, we give an overview of these
requirements.

1.1 Application Performance Requirements
The nature of distributed applications is that they interact

with many different components that could be independent
or interdependent. This nature is often referred to in popular
literature as “having many moving parts.” In such an envi-
ronment, questions like the following can become nontrivial
to answer:

• Failure: What caused this application to fail, and how
can I fix it?

• Stuck: This application seems to have made little progress
in the last hour. Where is it stuck?

• Runaway: Will this application ever finish, or will it
finish in a reasonable time?

• SLA: Will this application meet its SLA?

• Change: Is the behavior (e.g., performance, resource
usage) of this application very different from the past?
If so, in what way and why?

• Rogue/victim: Is this application causing problems on
my cluster; or vice versa, is the performance of this
application being affected by one or more other appli-
cations?

It has to be borne in mind that almost every application in
the big data stack interacts with multiple distributed sys-
tems. For example, a SQL query may interact with Spark
for its computational aspects, with YARN for its resource
allocation and scheduling aspects, and with HDFS or S3 for
its data access and IO aspects. Or, a streaming application
may interact with Kafka, Flink, and HBase (as illustrated
in Figure 1).

1.2 Operational Performance Requirements
Many performance requirements also arise at the “macro”

level compared to the level of individual applications. Ex-
amples of such requirements are:

• Configuring resource allocation policies in order to meet
SLAs in multi-tenant clusters [9, 19].

• Detecting rogue applications that can affect the per-
formance of SLA-bound applications through a variety
of low-level resource interactions [10].

• Configuring the 100s of configuration settings that dis-
tributed systems are notoriously known for having in
order to get the desired performance.

• Tuning data partitioning and storage layout.

• Optimizing dollar costs on the cloud. All types of re-
source usage on the cloud cost money. For example,
picking the right node type for a cloud cluster can
have a major impact on the overall cost of running
a workload.

• Capacity planning using predictive analysis in order to
account for workload growth proactively.

• Identify in an efficient way who (e.g., user, tenant,
group) is running an application or a workload, who
is causing performance problems, and so on. Such an
accounting process is typically known as ‘chargeback’.

2. ARCHITECTURE OF A PERFORMANCE
MANAGEMENT SOLUTION

Addressing the challenges from Section 1 needs an archi-
tecture like the one shown in Figure 2. Next, we will discuss
the main components of this architecture.

Full-Stack Data Collection: To answer questions like those
raised in Sections 1.1 and 1.2, monitoring data is needed
from every level of the big data stack. For example, (i) SQL
queries, execution plans, data pipeline dependency graphs,
and logs from the application level; (ii) resource allocation
and wait-time metrics from the resource management and
scheduling level; (iii) actual CPU, memory, and network us-
age metrics from the infrastructure level; (iv) data access
and storage metrics from the file-system and storage level;
and so on. Collecting such data in nonintrusive and low-
overhead ways from production clusters remains a major
technical challenge, but this problem has received attention
in the database and systems community [8].

Event-driven Data Processing: Some of the clusters that
we work with are more than 500 nodes in size and run mul-
tiple hundreds of thousands of applications every day across
ETL, BI, data science, and streaming. These deployments
generate tens of terabytes of logs and metrics every day. The
volume and velocity challenges from this data are definitely
nontrivial. However, the variety and consistency challenges
here, to the best of our knowledge, have not been addressed
by the database and systems community.

The Variety Challenge: The monitoring data collected from
the big data stack covers the full sprectrum from unstruc-
tured logs to semistructured data pipeline dependency DAGs
and to structured time-series metrics. Stitching this data to-
gether to create meaningful and useable representations of
application performance is a nontrivial challenge.

The Consistency Challenge: Monitoring data has to be col-
lected independently and in real-time from various moving
parts of the multiple distributed systems that comprise the
big data stack. Thus, no prior assumptions can be made
about the timeliness or order in which the monitoring data
arrives at the processing layer in Figure 2. For example,
consider a Hive Query Q that runs two MapReduce jobs
J1 and J2. Suppose, J1 and J2 in turn run 200 contain-
ers C1, . . . , C200 and 800 containers C201, . . . , C1000 respec-
tively. One may expect that the monitoring data from these



Figure 2: Architecture of a performance management platform for the big data stack

components arrives in the order Q, J1, C1, . . . , C200, J2,
C201, . . . , C1000. However, the data can come in any order,
e.g., J1, C1, . . . , C100, Q, J2, C101, . . . , C200, C201, . . . , C1000.

As a result, the data processing layer in Figure 2 has to be
based on event-driven processing algorithms whose outputs
converge to same final state irrespective of the timeliness and
order in which the monitoring data arrives. From the user’s
perspective, she should get the same insights irrespective of
the timeliness and order in which the monitoring data ar-
rives. An additional complexity that we do not have space to
discuss further is the chance of some monitoring data getting
lost in transit due to failure, network partitions, overload,
etc. It is critical to account for this aspect in the overall
architecture.

ML-driven Insights and Policy-driven Actions: En-
abling all the monitoring data to be collected and stored in a
single place opens up interesting opportunities to apply sta-
tistical analysis and learning algorithms to this data. These
algorithms can generate insights that, in turn, can be applied
manually by the user or automatically based on configured
policies to address the performance requirements identified
in Sections 1.1 and 1.2. Unlike the big data stack that we
consider in this paper, efforts such as self-driving databases
[2, 16] address similar problems for traditional database sys-
tems like MySQL, PostgreSQL, and Oracle, and in the cloud
(e.g., [6, 12, 13, 14]). In the next section, we will use example
problems to dive deeper into the solutions.

3. SOLUTIONS DEEP DIVE

3.1 Application Failure
In distributed systems, applications can fail due to many

reasons. But when an application fails, users are required to
fix the cause of the failure to get the application running suc-
cessfully. Since applications in distributed systems interact
with multiple components, a failed application throws up a
large set of raw logs. These logs typically contain thousands
of messages, including errors and stacktraces. Hunting for
the root cause of an application failure from these messy,
raw, and distributed logs is hard for experts, and a night-
mare for the thousands of new users coming to the big data
stack. The question we will explore in this section is how to
automatically generate insights into a failed application in
a multi-engine big data stack that will help the user get the
application running successfully. We will use Spark as our

example, but the concepts generalize to the big data stack.

Automatic Identification of the Root Cause of Ap-
plication Failure: Spark platform providers like Amazon,
Azure, Databricks, and Google Cloud as well as Applica-
tion Performance Management (APM) solution providers
like Unravel have access to a large and growing dataset of
logs from millions of Spark application failures. This dataset
is a gold mine for applying state-of-the-art artificial intelli-
gence (AI) and machine learning (ML) techniques. Next, let
us look at possible ways to automate the process of failure
diagnosis by building predictive models that continuously
learn from logs of past application failures for which the re-
spective root causes have been identified. These models can
then automatically predict the root cause when an applica-
tion fails. Such actionable root-cause identification improves
the productivity of Spark users significantly.

A distributed Spark application consists of a Driver con-
tainer and one or more Executor containers. A number of
logs are available every time a Spark application fails. How-
ever, the logs are extremely verbose and messy. They contain
multiple types of messages, such as informational messages
from every component of Spark, error messages in many dif-
ferent formats, stacktraces from code running on the Java
Virtual Machine (JVM), and more. The complexity of Spark
usage and internals make things worse. Types of failures and
error messages differ across Spark SQL, Spark Streaming,
iterative machine learning and graph applications, and in-
teractive applications from Spark shell and notebooks (e.g.,
Jupyter, Zeppelin). Furthermore, failures in distributed sys-
tems routinely propagate from one component to another.
Such propagation can cause a flood of error messages in the
log and obscure the root cause.

Figure 3 shows our overall solution to deal with these
problems and to automate root cause analysis (RCA) for
Spark application failures. Overall, the solution consists of:

• Continuously collecting logs from a variety of Spark
application failures

• Converting logs into feature vectors

• Learning a predictive model for RCA from these fea-
ture vectors

Data collection for training: As the saying goes: garbage
in, garbage out. Thus, it is critical to train RCA models
on representative input data. In addition to relying on logs



Figure 3: Approach for automatic root cause analysis (RCA)

from real-life Spark application failures observed on cus-
tomer sites, we have also invested in a lab framework where
root causes can be artificially injected to collect even larger
and more diverse training data.
Structured versus unstructured data: Logs are mostly
unstructured data. To keep the accuracy of model predic-
tions to a high level in automated RCA, it is important to
combine this unstructured data with some structured data.
Thus, whenever we collect logs, we are careful to collect
trustworthy structured data in the form of key-value pairs
that we additionally use as input features in the predictive
models. These include Spark platform information and en-
vironment details of Scala, Hadoop, OS, and so on.

Figure 4: Taxonomy of failures

Labels: ML techniques for prediction fall into two broad
categories: supervised learning and unsupervised learning.
We use both techniques in our overall solution. For the su-
pervised learning part, we attach root-cause labels with the
logs collected from an application failure. This label comes
from a taxonomy of root causes that we have created based
on millions of Spark application failures seen in the field
and in our lab. Broadly speaking, as shown in Figure 4, the
taxonomy can be thought of as a tree data structure that
categorizes the full space of root causes. For example, the
first non-root level of this tree can be failures caused by: (i)
Configuration errors, (ii) Deployment errors, (iii) Resource
errors, (iv) Data errors, (v) Application errors, and (vi) Un-
known factors.

The leaves of the taxonomy tree form the labels used in the
supervised learning techniques. In addition to a text label
representing the root cause, each leaf also stores additional
information such as: (a) a description template to present
the root cause to a Spark user in a way that she will easily
understand, and (b) recommended fixes for this root cause.
The labels are associated with the logs in one of two ways.
First, the root cause is already known when the logs are
generated, as a result of injecting a specific root cause we

have designed to produce an application failure in our lab
framework. The second way in which a label is given to the
logs for an application failure is when a Spark domain expert
manually diagnoses the root cause of the failure.

Input Features: Once the logs are available, there are var-
ious ways in which the feature vector can be extracted from
these logs (recall the overall approach in Figure 3). One way
is to transform the logs into a bit vector (e.g., 1001100001).
Each bit in this vector represents whether a specific message
template is present in the respective logs. A prerequisite to
this approach is to extract all possible message templates
from the logs. A more traditional approach for feature vec-
tors from the domain of information retrieval is to represent
the logs for a failure as a bag of words. This approach is
mostly similar to the bit vector approach except for a cou-
ple of differences: (a) each bit in the vector now corresponds
to a word instead of a message template, and (b) instead of
0s and 1s, it is more common to use numeric values gener-
ated using techniques like TF-IDF.

More recent advances in ML have popularized vector em-
beddings. In particular, we use the Doc2Vec technique [11].
At a high level, these vector embeddings map words (or para-
graphs, or entire documents) to multidimensional vectors by
evaluating the order and placement of words with respect to
their neighboring words. Similar words map to nearby vec-
tors in the feature vector space. The Doc2Vec technique uses
a three-layer neural network to gauge the context of the doc-
ument and relate similar content together.

Figure 5: Feature vector generation

Once the feature vectors are generated along with the la-
bel, a variety of supervised learning techniques can be ap-
plied for automatic RCA. We have evaluated both shallow as
well as deep learning techniques, including random forests,
support vector machines, Bayesian classifiers, and neural
networks. The overall results produced by our solution are
promising as shown in Figure 5. (Only one result is shown
due to space constraints.) In this figure, 14 different types of
root causes of failure are injected into runs of various Spark
applications in order to collect a large set of logs. Figure 5
shows the accuracy of the approach in Figure 3 to predict
the correct root cause based on a 75-25% split of training
and test data. The accuracy of prediction is fairly high.

We are currently enhancing the solution in some key ways.
One of these is to quantify the degree of confidence in the
root cause predicted by the model in a way that users will
easily understand. Another key enhancement is to speed up
the ability to incorporate new types of application failures.
The bottleneck currently is in generating labels. We are
working on active learning techniques [4] that nicely pri-



Figure 6: Automated tuning of a failed Spark application

oritize the human efforts required in generating labels. The
intuition behind active learning is to pick the unlabeled fail-
ure instances that provide the most useful information to
build an accurate model. The expert labels these instances
and then the predictive model is rebuilt.

Automatic Fixes for Failed Applications: We did a
deeper analysis of the Spark application failure logs available
to us from more than 20 large-scale production clusters. The
key findings from this analysis are:

• There is a “90-10” rule in the root cause of application
failures. That is, in all the clusters, more than 90% of
the failures were caused by less than 10 unique root
causes.

• The two most common causes where: (i) the applica-
tion fails due to out of memory (OOM) in some com-
ponent; and (ii) the application fails due to timeout
while waiting for some resource.

For application failures caused by OOM, we designed algo-
rithms that, in addition to using examples of successful and
failed runs of the application from history, can intelligently
try out a limited number of memory configurations to get
the application quickly to a running state; followed by get-
ting the application to a resource-efficient running state.

As mentioned earlier, a Spark application runs one Driver
container and one or more Executor containers. The appli-
cation has multiple configuration parameters that control
the allocation and usage of memory at the overall container
level, and also at the level of the JVMs running within the
container. If the overall usage at the container level exceeds
the allocation, then the application will be killed by the re-
source management layer. If the overall usage at the Java
heap level exceeds the allocation, then the application will
be killed by the JVM.

The algorithm we developed to enable finding fixes auto-
matically for OOM problems refines intervals based on suc-
cessful and failed runs of the application. For illustration,
let m represent the Executor container allocation. We de-
fine two variables, mlo and mhi, where mlo is the maximum
known setting of m that causes OOM; and mhi is the mini-
mum known setting of m that does not cause OOM. Given a
run of the application that failed due to OOM while running
with m = mcurr, we can update mlo to:

mnew
lo =max(mlo,mcurr)

Given a run of the application that succeeded while running
with m = mcurr, we can update mhi to:

mnew
hi =min(mhi,mobs)

Here, mobs is the observed usage of m by the application
in the successful run. At any point:

• A new run of the application can be done with m set
to mlo+mhi

2

• mhi is the most resource-efficient setting that is known
to run the application successfully so far

The above approach is incomplete because the search space
of configuration parameters to deal with OOM across the
Driver, Executor, container, JVM, as well as a few other pa-
rameters that affect Spark memory usage is multi-dimensional.
Space constraints prevent us from going into further details,
but the algorithm from a related problem can be adapted to
the OOM problem [5].

Figure 6 shows an example of how the algorithm works in
practice. Note that the first run is a failure due to OOM.
The second run, which was based on a configuration setting
produced by the algorithm, managed to get the application
running succcessfully. The third run—the next in sequence
produced by the algorithm—was able to run the application
successfully, while also running it faster than the second run.
The third run was faster because it used a more memory-
efficient configuration than the second run. Overallocation of
memory can make an application slow because of the large
wait to get that much allocated. Note how the algorithm
is able to automatically find configurations that run the ap-
plication successfully while being resource efficient. Thereby,
we can remove the burden of manually troubleshooting failed
applications from the hands of users, enabling them to fo-
cus entirely on solving business problems with the big data
stack.

3.2 Cluster Optimization
Performing cluster level workload analysis and optimiza-

tion on a multiplicity of distributed systems in big data
stacks is not straightforward. Key objectives often met in
practice include performance management, autoscaling, and
cost optimization. Satisfying such objectives is imperative
for both on-premises and cloud deployments and can serve
different classes of users like Ops and Devs altogether.

Operational Insights: Toward this end, we analyze the
metrics collected and provide a rich set of actionable in-
sights, as for example:

• Insights into application performance issues; e.g., de-
termine whether an application issue is due to code in-



Figure 7: An example set of cluster wide recommendations

Figure 8: Example improvements of applying cluster level recommendations

efficiency, contention with cloud/cluster resources, or
hardware failure or inefficiency (e.g., slow node)

• Insights on cluster tuning based on aggregation of ap-
plication data; e.g., determine whether a compute clus-
ter is properly tuned at both a cluster and application
level

• Insights on cluster utilization, cloud usage, and au-
toscaling.

We also provide users with tools to help them understand
how they are using their compute resources, as for exam-
ple, compare cluster activity between two time periods, ag-
gregated cluster workload, summary reports for cluster us-
age, chargeback reports, and so on. A distinctive difference
from other monitoring tools (e.g., Ambari, Cloudera Man-
ager, Vertica [17]) is that we offer a single pane of glass for

supporting the entire big data stack, not just individual sys-
tems, and also employ advanced analytics techniques to un-
ravel problems and inefficiencies, whilst we also recommend
concrete solutions to such issues.

One of the most difficult challenges in managing multi-
tenant Big Data stack clusters is understanding how re-
sources are being used by the applications running in the
clusters. We are providing a forensic view into each clus-
ter’s key performance indicators (KPIs) over time and how
they relate to the applications running in the cluster. For
example, we can pinpoint the applications causing a sud-
den spike in the total cpu (e.g., vcores) or memory usage.
And then, we enable drill down into these applications to
understand their behavior, and whenever possible, we also
provide recommendations and insights to help improve how
the applications run.

In addition to that, we also provide cluster level recom-



Figure 9: Example resource utilization for two queues

mendations to fine tune cluster wide parameters to maxi-
mize a cluster’s efficiency based upon the cluster’s typical
workload. For doing so, we work as follows:

• Collect performance data of prior completed applica-
tions

• Analyze the applications w.r.t. the cluster’s current
configuration

• Generate recommended cluster parameter changes

• Predict and quantify the impact that these changes
will have on applications that will execute in the future

Example recommendations involve parameters such as Map-
SplitSizeParams, HiveExecReducersBytesParam, HiveExec-
ParallelParam, MapReduceSlowStartParam, MapReduceMem-
oryParams, etc. Figure 7 shows example recommendations
for tuning the size of map containers (top) and reduce con-
tainers (bottom) on a production cluster, and in particular
the allocated memory in MB. In this example, at the cluster
level, the default value of the memory for map tasks was
set to 4096MB. Our analysis of historical data has identi-
fied alternative memory sizes for map containers. The figure
shows a distribution of applications over different memory
sizes shown as a histogram, along with a reward (here, pre-
dicted number of memory savings shown as a green bar) and

a calculated risk (here, percentage of jobs that are predicted
to run if the candidate value is applied shown as a red bar).
Based on these data, we make a recommendation to set the
memory size to 2048MB and calculate the improvement po-
tential: the recommended value could halve memory usage
for 97% of the expected workload. Similar recommendation
are made for the reduce containers shown at the bottom of
Figure 7. Figure 8 shows example improvements of applying
cluster level recommendations on a production cloud deploy-
ment of a financial institution: our cluster tuning enabled
∼200% more applications (i.e., from 902 to 1934 applica-
tions/day) to be run at ∼50% lower cost (i.e., from 641 to
341 vCore-Hours/day), increasing the organization’s confi-
dence in using the cloud.

Workload Analysis: Typically, how an application per-
forms depends on what else is also running in the big data
stack, altogether forming an application workload. A work-
load may contain heterogeneous applications in Hive, Spark
SQL, Spark ML, etc. Understanding how these applications
run and affect each other is critical.

We analyze queue1 usage on a set of clusters and iden-
tify queue usage trends, suboptimal queue designs, work-
loads that run suboptimally on queues, convoys, ‘problem’

1Various systems use different terms like ‘queue’ or ‘pool’
to characterize resource budget configurations.



Figure 10: Disk capacity forecasting

applications (e.g., recognize and remediate excessive applica-
tion wait times), ‘problem’ users (e.g., users who frequently
run applications that reach max capacity for a long period),
queue usage per application type or user or project, etc.

Figure 9 shows exemplar resource utilization charts for
two queues over a time range. In this example, the work-
load running in the root.oper queue does not use all the
resources allocated, here VCores and Memory, whilst the
workload in the root.olap queue needs more resources; pend-
ing resources (in purple) go beyond the resources allocated
(in black). Similar analysis can be done for other metrics
like Disk, Scheduling, and so on.

Based on such findings, we generate queue level insights
and recommendations including queue design/settings modi-
fications (e.g., change resource budget for a queue or max/min
limits), workload reassignment to different queues (e.g., move
an application or a workload from one queue to another),
queue usage forecasting, etc. Any of these recommendations
could be applied to the situation shown in Figure 9. A typi-
cal big data deployment involves 100s of queues and such a
task can be tedious.

We can enforce some of these recommendation using auto-
actions, which enable complex actionable rules on a mul-
tiplicity of cluster metrics. Each rule consists of a logical
expression and an action. A logical expression is used to ag-
gregate cluster metrics and to evaluate the rule, and consists
of two conditions:

• A prerequisite condition that causes a violation (e.g.,
number of applications running or memory used)

• A defining condition, who/what/when can cause a vi-
olation (e.g., user, application)

An action is a concrete, executable task such as kill an ap-
plication, move an application to a different queue, send an
HTTP post, notify a user, and so on.

Forecasting: Beside the current status of the big data stack
systems, enterprises need to be able to provision for re-
sources, usage, cost, job scheduling, and so on. One of the
advantages of our architecture includes collecting a plethora
of historical operational and application metrics. These can
be used for capacity planning using predictive time-series
models (e.g., [20]). Figure 10 shows an example disk capacity
forecasting chart; the black line shows actual utilization and
the light blue line shows a forecast within an error bound.

4. CONCLUSIONS
In this paper, we attempted to bring attention to the per-

formance management requirements that arise in big data
stacks. We provided an overview of the requirements both
at the level of individual applications as well as holistic clus-
ters and workloads. We also presented an architecture that
can provide automated solutions for these requirements and
discussed a few of the solutions.

The approach that we have presented here is complemen-
tary to a number of other research areas in the database
and systems community such as Polystore [7], HadoopDB
[3], and hybrid flows [18] (which have addressed challenges
in stacks composed of multiple systems) as well as self-
driving databases [2, 16] (which have addressed similar prob-
lems for traditional database systems like MySQL, Post-
greSQL, and Oracle). Related complementary efforts also in-
clude the application of machine learning techniques to data
management systems and cloud databases, such as (a) ML
techniques for workload and resource management for cloud
databases [13, 14], (b) a reinforcement learning algorithm
for elastic resource management that employs adaptive state
space partitionining [12], (c) a self-managing controller for
tuning multi-tenant DBMS based on learning techniques
for tenants’ behavior, plans, and history [6], and (d) dy-
namic scaling algorithms for scaling clusters of virtual ma-
chines [15].

At Unravel, we are building the next generation perfor-
mance management system by solving real-world challenges
arising from the big data stack which is a gold mine of data
for applied research, including AI and ML. We are working
with many enterprises that have challenging problems; and
by helping them understand and address these problems, we
help them scale at the right cost.

5. REFERENCES
[1] Companies using the big data stack. https://idatalabs.

com/tech/products/apache-hadoop[Online; accessed
24-August-2018].

[2] Oracle autonomous database cloud.
https://www.oracle.com/database/
autonomous-database.html[Online; accessed
24-August-2018].

[3] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi,
A. Rasin, and A. Silberschatz. Hadoopdb: An
architectural hybrid of mapreduce and DBMS

https://idatalabs.com/tech/products/apache-hadoop
https://idatalabs.com/tech/products/apache-hadoop
https://www.oracle.com/database/autonomous-database.html
https://www.oracle.com/database/autonomous-database.html


technologies for analytical workloads. PVLDB,
2(1):922–933, 2009.

[4] S. Duan and S. Babu. Guided problem diagnosis
through active learning. In 2008 International
Conference on Autonomic Computing, ICAC 2008,
June 2-6, 2008, Chicago, Illinois, USA, pages 45–54,
2008.

[5] S. Duan, V. Thummala, and S. Babu. Tuning
database configuration parameters with ituned.
PVLDB, 2(1):1246–1257, 2009.

[6] A. J. Elmore, S. Das, A. Pucher, D. Agrawal, A. El
Abbadi, and X. Yan. Characterizing tenant behavior
for placement and crisis mitigation in multitenant
dbmss. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
SIGMOD 2013, New York, NY, USA, June 22-27,
2013, pages 517–528, 2013.

[7] V. Gadepally, P. Chen, J. Duggan, A. J. Elmore,
B. Haynes, J. Kepner, S. Madden, T. Mattson, and
M. Stonebraker. The bigdawg polystore system and
architecture. In 2016 IEEE High Performance Extreme
Computing Conference, HPEC 2016, Waltham, MA,
USA, September 13-15, 2016, pages 1–6, 2016.

[8] H. Herodotou and S. Babu. Profiling, what-if analysis,
and cost-based optimization of mapreduce programs.
PVLDB, 4(11):1111–1122, 2011.

[9] S. A. Jyothi, C. Curino, I. Menache, S. M.
Narayanamurthy, A. Tumanov, J. Yaniv,
R. Mavlyutov, I. Goiri, S. Krishnan, J. Kulkarni, and
S. Rao. Morpheus: Towards automated slos for
enterprise clusters. In 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI
2016, Savannah, GA, USA, November 2-4, 2016.,
pages 117–134, 2016.

[10] P. Kalmegh, S. Babu, and S. Roy. Analyzing query
performance and attributing blame for contentions in
a cluster computing framework. CoRR,
abs/1708.08435, 2017.

[11] Q. V. Le and T. Mikolov. Distributed representations
of sentences and documents. In Proceedings of the 31th
International Conference on Machine Learning, ICML
2014, Beijing, China, 21-26 June 2014, pages
1188–1196, 2014.

[12] K. Lolos, I. Konstantinou, V. Kantere, and N. Koziris.

Elastic management of cloud applications using
adaptive reinforcement learning. In 2017 IEEE
International Conference on Big Data, BigData 2017,
Boston, MA, USA, December 11-14, 2017, pages
203–212, 2017.

[13] R. Marcus and O. Papaemmanouil. Wisedb: A
learning-based workload management advisor for
cloud databases. PVLDB, 9(10):780–791, 2016.

[14] R. Marcus and O. Papaemmanouil. Releasing cloud
databases for the chains of performance prediction
models. In CIDR 2017, 8th Biennial Conference on
Innovative Data Systems Research, Chaminade, CA,
USA, January 8-11, 2017, Online Proceedings, 2017.

[15] J. Ortiz, B. Lee, and M. Balazinska. Perfenforce
demonstration: Data analytics with performance
guarantees. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD
Conference 2016, San Francisco, CA, USA, June 26 -
July 01, 2016, pages 2141–2144, 2016.

[16] A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma,
P. Menon, T. C. Mowry, M. Perron, I. Quah,
S. Santurkar, A. Tomasic, S. Toor, D. V. Aken,
Z. Wang, Y. Wu, R. Xian, and T. Zhang. Self-driving
database management systems. In CIDR 2017, 8th
Biennial Conference on Innovative Data Systems
Research, Chaminade, CA, USA, January 8-11, 2017,
Online Proceedings, 2017.

[17] A. Simitsis, K. Wilkinson, J. Blais, and J. Walsh.
VQA: Vertica Query Analyzer. In International
Conference on Management of Data, SIGMOD 2014,
Snowbird, UT, USA, June 22-27, 2014, pages
701–704, 2014.

[18] A. Simitsis, K. Wilkinson, U. Dayal, and M. Hsu.
HFMS: managing the lifecycle and complexity of
hybrid analytic data flows. In 29th IEEE International
Conference on Data Engineering, ICDE 2013,
Brisbane, Australia, April 8-12, 2013, pages
1174–1185, 2013.

[19] Z. Tan and S. Babu. Tempo: Robust and self-tuning
resource management in multi-tenant parallel
databases. PVLDB, 9(10):720–731, 2016.

[20] S. J. Taylor and B. Letham. Forecasting at Scale.
https://peerj.com/preprints/3190.pdf[Online; accessed
24-August-2018].

https://peerj.com/preprints/3190.pdf

	Big Data Stack
	Application Performance Requirements
	Operational Performance Requirements

	Architecture of a Performance Management Solution
	Solutions Deep Dive
	Application Failure
	Cluster Optimization

	Conclusions
	References

