
Data Vocalization with CiceroDB

Immanuel Trummer
Cornell University
Ithaca, NY, USA

itrummer@cornell.edu

ABSTRACT
Data vocalization is the process of summarizing data via
voice output. We present CiceroDB, a novel database sys-
tem, designed from the ground up for vocal output of query
results. It is targeted at scenarios in which visual output is
either impossible or undesirable. CiceroDB exploits the par-
ticularities of vocal output to reduce data processing over-
heads. For instance, it uses sampling to converge to high-
level voice descriptions and overlaps voice output with back-
ground processing tasks. In this paper, we describe prelim-
inary results and ongoing research efforts.

1. INTRODUCTION
The database community has almost exclusively focused

on visual output when it comes to data analysis. Visual
output is however not always an option, as demonstrated by
the following example.

Example 1.1. Imagine a blind data scientist who wants
to analyze mid-career salary in America based on a US Cen-
sus data set. Visual output is generally not accessible to such
users. Hence, a system that allows for instance the follow-
ing voice interaction would be useful. User: so how does the
mid-career salary depend on the start salary? System: The
average mid-career salary is 80 K. Values increase by about
20% for a start salary of at least 50 K. User: ok, and how
does it depend on the region? System: The mid-career salary
increases by about 5% in the North-East and in California.

Visually impaired users are not the only ones who can
benefit from voice-based data analysis. The communica-
tion between user and computer is generally shifting more
and more towards speech-based interfaces. Devices and ser-
vices such as Google Home, Amazon Alexa, or Apple’s Siri
are primarily designed for vocal interaction. While average
users might still opt for visual interfaces for extensive data
analysis, they might use the latter to quickly satisfy their cu-
riosity with regards to specific issues (e.g., while watching a
TV documentary on climate change: Hey Alexa, how did the

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2019.
9th Biennial Conference on Innovative Data Systems Research (CIDR ‘19)
January 13-16, 2019 , Asilomar, California, USA.

Table 1: Visualization versus vocalization.

Criterion Visualization Vocalization

Delivery One-Shot Gradual

Control User System

Persistency Durable Fleeting

average temperature develop in different parts of California
over the past 10 years?).

We present CiceroDB, a research prototype targeted at
voice-based data analysis. Prior work has focused on an-
swering queries with small result sets via voice output [45].
Our goal is to support the analysis of large data sets instead.
Our research focuses on two questions: how to summarize
large query results concisely? And how to generate those
descriptions efficiently?

In CiceroDB, we evaluate strategies for generating voice
answers to input queries in different scenarios and for differ-
ent data types. We focus on holistic vocalization methods
that combine query evaluation and voice output generation.
We thereby exploit the particularities of vocalization to re-
duce processing overheads. For instance, instead of generat-
ing full query results, we evaluate queries partially, target-
ing result properties that matter for high-level voice output.
Also, exploiting the sequential nature of voice output, we
overlap background processing with voice output to reduce
latency.

In this paper, we describe ongoing research and future
research plans, as well as preliminary results. We first dis-
cuss data vocalization and its particularities in Section 2.
We show how those particularities influence the design of
CiceroDB. In Section 3, we formalize the problem model
supported by our system. We give a high-level overview of
the architecture of CiceroDB in Section 4 and present first
experimental results in Section 5. We discuss ongoing re-
search in Section 6, followed by a comparison to prior work
in Section 7.

2. DESIGN CONSIDERATIONS
We point out particularities that distinguish voice output

from visual output in Section 2.1. In Section 2.2, we discuss
implications for the design of CiceroDB.

2.1 Particularities of Vocalization
We compare vocal to visual output. Our observations ap-

ply to all forms of visual output (e.g., plots or written text).

Table 1 summarizes the following points. Visual output
generally offers more control to users. Users choose them-
selves which part of a plot to study. They can skim written
text to quickly identify relevant parts. When encountering
difficult passages, they can adapt their reading speed or re-
read important passages. None of that is easily possible with
vocal output. Here, the system controls which information
is transmitted and the pace of delivery.

Visual output is typically “durable”. This means it re-
mains on display until the user chooses to switch to the next
plot or text. This gives users ample time to study output
parts repeatedly. Voice output, on the other hand, is fleet-
ing. Each output part is only revealed for a short instant.
Users can only work efficiently with voice output if they are
able to commit at least parts of it to memory.

Finally, visual output is typically revealed in a one-shot
fashion. Voice output, on the other hand, is revealed grad-
ually. Users have no information on the text beyond the
current sentence. In particular, they cannot tell whether the
following sentences have already been chosen by the system.

2.2 Design Implications
The aforementioned particularities in voice output lead to

specific challenges and opportunities.
Voice output is fleeting. Listeners must remember it to

work effectively with it. Capacity of short-term memory is
however very limited [49]. Also, in contrast to visual output,
we cannot rely on users to efficiently “prune” out irrelevant
information via skimming. Each additional piece of infor-
mation increases the duration of voice output (and hence
the burden on the listener). Both properties of voice output
place tight constraints on the amount of information we can
transmit. This implies the following design constraint.

Implication 2.1. Voice output needs to focus on high-
level tendencies and the system must carefully select which
information to transmit.

It is clear that we cannot talk about single tuples anymore
when vocalizing a large query result. Voice output needs to
describe data at a higher level of abstraction. We might not
even be able to output all significant tendencies in the data.
Hence, we must carefully select which information to trans-
mit. Those insights motivate us to formalize vocalization as
an optimization problem, maximizing the amount of infor-
mation transmitted under constraints on speech length (see
Section 3 for more details).

We are unable to transmit query results at a high degree of
detail via voice output. This leads to the following insight:

Implication 2.2. Generating complete query results with
high precision is wasteful.

We can reduce query processing overheads when taking
into account the particularities of voice output. Our goal
is to avoid generating result parts that do not influence
the high-level voice description. CiceroDB therefore takes
a holistic approach to vocalization, combining data process-
ing and voice output generation. This distinguishes our ap-
proach from prior work on vocalization that uses complete
query results as input [76].

Finally, we established in the last subsections that the
delivery modes of visual and vocal output differ: visual out-
put appears typically at once while vocal output is delivered
gradually. This leads to the following opportunity:

Implication 2.3. We can overlap incremental background
processing with voice output.

CiceroDB generally generates voice output incrementally.
As discussed in more detail in Section 4, we can “pipeline”
generation and output of speech fragments. By continuing
background processing while voice output is already playing,
we gain significant amounts of additional processing time.
To the best of our knowledge, CiceroDB is the first system
to exploit this possibility (which is specific to vocalization).

3. PROBLEM MODEL
CiceroDB summarizes query results via voice output. We

formalize voice output generation as an optimization prob-
lem in the following.

As input, we are given a query q on the current database
(CiceroDB allows users to specify that query directly or to
translate voice input to queries via a keyword-based mecha-
nism). We assume that users analyze data in an interactive
session. By H, we denote the history of queries and result
descriptions generated in the current session.

We are given a search space S(q,H) of candidate voice
descriptions. The search space depends on the current query
q but also on the session history H (e.g., we can refer back
to previous results to shorten the current voice description).
The function that generates the search space depends on
the scenario. A forthcoming publication [75] describes a
first search space targeted at exploratory analysis of large
relational data sets. In the future, we plan to allow users
to specify customized search spaces to extend CiceroDB to
new scenarios.

We denote the length of a speech s ∈ S(q,H) via |s|. Ci-
ceroDB allows to set a threshold on the length of generated
speeches. We denote this threshold by L in the following.
The goal of voice output is to summarize R(q), the result of
executing q on the database. Note that CiceroDB does in
general not generate this result in its entirety.

Our goal is to “educate” users about the query result as
much as possible, given the constraints on output length.
Beyond the information explicitly given, users may infer
new information or make default assumptions. For instance,
users tend to make uniformity assumptions in the absence
of further information. This principle has been formalized
as the “maximum entropy principle” and is often used in the
context of visual OLAP [47, 64]. We capture such effects by
a user model U(s,H) modeling the belief on the query re-
sult of a typical user after listening to speech s, given query
history H. We can shorten voice descriptions by omitting
pieces of information that users can infer themselves.

Our goal is to approach the user’s belief as much as possi-
ble to the true query result. We designate by D(U(s,H),R(q))
the distance between user belief and actual result. We are
now ready to formalize the problem that CiceroDB focuses
on.

Definition 3.1 (Holistic Vocalization). Given
query q with result R(q), a query history H, a speech length
threshold L, and functions S, U , and D capturing speech
search space, user belief, and distance respectively, our goal
is to find the speech s∗ ∈ S(q,H) minimizing distance be-
tween user belief and query result:

s∗ = arg min
s∈S(q,H),|s|≤L

D(U(s,H),R(q))

Speech-to-query Text-to-speech

Voice Input Voice Output

ResultQuery

Sampler Generator

Evaluator Planner

Processing for Vocalization

Figure 1: Overview of CiceroDB (pipelined data
transmission marked up in red).

We introduced a generic problem model, not specifying
the precise user model, speech search space, and distance
function used. A forthcoming publication [75] introduces
concrete functions for large-scale exploratory data analysis.
Our goal is to enable users to easily define their own func-
tions in the future. The term “holistic” in our problem def-
inition refers to the fact that we combine data processing
with result vocalization. This distinguishes our work from
prior work starting from a given query result [76].

4. CICERODB OVERVIEW
Figure 1 shows a high-level overview of CiceroDB. Users

issue voice queries. We currently support simple SQL queries
with equality predicates, grouping, and aggregation. Input
speech is transcribed via an existing speech-to-text service1.
Next, we use a simple, keyword-based mechanism to trans-
late input speech to an SQL query. Alternatively, we al-
low users to enter SQL queries directly via keyboard. Our
research focus in CiceroDB is the summarization of query
results via voice output (not the translation of voice input
into SQL queries).

The SQL query forms the input to the processing en-
gine. Our processing engine is holistic and does not sep-
arate query processing and voice output generation into two
phases. This allows us to restrict query processing to re-
sult aspects that are relevant for voice output. CiceroDB
avoids generating result details that cannot be transmitted
via voice output anyway. Also, holistic processing allows
us to exploit gradual delivery of voice output. CiceroDB
pipelines generation and output of speech fragments (cur-
rently at the granularity of sentences). This means that
data processing for the next sentence proceeds while the
current sentence is being spoken out. Typically, this gives
us several tens of seconds of additional processing time (the
typical length of generated speeches) without introducing
noticeable latency.

The holistic processing engine leverages a standard rela-
tional database system for data storage and initial access (we
currently use Postgres [59]). During processing, we may load

1https://cloud.google.com/speech-to-text/

part of the data set into main memory to support fast sam-
pling. The processing engine can be divided further into four
sub-components: generator, sampler, evaluator, and plan-
ner. The generator generates candidate speech fragments for
voice output. Admissible speech fragments are determined
by the input query and previously spoken speech fragments
(as voice output is produced incrementally). The sampler
retrieves samples from the query result, either by issuing
queries to the underlying database system or by accessing
the in-memory buffer. The evaluator updates quality esti-
mates of specific speech fragments based on newly retrieved
samples. Associating speech fragments with precise quality
values would require us to generate the entire query result
(since speech quality is based on how well speech approx-
imates the true result). Instead, we calculate confidence
bounds on speech quality based on result samples. The plan-
ner controls the query evaluation process. In particular, it
picks speech fragments for which to refine quality estimates
and decides which samples to retrieve. The current planner
is based on Monte-Carlo Tree Search [34]. It selects speech
fragments to assess based on a metric balancing exploration
(selecting speech fragments about which little is known) and
exploitation (refining estimates for promising speech frag-
ments). We plan to evaluate alternative approaches in the
future.

5. FIRST RESULTS
We are currently implementing multiple vocalization meth-

ods in CiceroDB. In the following, we present extracts of
a vocalization method targeted at exploratory OLAP-style
analysis of large relational data sets. We call this method
OLAP-Vocalizer in the following. More details on the ap-
proach as well as more results can be found in an upcoming
publication at SIGMOD 2019 [75].

The OLAP-Vocalizer summarizes results of OLAP-style
queries: aggregate values, broken down by multiple dimen-
sions. Speech output summarizes high-level tendencies in
the result. Each speech starts with a summary of typical
aggregation values in the current result (e.g., “The average
mid-career salary is 50K”). Each of the following sentences
targets a subset of aggregates, defined by values in a subset
of dimensions. For those aggregates, we express how their
average differs from the general average (e.g., “The mid-
career salary increases by 20% for computer scientists from
the North-East.”). The problem model is one instance of the
generic model described in Section 3. We select speeches
based on a distance metric, measuring how well a speech
approximates a query result, and a user belief model. The
latter simulates the belief of users about the query result
after listening to a speech. It takes into account informa-
tion that is not explicitly given but can be inferred by users
(e.g., having a mid-career salary above average in one region
implies a salary below average in the remaining regions).
Speech generation follows the high-level process described in
Section 4: we evaluate speech quality via sampling and gen-
erate the speech sentence by sentence, overlapping speaking
time with background processing.

We present in the following two key results from our exper-
imental evaluation. Those results show the benefit of holistic
processing for voice output (instead of separating query pro-
cessing and voice output generation into two phases). They
also show that users prefer the voice descriptions generated
by CiceroDB over prior work.

1,000
2,000
3,000
4,000

L
a
te

n
cy

-

L
a
te

n
cy

-,R

L
a
te

n
cy

-,RD

0

2,000
4,000
6,000

L
a
te

n
cy

-,RDA

L
a
te

n
cy

N,-

L
a
te

n
cy

N,D

0 0.2 0.4
0

2,000

4,000

6,000

Quality

L
a
te

n
cy

N,DA

0 0.2 0.4

Quality

L
a
te

n
cy

NW,-

0 0.2 0.4

Quality
L

a
te

n
cy

NW,A

Optimal Sampling Holistic

Figure 2: Performance of vocalization variants.

Figure 2 compares the holistic OLAP-Vocalizer (“Holis-
tic” in Figure 2) against two baselines. We executed queries
on a 600 MB data set about flight cancellations in 20152.
Queries calculate average flight cancellation probability for
data subsets. Plot titles describe queries concisely, speci-
fying first the query predicates (N for a restriction to the
North-East region, W for a restriction to flights in Winter)
then the dimensions by which results are broken down (R,
D, and A representing a breakdown by airport region, flight
date, and airline respectively). Experiments were executed
on a MacBook Air computer with a 2.2 GHz Intel Core i7
processor and 8 GB of RAM.

We compare according to two metrics: the latency in
milliseconds (i.e., how long the system needs before speech
starts after the input query is received) and speech quality
(i.e., quality is higher, the closer the speech approximates
the actual query result). We compare against a baseline
(“Optimal” in Figure 2) that processes the input query in
its entirety and calculates quality estimates for each possi-
ble speech, thereby identifying the optimal speech. We also
compare against another baseline (“Sampling” in Figure 2)
that samples the query result for 500 ms (the threshold for
interactive data analysis [44, 50, 66]). Next, it selects the
optimal speech based on this limited sample (i.e., we do not
overlap processing with voice output).

Clearly, holistic processing realizes an interesting tradeoff
between latency and speech quality. The generated speeches
are in most cases identical to the optimal speech according to
our model. In the remaining cases, quality estimates are very
close. At the same time, latency perceived by users is very
low. Both non-holistic baselines perform badly according to
one of the two comparison metrics. Generating the optimal
speech leads to prohibitive latency for interactive analysis.
Generating speeches based on a small sample leads to very
low quality.

We also performed a user study with 20 crowd workers
(recruited on Amazon Mechanical Turk3), whose task was

2https://www.kaggle.com/usdot/flight-delays
3https://www.mturk.com/

40%

25%

20%

15%

CiceroDB++

CiceroDB+

Neutral

Prior+

Figure 3: Percentage of crowd workers expressing
strong (++) or some (+) preference for CiceroDB
or prior methods when analyzing a large data set.

to analyze the aforementioned data set about flight delays
via an online version of CiceroDB. Workers had the option
to switch between two vocalization methods, the one intro-
duced in CiceroDB and a previously proposed method [76].
The latter method is not targeted at large query results and
generated speeches target single values, as opposed to high-
level tendencies. According to Figure 3, most users prefer
vocalization methods that are tailored to large data sets.
Altogether, those results validate our focus on holistic vo-
calization and on high-level voice descriptions.

6. ONGOING WORK
In the following, we discuss several ongoing research ef-

forts that expand the capabilities of CiceroDB.

6.1 “Tweening” for Vocalization
Data tweening has recently been proposed in the context

of data visualization [30]. Data tweening is targeted at in-
teractive data analysis where users issue multiple, related
queries in a sequence. The goal is to illustrate the tran-
sition between consecutive query results via an animation.
We are currently working on approaches that transfer this
principle to data vocalization. Our goal is to describe dif-
ferences between consecutive query results via voice output.
Hence, instead of vocalizing each result separately, we focus
on the “delta”. This approach is motivated by the fact that
users tend to issue many similar queries during an analy-
sis session [30]. In data vocalization, few result details can
be transmitted without overwhelming listeners. Hence, it is
critical to restrict output to the most important facts and
to avoid redundancies. Data tweening for vocalization is
first of all a mechanism to avoid redundancies. We avoid
redundant output of result properties that remain the same
across multiple queries. Second, the same motivation as for
visual tweening applies [30]: we hope to enhance the users
comprehension of query transformations and data.

6.2 Exact Data Vocalization
Currently, CiceroDB uses sampling to quickly generate

approximate results. Approximate results may not be ac-
ceptable in all situations (e.g., consider the example of a
surgeon, using a voice interface to retrieve critical data dur-
ing a procedure [45]).

We could use standard query processing first and vocalize
later. This option neglects however the sequential nature of
voice output: it is unnecessary to have all results available
once voice output starts. Instead, it is beneficial to overlap
processing and output. We are working on query planning
methods that take those particularities into account. Our
planning goal is to minimize latency by query processing

until voice output can start. Additionally, our goal is to
avoid any interruptions after voice output has begun.

To that purpose, we consider sequences of processing steps
during planning. Each processing step generates parts of the
results that are needed for voice output. Each processing
step is realized by a traditional query plan. Processing and
voice output need to be aligned for optimal performance.
Ideally, we generate all required information for the first
output sentence with negligible execution overheads. Then,
the time required to read each output sentence is ideally
sufficient to generate enough information for the next sen-
tence at least. The plan generating all required results with
minimal overheads is not necessarily the best plan for voice
output. If the plan generates no useful results until process-
ing is terminated, its execution time turns into latency, per-
ceived by the user. If, on the other side, total execution time
is large but results become available incrementally in a suit-
able order for voice output, perceived latency can decrease.
In our ongoing efforts, we are developing cost models and
optimization methods, that allow to optimally align (exact)
query processing and voice output.

7. RELATED WORK
The database community has produced a large body of

work on how to optimally present relational data to users.
So far, the focus has been nearly exclusively on visual data
representation [27, 32, 70, 77, 81]. The lack of appropriate
methods for voice output of relational data has been hinted
at in prior work [72], as well as its unfortunate implications
from the perspective of inclusion. First voice-based query
interfaces have appeared quite recently [8, 45]. In contrast
to CiceroDB, they are not targeted at the analysis of large
data sets (they assume relatively small query results). Also,
they do not support holistic vocalization (i.e., they do not
use specialized processing strategies for voice answering).
Prior work on vocalization is either limited to small query
results [76] or specific to time series data [74].

Our work is complementary to prior work on data visu-
alization. In particular, CiceroDB relates to prior systems
that use processing methods, tailored for generating visu-
alizations [27, 29, 32]. Similar in intent to CiceroDB, the
goal is to reduce processing overheads compared to generic
processing strategies. Here, we apply a similar reasoning to
the problem of generating data vocalizations.

Prior work on rendering relational data as natural lan-
guage text [71] differs from our work in terms of focus (text
for visual output instead of audio output), scope (output
of static data instead of interleaved query evaluation and
output generation), and method (no multi-objective opti-
mization). The various particularities that come into play
when generating text for voice output (as opposed to text
for visual consumption) have been discussed extensively in
prior work [4, 60].

Most query results need to be summarized for voice out-
put. The goal in intensional query answering [1, 6, 9, 11,
12, 47, 53, 54, 56, 67, 68] is to summarize extensional re-
sults by a succinct, intensional representation. Our work
differs again by its focus on voice output, scope, and meth-
ods. Research on natural language query interfaces [2, 42,
43, 45, 63] has mainly focused on challenges in parsing nat-
ural language queries (or, alternatively, on rendering SQL
queries as natural language text [35, 36]). In CiceroDB, we
prioritize the complementary research question of how to op-

timally summarize results. Reading out one table row after
another is only possible for very small data sets [45].

Our work relates to a lesser degree to research outside of
the database community which does not target relational
data. Prior work on transforming data into voice output
focuses on text data [3, 21], HTML code [25, 26, 46, 58], or
math formulas [17, 60, 73]. Sonification [23] typically desig-
nates approaches that render data via non-voice audio (an
early definition excludes voice output explicitly [37] while a
recent definition [22] is less restrictive). For instance, numer-
ical data can be translated into notes where pitch correlates
with the numerical value [5, 31, 61]. The sweet spot of most
of those approaches are numerical data, in particular data
which could be represented as a plot. This covers only a
small part of relational data sets. Clearly, voice output is
more amenable for mainstream applications.

Natural language generation methods are categorized as
text-to- text or data-to-text methods [19]. Text-to-text meth-
ods [13, 65, 69] use unstructured information as input and
relate less to our research. Research on data-to-text natu-
ral language generation [20, 24, 28, 38, 48, 51, 62] is often
targeted at the generation of written reports as opposed to
voice output. Corresponding approaches neglect issues re-
lated to query processing and typically use highly domain-
specific rules or templates to summarize large data sets (e.g.,
for weather-forecasts [20] or neonatal care [24]). The gener-
ation of spoken text from data was examined in the context
of spoken dialogue systems. This line of research typically
exploits user preferences [7, 52, 79, 80] or multiple dialogue
steps [10, 14, 15, 57] to narrow down a set of options (e.g.,
alternative flights) for the user. The proposed work is based
on different assumptions (e.g., data points do not necessar-
ily represent alternative choices) and scope (e.g., dialogue
planning is out of scope). Our research is complementary to
prior work focusing on the question of how users perceive al-
ternative summaries of structured data [39, 40, 41] (instead
of how to generate such summaries efficiently).

Finally, our research connects to prior work in audiology
and psychology. Research in those areas has contributed
empirical and theoretical results linking various aspects of
speech to intelligibility and comprehension. For instance,
sentence length [78], word choice [16], and complexity of
sentence structure [55] were all shown to have impact on
comprehension. Of particular relevance to this work are re-
sults that apply specifically to intelligibility of automatically
generated speech [18, 33, 78]. We exploit results from those
areas for the design of our search space for speech output.

8. CONCLUSION
CiceroDB is a research prototype for voice-based analy-

sis of large data sets. It answers queries via concise voice
descriptions. Its query processing engine is tailored to the
particularities of voice output and exploits them to reduce
processing overheads. Preliminary results support the de-
sign decisions made in CiceroDB. In ongoing projects, we
are expanding its capabilities along multiple dimensions.

9. REFERENCES
[1] A. C. Acar and A. Motro. Intensional encapsulations

of database subsets via genetic programming. In
DEXA, pages 365–374, 2005.

[2] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch.
Natural language interfaces to databases - an

introduction. Journal of Natural Language
Engineering, 1(1):29–81, 1995.

[3] B. Arons. SpeechSkimmer: a system for interactively
skimming recorded speech. ACM Transactions on
Computer-Human Interaction, 4(1):3–38, 1997.

[4] B. M. Arons. Interactively skimming recorded speech.
PhD thesis, 1994.

[5] J. Batterman and B. Walker. Auditory graphs need
error bars: validating error-to-sound mappings and
scalings. In ICAD, pages 315–318, 2013.

[6] F. Benamara. Generating intensional answers in
intelligent question answering systems. In
International Natural Language Generation
Conference, pages 11–20, 2004.

[7] G. Carenini and J. D. Moore. An empirical study of
the influence of argument conciseness on argument
effectiveness. In IJCAI, pages 150–157, 2001.

[8] D. Chandarana, V. Shah, A. Kumar, and L. Saul.
SpeakQL: towards speech-driven multi-modal
querying. In HILDA, pages 1–6, 2017.

[9] W. W. Chu, R.-C. Lee, and Q. Chen. Using type
inference and induced rules to provide intensional
answers. In ICDE, pages 396–403, 1991.

[10] G. Chung. Developing a flexible spoken dialog system
using simulation. In Annual Meeting on Association
for Computational Linguistics, pages 63–70, 2004.

[11] P. Cimiano, H. Hartfiel, and S. Rudolph. Intensional
question answering using ILP: what does an answer
mean? In Natural Language and Information Systems,
pages 151–162, 2008.

[12] P. Cimiano, S. Rudolph, and H. Hartfiel. Computing
intensional answers to questions: an inductive logic
programming approach. Data & Knowledge
Engineering, 69(3):261–278, 2010.

[13] J. Clarke and M. Lapata. Discourse constraints for
document compression. Computational Linguistics,
36(3):411–441, 2010.

[14] V. Demberg and J. D. Moore. Information
presentation in spoken dialogue systems. In EACL,
pages 65–72, 2006.

[15] V. Demberg, A. Winterboer, and J. D. Moore. A
strategy for information presentation in spoken dialog
systems. Computational Linguistics, 37(3):480–539,
2011.

[16] F. Ferreira, J. M. Henderson, M. D. Anes, P. A.
Weeks, and D. K. Mcfarlane. Effects of lexical
frequency and syntactic complexity in
spoken-language comprehension: evidence from the
auditory moving-window technique. Journal of
Experimental Psychology, 22(2):324–335, 1993.

[17] H. Ferreira and D. Freitas. Enhancing the accessibility
of mathematics for blind people: The audiomath
project. In International Conference on Computers for
Handicapped Persons, pages 678–685, 2004.

[18] A. L. Francis and H. C. Nusbaum. The effect of lexical
complexity on intelligibility. International Journal on
Speech Technology, 3(1):15–25, 1999.

[19] A. Gatt and E. Krahmer. Survey of the state of the
art in natural language generation: core tasks,
applications and evaluation. arXiv preprint
arXiv:1703.09902, pages 1–111, 2017.

[20] E. Goldberg, N. Driedger, and R. Kittredge. Using
natural-language processing to produce weather
forecasts. IEEE Expert-Intelligent Systems and their
Applications, 9(2):45–53, 1994.

[21] J. Guerreiro and D. Gonçalves. Text-to-speeches:
Evaluating the perception of concurrent speech by
blind people. In ACM SIGACCESS Conference on
Computers and Accessibility, pages 169–176, 2014.

[22] T. Hermann. Taxonomy and definitions for
sonification and auditory display. In International
Conference on Auditory Display, pages 1–8, 2008.

[23] T. Hermann, A. Hunt, and J. G. Neuhoff. The
Sonification Handbook. 2011.

[24] J. Hunter, Y. Freer, A. Gatt, E. Reiter, S. Sripada,
and C. Sykes. Automatic generation of natural
language nursing shift summaries in neonatal intensive
care: BT-Nurse. Artificial Intelligence in Medicine,
56(3):157–172, 2012.

[25] F. James. Presenting HTML structure in audio: user
satisfaction with audio hypertext. In ICAD, pages
97–103, 1996.

[26] F. James. Lessons from developing audio HTML
interface. In ACM Conference on Assistive
Technologies, pages 27–34, 1998.

[27] U. Jugel, Z. Jerzak, and G. Hackenbroich. M4 : A
visualization-oriented time series data aggregation.
PVLDB, 7(10):797–808, 2014.

[28] J. Kalita. Automatically generating natural language
reports. International Journal of Man-Machine
Studies, 30(4):399–423, 1989.

[29] N. Kamat and A. Nandi. InfiniViz: Interactive Visual
Exploration using Progressive Bin Refinement. arXiv
preprint arXiv:1710.01854, 2017.

[30] M. Khan, L. Xu, A. Nandi, and J. Hellerstein. Data
tweening: incremental visualization of data
transforms. PVLDB, 10(6):661–672, 2017.

[31] J. Kildal and S. a. Brewster. Providing a
size-independent overview of non-visual tables. In
ICAD, pages 8–15, 2006.

[32] A. Kim, E. Blais, A. Parameswaran, P. Indyk,
S. Madden, and R. Rubinfeld. Rapid sampling for
visualizations with ordering guarantees. PVLDB,
8(5):521–532, 2015.

[33] E. A. M. Klabbers and R. P. G. Collier. On the
performance of speech output in a practical setting.
IPO Annual Progress Report, 33:121–128, 1995.

[34] L. Kocsis and C. Szepesvári. Bandit based
monte-carlo planning. In European Conf. on Machine
Learning, pages 282–293, 2006.

[35] A. Kokkalis, P. Vagenas, A. Zervakis, A. Simitsis,
G. Koutrika, and Y. Ioannidis. Logos: A system for
translating queries into narratives. In SIGMOD, pages
673–676, 2012.

[36] G. Koutrika, A. Simitsis, and Y. E. Ioannidis.
Explaining structured queries in natural language. In
ICDE, pages 333–344, 2010.

[37] G. Kramer, B. Walker, P. Coordinator, T. Bonebright,
P. Cook, J. Flowers, N. Miner, J. Neuhoff, R. Bargar,
S. Barrass, J. Berger, G. Evreinov, W. T. Fitch,
M. Gröhn, S. Handel, H. Kaper, H. Levkowitz,
S. Lodha, B. Shinn-cunningham, M. Simoni, and

S. Tipei. Sonification report: status of the field and
research agenda. 1999.

[38] K. Kukich. Design of a knowledge-based report
generator. In Annual Meeting on Association for
Computational Linguistics, pages 145–150, 1983.

[39] B. Langner. Data-driven natural language generation:
making machines talk like humans using natural
corpora. PhD thesis, 2010.

[40] B. Langner and A. W. Black. uGloss: a framework for
improving spoken language generation
understandability. In INTERSPEECH, pages
2893–2896, 2007.

[41] B. Langner, R. Kumar, A. Chan, L. Gu, and A. W.
Black. Generating time-constrained audio
presentations of structured information. In
INTERSPEECH, pages 2450–2453, 2006.

[42] F. Li and H. Jagadish. NaLIR: an interactive natural
language interface for querying relational databases.
SIGMOD, pages 709–712, 2014.

[43] F. Li and H. Jagadish. Understanding natural
language queries over relational databases. SIGMOD
Record, 45(1):6–13, 2016.

[44] Z. Liu and J. Heer. The effects of interactive latency
on exploratory visual analysis. IEEE Transactions on
Visualization & Computer Graphics,
20(12):2122–2131, 2014.

[45] G. Lyons, V. Tran, C. Binnig, U. Cetintemel, and
T. Kraska. Making the case for Query-by-Voice with
EchoQuery. In SIGMOD, pages 2129–2132, 2016.

[46] J. Mahmud, Y. Borodin, I. V. Ramakrishnan, and
D. Das. Combating information overload in non-visual
web access using context. In IUI, pages 341–344, 2007.

[47] P. Marcel, P. J. Jaurès, and S. Rizzi. Towards
intensional answers to OLAP queries for analytical
sessions. In DOLAP, pages 49–56, 2012.

[48] K. McKeown, J. Robin, and K. Kukich. Generating
concise natural language summaries. Information
Processing and Management, 31(5):703–733, 1995.

[49] G. A. Miller. The magical number 7, plus or minus 2 -
some limits on our capacity for processing
information. Psychological Review, 63(2):81–97, 1956.

[50] R. B. Miller. Response time in man-computer
conversational transactions. In AFIPS, pages 267–277,
1968.

[51] M. Molina, A. Stent, and E. Parodi. Generating
automated news to explain the meaning of sensor data.
In Intelligent Data Analysis, pages 282–293, 2011.

[52] J. Moore, M. E. Foster, O. Lemon, and M. White.
Generating tailored, comparitive descriptions in
spoken dialogue. In AAAI, pages 917–922, 2004.

[53] A. Motro. Using integrity constraints to provide
intensional answers to relational queries. In VLDB,
pages 237–246, 1989.

[54] A. Motro. Intensional answers to database queries.
Transactions on Knowledge and Data Engineering,
6(3):444–454, 1994.

[55] E. Murphy. The effect of working memory and
syntactic complexity on sentence comprehension. PhD
thesis, 2013.

[56] E. K. Park and S.-C. Yoon. An approach to intensional
query answering at multiple abstraction levels using

data mining approaches. In HICSS, pages 9–17, 1999.

[57] J. Polifroni, G. Chung, and S. Seneff. Towards the
automatic generation of mixed-initiative dialogue
systems from Web content. In Eurospeech, pages
193–196, 2003.

[58] E. Pontelli, D. Gillan, G. Gupta, and A. Karshmer.
Intelligent non-visual navigation of complex HTML
structures. Universal Access in the Information
Society, 2(1):56–69, 2002.

[59] PostgreSQL Global Development Group. PostgreSQL.
https://www.postgresql.org/, 2017.

[60] T. V. Raman. Audio system for technical readings.
PhD thesis, 1998.

[61] R. Ramloll, W. Yu, and B. Riedel. Using non-speech
sounds to improve access to 2D tabular numerical
information for visually impaired users. In Conference
of the British HCI Group, pages 515–529, 2001.

[62] E. Reiter, R. Robertson, and L. Oman. Types of
knowledge required to personalise smoking cessation
letters. In AIMDM, pages 389–399, 1999.

[63] D. Saha, A. Floratou, K. Sankaranarayanan, U. F.
Minhas, A. R. Mittal, and F. Ozcan. ATHENA: An
ontology-driven system for natural language querying
over relational data stores. VLDB, 9(12):1209–1220,
2016.

[64] S. Sarawagi. User-adaptive exploration of
multidimensional data. In VLDB, pages 307–316, 2000.

[65] B. P. Sharifi, D. I. Inouye, and J. K. Kalita.
Summarization of twitter microblogs. Computer
Journal, 57(3):378–402, 2014.

[66] B. Shneiderman. Response time and display rate in
human performance with computers. ACM Computing
Surveys, 16(3):265–285, 1984.

[67] C. Shum and R. Muntz. Implicit representation for
extensional answers. In Expert Database Systems,
pages 257–273, 1988.

[68] C.-D. Shum and R. Muntz. An information-theoretic
study on aggregate responses. In VLDB, pages
479–490, 1988.

[69] A. Siddharthan and M. A. Angrosh. Hybrid text
simplification using synchronous dependency
grammars with hand-written and automatically
harvested rules. In Annual Meeting on Association for
Computational Linguistics, pages 722–731, 2014.

[70] T. Siddiqui, J. Lee, A. Kim, E. Xue, C. Wang, Y. Zou,
L. Guo, C. Liu, X. Yu, K. Karahalios, and
A. Parameswaran. Fast-forwarding to desired
visualizations with zenvisage. In CIDR, 2017.

[71] A. Simitsis, Y. Alexandrakis, G. Koutrika, and
Y. Ioannidis. Synthesizing structured text from logical
database subsets. In EDBT, pages 428–439, 2008.

[72] A. Simitsis and Y. Ioannidis. DBMSs should talk back
too. In CIDR, 2009.

[73] R. D. Stevens, D. E. Alistair, and P. A. Harling.
Access to mathematics for visually disabled students
though multimodal interaction. In HCI, pages 47–92,
1997.

[74] I. Trummer, M. Bryan, and R. Narasimha. Vocalizing
large time series efficiently. VLDB, 11(11):1563–1575,
2018.

[75] I. Trummer, Y. Wang, and S. Mahankali. A holistic

approach for query evaluation and result vocalization
in voice-based OLAP. In SIGMOD, pages 1–18, 2019.

[76] I. Trummer, J. Zhu, and M. Bryan. Data vocalization:
optimizing voice output of relational data. PVLDB,
10(11):1574–1585, 2017.

[77] M. Vartak, S. Madden, A. Parameswaran, and
N. Polyzotis. SeeDB: automatically generating query
visualizations. VLDB, 7(13):1581–1584, 2014.

[78] H. Venkatagiri. Effect of sentence length and exposure
on the intelligibility of synthesized speech.
Augmentative and Alternative Communication,
10(2):96–104, 1994.

[79] M. A. Walker, S. J. Whittaker, A. Stent, P. Maloor,

J. Moore, M. Johnston, and G. Vasireddy. Generation
and evaluation of user tailored responses in
multimodal dialogue. Cognitive Science,
28(5):811–840, 2004.

[80] M. White, R. A. J. Clark, and J. D. Moore.
Generating tailored, comparative descriptions with
contextually appropriate intonation. Computational
Linguistics, 36(2):159–201, 2010.

[81] K. Wongsuphasawat, D. Moritz, A. Anand,
J. Mackinlay, B. Howe, and J. Heer. Voyager:
exploratory analysis via faceted browsing of
visualization recommendations. Transactions on
Visual and Computer Graphics, 22(1):649–658, 2015.

