
Dataset Relationship Management
Zachary G. Ives, Yi Zhang, Soonbo Han, Nan Zheng

University of Pennsylvania
Philadelphia, PA

zives,yizhang5,soonbo,nanzheng@cis.upenn.edu

ABSTRACT
The database community has largely focused on providing im-
proved transaction management and query capabilities over records
(and generalizations thereof). Yet such capabilities address only a
small part of today’s data science tasks, which are often much more
focused on discovery, linking, comparative analysis, and collabora-
tion across holistic datasets and data products.

Data scientists frequently point to a strong need for data man-
agement — with respect to their many datasets and data products.
We propose the development of the dataset relationship manage-
ment system to support five main classes of operations on datasets:
reuse of schema, data, curation, and work across many datasets;
revelation of provenance, context, and assumptions; rapid revi-
sion of data and processing steps; system-assisted retargeting of
computation to alternative execution environments; and metrics to
reward individuals’ contributions to the broader data ecosystem.
We argue that the recent adoption of computational notebooks (par-
ticularly JupyterLab and Jupyter Notebook), as a unified interface
over data tools, provides an ideal way of gathering detailed informa-
tion about how data is being used, i.e., of transparently capturing
dataset provenance and relationships, and thus such notebooks pro-
vide an attractive mechanism for integrating dataset relationship
management into the data science ecosystem. We briefly outline
our experiences in building towards JuNEAU, the first prototype
DRMS.
ACM Reference Format:
Zachary G. Ives, Yi Zhang, Soonbo Han, Nan Zheng. 2019. Dataset Rela-
tionship Management. In Proceedings of Conference on Innovative Database
Systems Research (CIDR 19). ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.475/123_4

1 INTRODUCTION
The database field has evolved over the decades, but even today
the “core” of the discipline is focused on representing and reliably,
consistently storing individual data items, and on supporting SQL-
style queries over such data. The big data era has brought new
desires to interface with external datasets, run machine learning
algorithms, and visualize results. Our community’s response has
been to adapt our existing, record- and transaction-oriented plat-
forms to interface with such capabilities, rather than changing their
basic functionality or abstractions.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CIDR 19, January 2019, Asilomar, CA USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/10.475/123_4

Unfortunately, traditional database capabilities play a smaller
and smaller role in data science at scale — especially in research
and in large organizations, where data is assembled by many users
and comes in many versions. Data analysis is not simply being
performed over an existing data warehouse. Instead, datasets are
pulled from distributed filesystems and the open web, and possibly
stored in a data lake. The emphasis is not on managing individ-
ual records, but on finding, integrating, and analyzing actionable,
human-curated datasets, or even assemblies of datasets. Data can-
not be safely assumed to be largely clean or consistent, and it often
comes from different parties with different levels of trustworthiness
or relevance. Data curation, hypothesis testing, (machine learning)
feature or algorithm selection, record linking / coregistration, and
comparative analysis are the common tasks of the day. Moreover,
these tasks are often done in teams, incorporate open data and code,
and need to be applied repeatedly to other (possibly future) data.

As an example of the “sea change,” consider the Penn Database
Group’s experiences in working with collaborators in several dis-
parate areas of biomedical data science. Scientific communities
have, for years, promoted public sharing of data in Web- (and today
cloud-) backed databases [32, 37, 38], with a goal of facilitating data
reuse. Yet our experience, both as providers and consumers of such
data, has shown that access to tables and records plays a minor
role in promoting an “open data ecosystem” for data production,
sharing, and analysis.

Example 1.1. For more than seven years, we have worked with
neuroscientists [16, 31] to collect and share large multimodal datasets
from across epilepsy and behavioral research. Data hosted on our plat-
form, IEEG.org, includes (HIPAA-compliant, anonymized) patient case
histories, MRI and CT imaging, long (up to 1.5-year), high-frequency
(up to 32KHz) time series data (primarily intracranial EEG recordings).
Perhaps the most vital data in our database is actually annotations
over the imaging (for seizure onset information, implanted electrodes,
etc) and time-series data (information about seizure state or behavior).
Data from IEEG.org was successfully used to develop a series of dra-
matically better seizure detection and prediction algorithms [9, 15].
Yet despite these successes, the presence of over 4500 datasets, and
nearly 3200 users, we have found surprising limitations in the commu-
nity’s usage patterns (as we have previously described in part [26]).
First, scientists are concerned that data remains heterogeneous, in
terms of quality, assumptions (provenance), curation, and schema.
Few mechanisms exist (other than shared code on GitHub or Jupyter
notebooks on Kaggle) to promote reuse, and especially to find com-
monalities. Ultimately this means scientists are unlikely to reuse or
trust others’ data, even if that data is technically available. Second,
data science often relies on testing hypotheses and training or com-
paring algorithms over a subset of the data, then repeating over larger
relevant datasets. The path from a one-off-script over a single dataset

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

CIDR 19, January 2019, Asilomar, CA USA Z.G. Ives, et al.

on a local machine, to a more regularized, parameterized program
that can run across a cluster, is fraught with challenges. Finally, too
few metrics exist to fully recognize those who share curated results,
annotations, etc.

Our experiences in other data sharing communities, revolving
around mobile health data [30] and in multi-site high-throughput
gene sequencing, have shown similar issues. Reasoning about data
becomes less valuable than reasoning about datasets and data prod-
ucts (derived datasets, machine learning classifiers, data visualiza-
tions, etc.). We argue that the data management community should
broaden its focus beyond transactions and queries, and even be-
yond issues of data provenance management and version control, to
manage the relationships among datasets and data products
and aid the user in making best use of overwhelming volumes
of not-equally-useful and code data:
Reuse. How do data scientists reuse the best-curated data or en-

sure that corrections persist over updates to remote data
sources? Once they have developed a new algorithm or
workflow, can we help them (1) generalize it into a reusable
module or script, (2) apply it en masse to other (or future)
datasets?

Reveal. Can we help data scientist teams understand the prove-
nance [12] (and context [21]) of a data product or code mod-
ule, including how it relates to other tasks and other data?

Revise. Data and code both evolve over time. Version control sys-
tems [7] manage the storage of versioned data and code, but
do not aid in ensuring consistent processing and refreshing
of all results.

Retarget. Today there are a multitude of data analysis platforms
and languages, which handle different scales and execution
environments. Through code analysis and rewriting tech-
niques, we can aid the user in retargeting certain data anal-
ysis, e.g., from an in-memory implementation to one that
runs on the cloud.

Reward. It has become clear that measures such as publication
count are inadequate for measuring impact. We need better
infrastructure for tracking individuals’ value-add to the data
science process — whether it is code, data, or curation.

Even as we consider how to meet these needs, we must also ac-
knowledge that a solution should fit naturally into a scientist’s data
science workflow, and that to be most useful it must have a nearly
global perspective on how data and datasets are being used. That
workflow is largely outside of the realm of the DBMS and SQL.

Fortunately, although data scientists use a plethora of languages
(Matlab, R, Python, Julia, sometimes even SQL in limited cases),
machine learning toolkits (PyTorch, TensorFlow, Keras, MLLib, etc.),
visualization tools, and storage subsystems (cloud storage, HDFS,
graph databases, RDBMSs) — there has been a convergence on com-
putational notebook software, particularly Jupyter Notebook [41]
and its successor JupyterLab, as a single integrated environment
for controlling the majority of data science tasks1.

User interactions via computational notebooks. Jupyter-
Lab provides a unified user experience, largely based on a single
interactive Web document (“notebook”) containing a sequence of
1RStudio and Apache Zeppelin are also popular notebook platforms, but seem to be
much less so than Jupyter.

HTML “cells.” Cells may be simple Markdown descriptions and
headings, providing important contextual or descriptive information
to the reader; program fragments written in a particular target
language, which may bring in external libraries and link to cloud
execution environments; and visual or tabular outputs produced
by code. Since JupyterLab runs within a Web browser, it can incor-
porate a wide variety of Javascript, Web, and other plugins includ-
ing visualization tools and Web services. JupyterLab also provides
mechanisms for invoking programs via the operating system shell
— thus allowing notebooks to interact with programs and scripts
via shared files. Broadly, it can be viewed as the most popular in-
tegrated development environment for data science, and it has an
added virtue of being open-source and extensible via plug-ins.

Changing theunderlying datamanagement infrastructure.
Unfortunately, JupyterLab has an extremely rudimentary datamodel:
a notebook is simply a JSON file that contains code that references
externally stored files and URLs. Programmatic state (e.g., variables
and other side effects) is carried from cell to cell according to the se-
quence in which the cells have been executed, which does not have
to match the order in which the cells occur in the document. Cells
can be overwritten in ways that prevent the notebook from even
being correctly re-executed. Recent work [11, 29, 42] has developed
more sophisticated models for tracking dependencies among cells,
thus enabling provenance capture and reproducibility.

Going beyond these, we argue that the needs of data manage-
ment for data science — including the “five R” tasks listed above
— can be best addressed by building a full data management layer
underneath JupyterLab and other notebook software, which not
only individually manages the cells within the notebook and the
relationships among notebooks, but links to filesystem / external
data, and derived data. Our goals include revealing provenance —
but also exploiting data and execution semantics to find and pro-
pose relationships among data and code artifacts, and ultimately
to produce modular reuse and retargeting of human effort across
data revisions, and also metrics for helping reward contributions
to any data product.

In this paper, we describe our early efforts to build such a dataset
relationship management system, JuNEAU2. JuNEAU has the abil-
ity to extract semantic information from the cells and content of
the notebooks, and to enable reasoning about relationships among
datasets and data products (via cells and their code) and reasoning
about cells (the datasets and data products). Its main objective is
in some sense to promote the effective reuse of the “best” data
products and code.

The paper is organized as follows. Section 2 outlines the core
capabilities of our proposed class of data relationship management
systems. Section 3 outlines our early prototype, capabilities, experi-
ences, and open challenges. We describe related work in Section 4
and conclude in Section 5

2 DATASET RELATIONSHIP MANAGEMENT
A relational database system is primarily responsible for managing
metadata (schemas), data records (as tables), and certain kinds of
data transformations (e.g., views). At its heart, the JuNEAU dataset
relationship management system (DRMS) is a middleware system

2“JUpyter Notebook with Enhanced Access and Understanding”

Dataset Relationship Management CIDR 19, January 2019, Asilomar, CA USA

that combines information about data and code usage and revi-
sion patterns, with information about data and code’s semantics
and provenance — to help data scientists and data analysts best
leverage, reuse, and retarget existing code, curation, metadata and
data. To promote data sharing across users, it both reveals context
and provenance, and provides metrics to reward data, code, and
curation that have measurable impact.

To the user, JuNEAU provides the default abstraction of a com-
putational notebook and the JupyterLab integrated development
environment. However, internally it “deconstructs” the notebook
into richer data model, comprised of a (versioned) DAG of data
products, annotations and descriptors, and code cells. See Fig-
ure 1 for an example. It also tracks relationships that span across
notebooks, and even between notebooks and code run from the
JupyterLab shell.

The DRMS targets large multi-user, multi-dataset settings in
which the challenge is not so much in acquiring access to data,
but in finding, reusing, and standardizing upon datasets. The data
may exist in different versions; analysis code may get updated;
different users may have different means of cleaning and curating
the data. We consider code-to-code, code-to-data, data-to-code, and
data-to-data relationships.

Code-to-data relationships. Much of data science involves build-
ing code snippets and scripts — often in a way that fails to promote
effective reuse (desirable for modularity and maintainability) or
readability (critical for collaboration and reproducibility). Worse,
data scientists are typically not trained software engineers, and
computational notebooks encourage a copy-paste-and-tweak men-
tality. Thus a key capability in the DRMS is to help identify how
code interfaces to and produces data.

In more detail, a cell or assembly of cells in Jupyter typically
has dependencies — potentially to a set of input files or URLs from
which source data is initially loaded, or to a collection of variables
loaded in a prior cell — and typically produces output data products
(including embedded visualizations, tables or dataframes, and/or
files). Using code analysis, the DRMS attempts to (1) infer what
the inputs and outputs are, and (2) identify the expected types and
schema restrictions. From this, we can extract the assembly of cells
into a reusable block with parameterizable interfaces, and we can
determine where the assembly can be applied.

Data-to-code relationships. Much the way code has an interface,
we can think of datasets also having an interface — in terms of the
operations that may be applied to them, how they were produced,
and so on. Here, the DRMS relies on its ability to extract provenance
for the data, as well as provenance information about how the
data is itself used. Provenance in a DRMS is, of course, a first-
class citizen, and provenance querying and visualization [27] as
well as usage tracking are core capabilities. However, in an active
data environment, the DRMS should amass enough provenance
information to help with common data wrangling and integration
tasks: (1) find cells/code modules that are used to import files and
map them to tables or dataframes; (2) suggest candidate schemas
for a data product stored as a file; (3) identify other datasets that
have been joined/coregistered/record-linked with a data product.
It may also be able to suggest data processing steps / cells that
perform cleaning and normalization. Such steps can be converted

into reusable pipelines for future datasets, and they can also be
leveraged by other users. We note that reuse of processing steps is
likely to also lead to more standard schemas as well as practices.

Perhaps more interesting (and described in more detail in Sec-
tion 3), the DRMS allows us to holistically compare across data
products and workflows, for instance seeing if different work-
flow versions produce identical output or identifying where they
differ. Such capabilities are essential to reproducible research, as
they allow regression testing and uniform treatment of all datasets.

Reasoning about code semantics and relationships. Perhaps not
surprisingly, the vast majority of data analysis tools today include
high-level operations over arrays, matrices, and — especially rel-
evant to the DBMS community — collections of structured ob-
jects. Microsoft’s LINQ, Java’s streams interface, Python and R’s
dataframes, and the multitude of map-reduce implementations in
all environments, mean that is possible to perform simple code and
dataflow analysis to derive relational algebra-like descriptions of
some of the lines of code within a cell. Given a high-level declarative
specification for a piece of code, the DRMS can infer how the code
processes and produces individual records. This can be extremely
useful in reasoning about differences in results across workflows.
It has another advantage, namely that we can easily generate retar-
geted code, e.g., to move from Python Pandas to Apache Spark, or
potentially even convert from a local SciKit-Learn implementation
to a more scalable learning platform like TensorFlow.

Reasoning about data semantics and relationships. Traditionally,
the database community has explored how to search for datasets
by keywords, facets, or even taxonomies. We argue that search-by-
example-table and search-by-similar-provenance are more useful
in many data science settings. If a user is analyzing a table with
a small set of results, he or she may wish to scale up to a bigger
training set or may want to identify potentially interesting data
with similar characteristics. Here, similarity sometimes that values
substantially overlap — but it may also mean similar provenance,
similar fields, and similar data distributions. Another form of search
demanded by users is for the best curated version of a dataset —
ideally, a version of the dataset with fresh data but also the most
authoritative corrections.

Finally, many data scientists are not experienced at designing
schemas, nor at thinking comprehensively about what attributes to
capture. As the user stores or imports data, the DRMS should aid in
schema design by suggesting schema elements that are commonly
associated with the data and the currently specified fields — a
“schema auto-complete” [25].

3 PROTOTYPE AND OPEN CHALLENGES
Over the past year, motivated by our interactions with data sci-
entists at Penn, we have been building an early prototype of the
JuNEAU DRMS. Our implementation uses a combination of Python
(front-end components serving the Web interface, currently as a
storage manager plugin for Jupyter Notebook and JupyterLab) and
Java (back-end components), and stores its content in a combination
of object key-value store (Minio or Amazon S3), graph database
(Neo4J), and relational DBMS (PostgreSQL).

CIDR 19, January 2019, Asilomar, CA USA Z.G. Ives, et al.

!pip install …

Collecting scikit-learn …

sms_df.head()

class sms …
0 ham Go until …

Spam Classifier Task

sms_df[‘a’].hist(…)

sms_df = pd.read_csv(…)

MarkDown

IPython

Python (no output)

Python (no output)

Python (dataframe)

Python (visualization)

import pandas as pd
…

Figure 1: Example of a JupyterLab notebook and its associated cell-oriented datamodel. Note the execution order and program
dataflow dependencies (blue lines) may not match the presentational order.

Our early prototype focuses on three aspects of the DRMS: (1)
taking procedural, data-centric code and finding a way to capture its
semantics (mostly) declaratively; (2) identifying data usage patterns;
(3) finding data relationships.

3.1 “Lifting” Procedural Code to Declarative
Representations

JuNEAU can make use of “opaque” programs and code cells, as
workflow “black boxes.” However, to do deeper analysis and to
support retargeting of the code to different platforms, it must be
able to extract semantic information (or it must be provided such
information, e.g., by a programmer). As described previously, most
data analysis code heavily emphasizes arrays, matrices, and collec-
tions of structured objects (or tabular data). It makes use of “bulk
operations” such as matrix transformations, bulk arithmetic opera-
tions, and relational algebra (filter, join) or map-reduce operations,
as well as calls to high-level libraries and toolkits.

It is fairly straightforward to develop limited program analysis
modules for different target languages, which can parse the contents
of code cells, track operations, and track dataflow dependencies. In
JuNEAU we currently support Python, and inspired by the noWork-
flow system [36] we track dataflow between statements and across
cell boundaries. We use reflection and debugger support to under-
stand the types, e.g., to detect dataframes and arrays, and we have
developed a prototype dictionary of function signatures to detect
when relational operators are being applied to the tabular data.
Figure 2 shows an example of how a segment of Python code (using
Pandas) makes a variety of function calls producing a dataframe,
which we map into a series of relational operators. Obviously, not
all code (especially iterative or recursive code) maps naturally to
relational expressions. However, we can generally break the lines
of code into a DAG in which nodes represent blocks of relational-
algebra-equivalent code and “other” code. Sometimes the relational

code will include calls to user-defined functions (e.g., a user-defined
map operation).

Often, JupyterLab cells make calls to external libraries or mod-
ules, e.g., for gene sequence analysis. Moreover, users may invoke
programs from the JupyterLab shell. Thus, to complement our cell-
level code analysis, we also allow developers to associate module
descriptors with black-box programs [53]. Module descriptors are
declarative specifications (in the form of relational algebra trees
specifying the operations, and schemas of the inputs and outputs) of
the structured data extraction and record-to-record transformations
being done in each program, combined with selected user-defined
functions. Module descriptors allow the platform to selectively re-
compute fine-grained record-to-record provenance, and to capture
provenance for hierarchical, string, and image datatypes.

Revealing fine-grained provenance. Our study of “lifting” proce-
dural code to a declarative form was motivated by the problem of
helping data scientists reason about revisions to code (algorithm
implementations) and data (reference libraries or datasets). Often,
as code and data are revised, the new version produces different
output from the old one. To ensure reproducibility, it becomes criti-
cal to understand where and why such differences arise, at a fine
level of granularity (records as opposed to complete files).

Our early JuNEAU prototype’s PROVision sub-module [53] facil-
itates this type of reasoning about the differences between revisions.
It starts with a diff3 comparison of the outputs between different
code versions, then localizes which output records are different.
Finally, it uses the declarative description of workflow modules
to compute fine-grained provenance showing which input records
contributed to the different outputs. This work develops techniques
for pruning and optimization, as well as methods for embedding
user-defined extraction, record linking, and aggregation functions
into declarative code while producing provenance. Results from
ETL tasks and gene sequence alignment workflows showed that,
thanks to its data indexing and pruning techniques, JuNEAU could

Dataset Relationship Management CIDR 19, January 2019, Asilomar, CA USA

TableFn (read_csv(‘spam.csv’,’latin-1’))

π#1, #2, #3, #4, #5

ρ#1 -> ‘class’, #2 -> ‘sms’, #3 -> ‘a’, #4 -> ‘b’, #5 -> ‘c’

σclass=‘ham’

Sorta,ascending

Figure 2: Example of converting Python Pandas code into a
relational algebra expression

typically trace the provenance of specific output results within a
few seconds, even when re-running the entire workflow could take
hours.

Open challenges. Our initial JuNEAU prototype executes declar-
ative specifications of Python code in its own proprietary query
engine, which interfaces seamlessly with UDFs in CPython. We
are developing a cross-compiler for executing the same code under
Apache Spark, which would provide a mechanism for “scaling out”
the code to distributed data. More broadly, we foresee opportunities
to retarget the code to other runtime systems (with the caveat that
performance will depend on workload and data distribution). A
natural question is whether certain code segments could be auto-
matically targeted to the most appropriate runtime environments
— like some polystore systems [1, 17] seek to do. We also believe
that the concept of provenance needs to be clarified for “holistic”
machine learning operations such as training and clustering.

We also believe there is an opportunity to exploit database view
materialization and incremental maintenance strategies to speed
up the execution of certain notebooks. There has been a good deal
of work on compiler optimizations for data-driven code, includ-
ing heterogeneous environments [14, 45]. However, many more
opportunities exist for incorporating reasoning about workload
patterns (e.g., across notebooks and across files) and for combining
fine-grained provenance computation with data driven execution.

3.2 Capturing and Identifying Data Usage
Patterns

Applying techniques from graph pattern mining [49] and from
recommendation systems [4, 51] to the provenance (data usage)
graph, the DRMS can promote the reuse of data: it can detect
datasets with similar provenance or that are used in similar ways,
as well as code modules and cells applied to similar kinds of data.
Moreover, if a dataset is the subject of frequently occurring cleaning
steps or record-level manual edits, the system should be able to
detect this pattern and recommend the derived dataset instead.
(Recent work [8] has suggested a basic algebra for reasoning about
dataset changes.)

Of course, such capabilities rely on having detailed provenance
information to mine. A wide variety of methods and platforms have
been proposed for capturing coarse-grained (file-to-file) provenance
over workflows within dedicated environments [5, 19, 34, 39], low-
level provenance provided by operating system-level instrumenta-
tion [20, 35, 35, 47], and fine-grained (record-to-record) provenance
over SQL-like computations [3, 13, 18, 23, 24, 27, 33, 50].

A key challenge lies in knowing how much provenance, at what
granularity, to capture a priori, and what to reproduce as needed.
With deterministic code augmented by effective version manage-
ment, one must only know the base data and the code cells or
programs (and their parameters) in order to fully reproduce prove-
nance. However, to facilitate DRMS reasoning (such as detection of
common data processing patterns) as well as to aid the user (such as
in answering user queries about a dataset’s detailed provenance, or
reasoning about the effects of a revision), we may wish to material-
ize more in order to reduce the amount of work needed on-demand.
We may also need to “lift” the provenance from low-level steps into
higher-level relationships, and/or to convert it into a normalized
representation.

One approach to addressing the challenges cited above is to de-
velop mechanisms for provenance views that can convert subgraphs
comprised of low-level provenance information (e.g., program read
and write operations) into higher-level representations (e.g., nodes
representing derivations). Such views could also be used to nor-
malize the structure of a graph, e.g., removing order information
that does not matter. We have been developing infrastructure for
efficiently computing views over provenance graphs (and, more gen-
erally, graph databases). For generality, views may be comprised of
multiple pattern-matching and substitution rules. Given that such
rules may interact, we have developed typechecking algorithms
and means of expressing precedence, so our views will produce
deterministic output. Inspired by access support relations [28], we
are also exploring subgraph indexing techniques that speed query
answering.

Open challenges. The regularity within data science workflows,
and even queries, offers many opportunities to apply data compres-
sion and selective materialization. We expect to develop cost-based
optimization techniques to address this problem.

3.3 Detecting and Exploiting “Other” Data
Relationships

Provenance indirectly relates data sources to data products. How-
ever, data relates to data, both directly and indirectly, through
sharing or overlap: one dataset may be a revision of another, or
they may be related via a common “ancestor”; one dataset may
represent a derivation from another (e.g., through a cleaning step);
one dataset may reference another using foreign keys; two datasets
may represent independent observations of the same phenomenon.
In all of these cases, the overlap between datasets (on some subset
of their fields) is an extremely useful measure of dataset relatedness,
which can help JuNEAU aid the user in leveraging and reusing
others’ work.

Early work in JuNEAU develops search and recommendation
capabilities to promote dataset reuse. Our focus is on letting users
search a data lake not merely by keywords, but by existing tables or
table fragments, combined with their provenance and with optional
filter criteria. Our definitions for table relatedness include similarity,
capturing tables with similar schemas or values, which can help
data scientists accumulate additional data, e.g., more training data
for a machine learning module; linkability, which discovers other
relations that can be joined with a given table, and is useful for
adding features to datasets; and provenance similarity, which finds

CIDR 19, January 2019, Asilomar, CA USA Z.G. Ives, et al.

tables that were produced in the same or similar ways. To enable
such capabilities, we have developed ranking schemes for table
relatedness as well as indexing techniques.

We further utilize the relatedness and overlap measures to link
new and existing data products (base tables and intermediate re-
sults). This provides a form of index that supports rapid reasoning
about data overlap between these results, and results computed
in other notebooks, perhaps by other users. Our results are still
preliminary, but they show promise for both compressing datasets
and finding related datasets.

Open challenges. Our early efforts to support ranked search over
tables are primarily based on measures of data relatedness for
reusability, as described above. A full search engine should fur-
ther consider user intent, provenance similarity, dataset author-
itativeness and freshness, and filter predicates over schema and
data elements. Such goals require us to tackle questions of how to
interact with the user to learn to rank tables [48], learn trustworthi-
ness [40], and balance among multiple scoring dimensions. Much
as with existing table search systems [10, 43], a good deal of tuning
and user validation will be required to get things right. However,
from speaking with data scientists it is clear that such “signals” are
absolutely essential to assessing data.

4 RELATEDWORK
While our work has been especially shaped by the experiences
of working with modern data scientists, some of the underlying
issues have been articulated in the past (though often with different
goals). Bernstein et al.’s efforts to build generic model management
systems [6] were based on the needs of managing schema evolution,
data integration, and a plethora of different data representations
within the enterprise. Some of those same goals were targeted by
the Clio project [44]. The Ground [22] project sought to establish a
common representation for data relationships across a multitude of
sources and environments, not dissimilar to the provenance graph
in the DRMS. Bleifuß et al. [8] have proposed a set of data cube-style
operators for analyzing changes within datasets.

Scientific data management has also been a topic of study in the
database community and beyond, with scientific workflow manage-
ment systems with integrated provenance capture [19, 34, 39] as
perhaps the most important area of related work. Our work builds
upon these ideas to augment them with fine-grained provenance
and to look holistically across usage patterns within a community.
Finally, tools for managing data outside the database [2] and for
array and matrix processing [46, 50, 52] have all had impact on
how today’s big data platforms and libraries optimize their compu-
tation. We assume the use JupyterLab to integrate across various
data management platforms.

5 CONCLUSIONS AND FUTUREWORK
Much of data science is focused beyond individual records, instead
looking at heterogeneous datasets with different provenance, a
multitude of interrelated data products, and a plethora of hetero-
geneous data analysis and visualization tools. We argue that the
DBMS community should embrace the management not only of
data and its relationships, but datasets and their relationships — to
help users navigate the overwhelming number of data products

and code versions, and to promote the five R’s: reuse of the best
resources, revelation of context to aid in collaboration, understand-
ing how revisions impact results, retargeting of code to alternative
platforms, and metrics that enable communities to reward their best
contributors. Our early experiences with JuNEAU point to some of
the key issues, but a good deal of open work remains.

REFERENCES
[1] Divy Agrawal, Sanjay Chawla, Bertty Contreras-Rojas, Ahmed Elmagarmid,

Yasser Idris, Zoi Kaoudi, Sebastian Kruse, Ji Lucas, Essam Mansour, Mourad
Ouzzani, et al. 2018. RHEEM: enabling cross-platform data processing: may
the big data be with you! Proceedings of the VLDB Endowment 11, 11 (2018),
1414–1427.

[2] Ioannis Alagiannis, Renata Borovica, Miguel Branco, Stratos Idreos, and Anastasia
Ailamaki. 2012. NoDB: efficient query execution on raw data files. In SIGMOD.
ACM, 241–252.

[3] Yael Amsterdamer, Daniel Deutch, and Val Tannen. 2011. Provenance for aggre-
gate queries. In PODS. 153–164.

[4] S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik, S. Kumar, D. Ravichandran,
and M. Aly. 2008. Video suggestion and discovery for YouTube: taking random
walks through the view graph. In WWW.

[5] Louis Bavoil, Steven P. Callahan, Patricia J. Crossno, Juliana Freire, Carlos E.
Scheidegger, Claudio T. Silva, and Huy T. Vo. 2005. VisTrails: Enabling Interactive
Multiple-View Visualizations. IEEE Visualization (2005), 135–142.

[6] Philip A. Bernstein, Alon Y. Halevy, and Rachel Pottinger. 2000. A Vision of
Management of Complex Models. SIGMOD Record 29, 4 (December 2000), 55–63.

[7] Souvik Bhattacherjee, Amit Chavan, Silu Huang, Amol Deshpande, and Aditya
Parameswaran. 2015. Principles of Dataset Versioning: Exploring the Recre-
ation/Storage Tradeoff. Proc. VLDB Endow. 8, 12 (Aug. 2015), 1346–1357.

[8] Tobias Bleifuß, Leon Bornemann, Theodore Johnson, Dmitri V. Kalashnikov, Felix
Naumann, and Divesh Srivastava. 2018. Exploring Change - A New Dimension
of Data Analytics. PVLDB 12, 2 (2018), 85–98. http://www.vldb.org/pvldb/vol12/
p85-bleifuss.pdf

[9] Benjamin H Brinkmann, Joost Wagenaar, Drew Abbot, Phillip Adkins, Simone C
Bosshard, Min Chen, Quang M Tieng, Jialune He, FJ Muñoz-Almaraz, Paloma
Botella-Rocamora, et al. 2016. Crowdsourcing reproducible seizure forecasting
in human and canine epilepsy. Brain 139, 6 (2016), 1713–1722.

[10] Michael J. Cafarella, Alon Y. Halevy, Daisy Zhe Wang, Eugene Wu, and Yang
Zhang. 2008. WebTables: exploring the power of tables on the web. PVLDB 1, 1
(2008), 538–549.

[11] Lucas AMC Carvalho, Regina Wang, Yolanda Gil, and Daniel Garijo. 2017. NiW:
Converting Notebooks into Workflows to Capture Dataflow and Provenance.
In Proceedings of Workshops and Tutorials of the 9th International Conference on
Knowledge Capture (K-CAP2017).

[12] James Cheney, Laura Chiticariu, and Wang Chiew Tan. 2009. Provenance in
Databases: Why, How, and Where. Foundations and Trends in Databases 1, 4
(2009), 379–474.

[13] James Cheney, Laura Chiticariu, and Wang Chiew Tan. 2009. Provenance in
Databases: Why, How, and Where. Foundations and Trends in Databases 1, 4
(2009), 379–474.

[14] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. 2013. Optimizing
Database-backed Applications with Query Synthesis. SIGPLAN Not. 48, 6 (June
2013), 3–14. https://doi.org/10.1145/2499370.2462180

[15] Francis Collins. 2015. Epilepsy Research Benefits from the Crowd. directorsblog.
nih.gov/2015/01/20/epilepsy-research-benefits-from-the-crowd.

[16] Francis Collins. 2015. NIH Director’s Blog: Epilepsy Research
Benefits from the Crowd. http://directorsblog.nih.gov/2015/01/20/
epilepsy-research-benefits-from-the-crowd/.

[17] Jennie Duggan, Aaron J Elmore, Michael Stonebraker, Magda Balazinska, Bill
Howe, Jeremy Kepner, Sam Madden, David Maier, Tim Mattson, and Stan Zdonik.
2015. The BigDawg polystore system. ACM Sigmod Record 44, 2 (2015), 11–16.

[18] Boris Glavic and Gustavo Alonso. 2009. Perm: Processing Provenance and Data
on the Same Data Model through Query Rewriting. In ICDE. 174–185.

[19] Jeremy Goecks, Anton Nekrutenko, and James Taylor. 2010. Galaxy: a com-
prehensive approach for supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome biology 11, 8 (2010), R86.

[20] Soonbo Han. [n. d.]. Provenance Tracker. https://pennprovenance.net/index.
php?n=Main.Tracker.

[21] Joseph M. Hellerstein, Vikram Sreekanti, Joseph E. Gonzalez, James Dalton,
Akon Dey, Sreyashi Nag, Krishna Ramachandran, Sudhanshu Arora, Arka Bhat-
tacharyya, Shirshanka Das, Mark Donsky, Gabriel Fierro, Chang She, Carl
Steinbach, Venkat Subramanian, and Eric Sun. 2017. Ground: A Data Con-
text Service. In CIDR. Available from http://cidrdb.org/cidr2017/papers/
p111-hellerstein-cidr17.pdf.

http://www.vldb.org/pvldb/vol12/p85-bleifuss.pdf
http://www.vldb.org/pvldb/vol12/p85-bleifuss.pdf
https://doi.org/10.1145/2499370.2462180
directorsblog.nih.gov/2015/01/20/epilepsy-research-benefits-from-the-crowd
directorsblog.nih.gov/2015/01/20/epilepsy-research-benefits-from-the-crowd
http://directorsblog.nih.gov/2015/01/20/epilepsy-research-benefits-from-the-crowd/
http://directorsblog.nih.gov/2015/01/20/epilepsy-research-benefits-from-the-crowd/
https://pennprovenance.net/index.php?n=Main.Tracker
https://pennprovenance.net/index.php?n=Main.Tracker
http://cidrdb.org/cidr2017/papers/p111-hellerstein-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p111-hellerstein-cidr17.pdf

Dataset Relationship Management CIDR 19, January 2019, Asilomar, CA USA

[22] Joseph M. Hellerstein, Vikram Sreekanti, Joseph E. Gonzalez, James Dalton,
Akon Dey, Sreyashi Nag, Krishna Ramachandran, Sudhanshu Arora, Arka Bhat-
tacharyya, Shirshanka Das, Mark Donsky, Gabriel Fierro, Chang She, Carl Stein-
bach, Venkat Subramanian, and Eric Sun. 2017. Ground: A Data Context Service.
In CIDR.

[23] Robert Ikeda, Hyunjung Park, and Jennifer Widom. 2011. Provenance for gener-
alized map and reduce workflows. (2011).

[24] Matteo Interlandi, Kshitij Shah, Sai Deep Tetali, Muhammad Ali Gulzar, Se-
unghyun Yoo, Miryung Kim, Todd D. Millstein, and Tyson Condie. 2015. Titian:
Data Provenance Support in Spark. PVLDB 9, 3 (2015), 216–227. Available from
http://www.vldb.org/pvldb/vol9/p216-interlandi.pdf.

[25] Zachary G. Ives, Craig A. Knoblock, Steven Minton, Marie Jacob, Partha Pratim
Talukdar, Rattapoom Tuchinda, José Luis Ambite, Maria Muslea, and Cenk Gazen.
2009. Interactive Data Integration through Smart Copy & Paste. In CIDR.

[26] Zachary G. Ives, Zhepeng Yan, Nan Zheng, Joost Wagenaar, and Brian Litt. 2015.
Looking at Everything in Context. In CIDR.

[27] Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. 2010. Querying Data
Provenance. In SIGMOD.

[28] Alfons Kemper and Guido Moerkotte. 1990. Advanced Query Processing in
Object Bases Using Access Support Relations. In VLDB. San Francisco, CA, USA,
290–301.

[29] David Koop and Jay Patel. 2017. Dataflow notebooks: encoding and tracking
dependencies of cells. In 9th USENIX Workshop on the Theory and Practice of
Provenance (TaPP 17). USENIX Association.

[30] Santosh Kumar, Gregory Abowd, William T Abraham, Mustafa al’Absi,
Duen Horng Chau, Emre Ertin, Deborah Estrin, Deepak Ganesan, Timothy Hnat,
Syed Monowar Hossain, et al. 2017. Center of Excellence for Mobile Sensor
Data-to-Knowledge (MD2K). IEEE Pervasive Computing 16, 2 (2017), 18–22.

[31] Brian Litt and Zachary Ives. 2011. The International Epilepsy Electrophysiology
Database. In Proceedings of the Fifth International Workshop on Seizure Prediction.

[32] Brian Litt, Greg Worrell, and Zachary G. Ives. [n. d.]. The International Epilepsy
Electrophysiology Portal. www.ieeg.org.

[33] Dionysios Logothetis, Soumyarupa De, and Kenneth Yocum. 2013. Scalable
lineage capture for debugging disc analytics. In Proceedings of the 4th annual
Symposium on Cloud Computing. 17.

[34] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger,
Matthew Jones, Edward A. Lee, Jing Tao, and Yang Zhao. 2006. Scientific workflow
management and the Kepler system. Concurrency and Computation: Practice and
Experience (2006), 1039–1065.

[35] Kiran-Kumar Muniswamy-Reddy, David A. Holland, Uri Braun, and Margo I.
Seltzer. 2006. Provenance-Aware Storage Systems. In USENIX Annual Technical
Conference, General Track. 43–56.

[36] Leonardo Murta, Vanessa Braganholo, Fernando Chirigati, David Koop, and
Juliana Freire. 2014. noWorkflow: capturing and analyzing provenance of scripts.
In International Provenance and Annotation Workshop. Springer, 71–83.

[37] National Center for Biotechnology Information. [n. d.]. GenBank. Available from
www.ncbi.nlm.nih.gov/GenBank/.

[38] Lucila Ohno-Machado, Susanna-Assunta Sansone, George Alter, Ian Fore, Jeffrey
Grethe, Hua Xu, Alejandra Gonzalez-Beltran, Philippe Rocca-Serra, Anupama E
Gururaj, Elizabeth Bell, et al. 2017. Finding useful data across multiple biomedical
data repositories using DataMed. Nature genetics 49, 6 (2017), 816.

[39] T. Oinn, M. Greenwood, M. Addis, N. Alpdemir, J. Ferris, K. Glover, C. Goble, A.
Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. Pocock, M. Senger, R. Stevens, A.
Wipat, and C. Wroe. 2006. Taverna: lessons in creating a workflow environment
for the life sciences. Concurrency and Computation: Practice and Experience 18,
10 (2006), 1067–1100.

[40] Jeff Pasternack and Dan Roth. 2013. Latent credibility analysis. In Proceedings of
the 22nd international conference on World Wide Web. ACM, 1009–1020.

[41] Fernando Perez and Brian E Granger. 2015. Project Jupyter: Computational
narratives as the engine of collaborative data science. Retrieved September 11
(2015), 207.

[42] Tomas Petricek, James Geddes, and Charles Sutton. 2018. Wrattler: Reproducible,
live and polyglot notebooks. In 10th USENIX Workshop on the Theory and Practice
of Provenance (TaPP 2018). USENIX Association.

[43] Rakesh Pimplikar and Sunita Sarawagi. 2012. Answering Table Queries on the
Web using Column Keywords. PVLDB 5, 10 (2012), 908–919.

[44] Lucian Popa, Yannis Velegrakis, Renée J. Miller, Mauricio A. Hernández, and
Ronald Fagin. 2002. Translating Web Data.. In VLDB.

[45] Christopher J. Rossbach, Yuan Yu, Jon Currey, Jean-Philippe Martin, and Dennis
Fetterly. 2013. Dandelion: ACompiler and Runtime for Heterogeneous Systems. In
SOSP. ACM, New York, NY, USA, 49–68. https://doi.org/10.1145/2517349.2522715

[46] SciDB Development Team. 2010. Overview of SciDB. In SIGMOD.
[47] Manolis Stamatogiannakis, Hasanat Kazmi, Hashim Sharif, Remco Vermeulen,

Ashish Gehani, Herbert Bos, and Paul Groth. 2016. Trade-offs in automatic prove-
nance capture. In International Provenance and Annotation Workshop. Springer,
29–41.

[48] Partha Pratim Talukdar, Marie Jacob, Muhammad Salman Mehmood, Koby Cram-
mer, Zachary G. Ives, Fernando Pereira, and Sudipto Guha. 2008. Learning to
Create Data-Integrating Queries. In VLDB.

[49] Wei Wang, Chen Wang, Yongtai Zhu, Baile Shi, Jian Pei, Xifeng Yan, and Jiawei
Han. 2005. Graphminer: a structural pattern-mining system for large disk-based
graph databases and its applications. In SIGMOD. ACM, 879–881.

[50] Eugene Wu, Samuel Madden, and Michael Stonebraker. 2013. SubZero: A fine-
grained lineage system for scientific databases. In ICDE. 865–876. https://doi.
org/10.1109/ICDE.2013.6544881

[51] Zhepeng Yan, Nan Zheng, Zachary Ives, Partha Talukdar, and Cong Yu. 2013.
Actively Soliciting Feedback for Query Answers in Keyword Search-Based Data
Integration. PVLDB (2013).

[52] Yi Zhang, Herodotos Herodotou, and Jun Yang. 2009. RIOT: I/O-efficient numeri-
cal computing without SQL. arXiv preprint arXiv:0909.1766 (2009).

[53] Nan Zheng, Abdussalam Alawini, and Zachary G. Ives. [n. d.]. Fine-Grained
Provenance for ETL and Alignment Tasks. Submitted for publication.

http://www.vldb.org/pvldb/vol9/p216-interlandi.pdf
www.ieeg.org
www.ncbi.nlm.nih.gov/GenBank/
https://doi.org/10.1145/2517349.2522715
https://doi.org/10.1109/ICDE.2013.6544881
https://doi.org/10.1109/ICDE.2013.6544881

	Abstract
	1 Introduction
	2 Dataset Relationship Management
	3 Prototype and Open Challenges
	3.1 ``Lifting'' Procedural Code to Declarative Representations
	3.2 Capturing and Identifying Data Usage Patterns
	3.3 Detecting and Exploiting ``Other'' Data Relationships

	4 Related Work
	5 Conclusions and Future Work
	References

