ARQuery: Hallucinating Analytics over
Real-World Data using Augmented Reality

Codi Burley
Computer Science & Engineering
The Ohio State University
burley.66@osu.edu

ABSTRACT

In addition to the virtual, there is a vast amount of data
present in the real world. Given recent advances in com-
puter vision, augmented reality, and cloud services, we are
faced with a tremendous opportunity to augment the struc-
tured data around end-users with insights. Coinciding with
these trends, the number of data-rich end-user activities is
also rapidly increasing. Thus, it is useful to investigate the
process of data exploration and analysis in augmented and
mixed reality settings. In this paper, we describe ARQuery,
a query platform that utilizes augmented reality to enable
querying over real-world data. We provide an interaction
and visualization grammar that is designed to augment real-
world data, and a performant framework that enables query
exploration in real-time. Our studies show that ARQuery
provides a fluid, low-latency query experience for the end-
user that is significantly faster than traditional approaches.

1. INTRODUCTION

Our lives are increasingly swimming in a deluge of data.
Beyond the data accessible in the virtual world, we are im-
mersed with structured data in the real-world as well: from
paper-printed restaurant menus and nutrition labels, to dig-
ital signage-based flight schedules at airports and bus stops.
Unlike data that we own, real-world data is truly ad-hoc: we
deal with it all the time, but cannot predict exactly when
or how we will need to interact with it. Furthermore, since
the displayed data (paper, or digital) is not inside a virtual
environment that we control; quickly “querying” such data
is typically done manually, e.g., looking for the least calorific
non-allergenic appetizers under $20 or determining the to-
tal expenses per category in a large itemized invoice. While
these can be trivially represented as analytical queries, our
real-life experiences still involve poring through such data
and performing mental calculations.

At the same time, over the past few decades, augmented
reality — a technology to overlay a live view of the physi-
cal world with digital information — has gone from a science

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2019.
9th Biennial Conference on Innovative Data Systems Research (CIDR ‘19)
January 13-16, 2019 , Asilomar, California, USA.

Arnab Nandi
Computer Science & Engineering
The Ohio State University
arnab@cse.osu.edu

fiction concept to a commodity, consumer-grade technology
used by millions [1]. Augmented Reality (AR) has found a
variety of specialized use cases beyond just gaming [3]: ar-
eas such as education [28], medicine [12], and emergency ser-
vices [23] have each enabled a completely new form of digital
interaction using camera-based AR devices. This mode of
interaction is expected to rise sharply due to three comple-
mentary trends: recent advancements in computer vision &
augmented reality research, population-scale availability of
camera-enabled hardware, and affordability of cloud-backed
edge devices.

There have been several impressive improvements in com-
puter vision research [22] recently, to the point where fairly
advanced techniques are now available as consumer-grade
hardware and software, and also reliable building blocks for
other research. This has triggered a wave of high-quality
services (Google Vision, Amazon Rekognition, Clarifai) and
open source models/libraries (Tensorflow, Caffe, OpenCV)
that can be considered commodity. Furthermore, augmented
reality (AR) wearable devices, such as Google Glass, Mi-
crosoft HoloLens, and Magic Leap have become available.
These devices continually capture and process image and
video data and provide pertinent feedback, i.e., augmenta-
tion, through an overlay display. These devices have inspired
and unlocked a variety of “camera-first” interaction modal-
ities, where the camera is often the primary mode of cap-
ture and input — and this paradigm is transferring over to
smartphones and tablets as well. AR applications such as
Snapchat, Google Lens, and Amazon Shopping are bring-
ing a completely new and natural mode of interaction to
consumer-grade smartphones and tablets [14].

1.1 The need for a querying framework in aug-
mented reality

Coinciding with these device trends, the number of data-
rich applications: end-user activities that are backed by
large amounts of data is also rapidly increasing. For exam-
ple, a simple restaurant lookup on Google Search and Google
Maps is now augmented with wait times, popular hours, and
visit duration, aggregated from population-scale user loca-
tion history logs [10]. By considering a user’s AR view as a
queried view on a data store, this data-rich paradigm brings
about a unique opportunity to build compelling querying
experiences for end-users. Just as touchscreen interfaces
triggered a body of research [18, 15] and products [6] in
touch-based querying of structured data, we expect aug-
mented reality to also spur an entirely new body of work
in data analysis and exploration.

INTERACTIVE AUGMENTED LAYER

Interactive QUERYING

Query Session

I

Visual Space .
Encoder "m~ Rendering LN

Gesture
Classifier

User Interface

Table
Extraction

Vision &
Table Tracking -'

REAL-WORLD DATA LAYER

AUGMENTED
RESULTS

v 11 |1]| v

Figure 1: Overall architecture and layers of ARQuery. In this query, a GROUP BY aggregation is performed on
a sheet of paper by swiping right on an attribute, yielding a divergent color coding highlights to represent
groups, and the aggregates presented as an augmented result legend in the bottom right.

In all data-rich settings — whether it is consumer, indus-
trial, enterprise, or scientific audiences — there is tremendous
opportunity to query the real-world structured data around
the user, and augment it with cloud-based data sources.

1.2 Motivating Example and Challenges

Christina is frequent flyer who learns that her United
Airlines flight to Monterey (MRY) was cancelled to bad
weather, and that she has been rebooked for the next day.
Since arriving a day late would mean she would miss her
own keynote talk at CIDR, she decides to purchase a ticket
on a different airline. While she has a bevy of airline apps on
her phone, the changing weather is triggering new delays —
and the most up-to-date information about departing flights
is available in front of her on a large and unwieldy termi-
nal display, sorted by departure time. Despite time being
of the essence, Christina has to manually pore through each
display entry to see if it is a candidate.

Figure 2: Motivating Example: Querying on airport
schedules.

With ARQuery, Christina simply views the airport dis-
play through her iPad’s camera, and tap-holds on MRY
to filter out from her view all flights that do not go to
MRY. Then, she swipes the “Boarding Time” header to
order the remainder flights by boarding time. She iden-
tifies an American Airlines flight boarding in 10 minutes,
and walks over to the airline’s customer desk to make the
purchase. By quickly performing a SELECT * FROM flights
WHERE departing_to=‘Monterey’ ORDER BY boarding_time
query in augmented reality, Christina is able to successfully

make it to CIDR to deliver her keynote.

ARQuery enables any source of structured data — either
digital or paper — to be queried using a commodity device
within seconds. All alternatives such as apps and manual
interactions would take much longer, and in this case — pos-
sibly lead to unwanted outcomes such as missed flights. By
providing a fast, real-time interaction experience, the user
is provided an experience akin to that of “hallucinating” a
visual data exploration session in the real-world. While this
example used ARQuery through a tablet, we envision head-
sets such as Microsoft Hololens to become consumer viable
over time, allowing a headset-based implementation of AR-
Query to be used in general purpose data exploration as
well.

As evidenced by the popularity of AR-based applications
such as Pokemon Go, there is widespread availability of AR-
capable hardware and user interest in this new mode of inter-
action. Similarly, optical character recognition has reached
unprecedented quality lately, and is available in consumer
smartphone apps. However, from a querying standpoint,
several core challenges exist, which we address with AR-
Query. First, unlike objects on a screen, data in the real-
world(e.g., paper) persists throughout the query session,
hence our system needs to augment existing data instead
of replacing it. Second, all queries are performed using di-
rect manipulation of real-world data, meaning that a visual
grammar needs to be designed for interaction with such data
and augmentations. Finally, from a performance standpoint,
all interactions need to be at a perceptibly instantaneous
framerate, necessitating fast table inference, querying, and
result-rendering across the camera’s video stream.

1.3 Contributions

Based on these challenges and opportunities, we present
ARQuery, a platform for querying in augmented reality. It
provides

e a data model with result spaces fit for visually repre-
senting result sets in AR,

e an interaction and visualization grammar to query struc-
tured data in the real-world using a series of gestures,
and

e a performant framework that enables such interactions
over datasets in real time.

Our studies show that ARQuery fares extremely well both
in terms of real-time performance, and allowing users to
perform queries 3— 10x faster than traditional approaches.

2. RELATED WORK

ARQuery builds upon a rich body of work in using di-
rect manipulation to perform ad-hoc querying of structured
data, ranging from the mouse-based Polaris [21] (available
commercially as Tableau) to pen, gesture, or touch-based
systems, such as DBTouch [15], Kinetica [20], Vizdom [8],
and GestureQuery [18]. While cloud-backed exploration of
augmented reality has been quite popular with exploring
physical environments through games such as Pokemon Go
or shopping interactions [24], our work focuses on structured
data in real-world settings, instead of just physical objects.
From a real-world data perspective, our work aligns with
Shreddr [7], which investigated the digitization and manage-
ment of paper-based data. It should be noted that our work
considers digitization an orthogonal black-box dependency
—recent advances in this avenue of computer vision [11] have
drastically improved in terms of accuracy and performance
and are used in everyday life [9], to the point where we
have been successfully able to use commodity OCR APIs
with near-perfect outcomes. From an interaction grammar
perspective, ARQuery maps interactions to the query oper-
ations in relational algebra, reminiscent of VizQL [13] and
GestureDB [19], but is limited by augmentation: instead of
showing a sequence of visual query transformations [17], all
query results are represented as “hallucination-style” anno-
tations over real-world data by moving into a visual encoding
over relations.

3. DATA MODEL AND RESULT SPACES

Filter
s

e,
Oy
v
@)

S
v/

Presentation Model

—]
ooedg buipooug

'm4 > |

World Capture v

aoeds Buipunoin

Figure 3: An overview of the data model used by
ARQuery, where multiple result spaces are used to
visually encode result sets in AR.

ARQuery works on data that is present in the real-world
in a tabular form. We use the SQL data model in our in-
terpretation of tabular data. Our system currently supports
only read queries (writing to the real-world is considered fu-
ture work). Similar to [17], we model our query session as a
series of operations that successively modify the result set.

The space of queries we cover is defined by all possible com-
positions of the operations we allow: selection, projection,
group, aggregate and ordering. Binary operators such as
union and join are not yet supported in the system, but can
be approximated by concatenating or juxtaposing multiple
real-world tables (see Future Work section for a discussion).
We do, however, present a method for encoding joins in AR
using our visual querying grammar (see section 5.3). Note
that this model alone does not provide a means for visually
representing query results to the user in AR. To address this
problem we introduce two new spaces, the encoding space
and the grounding space. These provide visual representa-
tions of result sets from the query space, where the under-
lying relational data model is contained. Ultimately, these
additions allow us to convey query results to the user in a
real time AR environment. The encoding space uses the pre-
sentation model obtained from the real world and queries on
the underlying data to produce visual artifacts that encode
result sets. Results from the encoding space are transformed
onto the real world in what we will call the grounding space.
These grounded visual artifacts serve as the final result set
representation in ARQuery. This mapping between spaces
is outlined in Figure 3. These new spaces, the necessity for
them, and their interactions are described in more detail in
the following sections.

3.1 The Encoding Space

A core challenge with mixed reality environments is the
presence of reality itself — unlike completely virtual environ-
ments, it is difficult to erase objects from the real-world.
For example, sorting a table in the real-world would imply
possibly rearranging all its cells. Since this is not possible,
we utilize color as a way to encode order position. Thus, all
changes to the result set need to be encoded in an additive
manner to the original real-world data table. These additive
encodings are often not possible in the relational space (as
shown with the sorting example), so it is necessary to move
to an encoding space for appropriate representations.

The encoding space is parameterized by a mapping from
the data model to a presentation model and encoding func-
tions. The presentation model we use for encoding onto a
real world table is defined by the components that make up
a table and their relative positions in a two dimensional co-
ordinate system defined by the bounding box of the table.
The components that can be referenced are individual cells,
rows, columns, and headers of columns. They are stored in
a 2-D array that is oriented as the query session table is in
reality, allowing for easy access.

The encoding functions are what produce the actual visual
artifacts, utilizing the mapping to the presentation model
and various other parameters. These visual artifacts require
the presentation model’s relative coordinate system for po-
sitioning, but are not limited to the dimension of it. For ex-
ample, we could encode order-by attributes with the height
of 3-D histogram bars that are placed on top of table rows
from the presentation model. These 3-D objects could be
anchored in the real world in the grounding space. So even
though the histograms are placed relatively in a 2-D coordi-
nate system, they go beyond the presentation model in the
third dimension. Observe that the ability to define new en-
codings (as we just did) without redefining the data model
is a major benefit allowed by utilizing the encoding space.
New encodings can be added or swapped in a modular fash-

ion by changing the encoding functions associated with a
certain query operation.

In ARQuery a set of encoding functions and their cor-
responding parameters are generated for each query session
operation. The results are rendered into the encoding space,
and then grounded into reality in the grounding space. The
encoding functions are described in more detail in the sec-
tion on our visual querying grammar.

3.2 The Grounding Space

The encoding space provides static visual representations
of the result set, but is in no way anchored in reality. The
grounding space takes visual artifacts and anchors them in
some dynamic coordinate system. In ARQuery, the query
session table is tracked through the camera feed, meaning
that the location of table components is changing as they
move in the camera. Anchoring the visual encodings from
the encoding space onto the moving table components is
what defines the responsibility of the grounding space in
our case. Note that because the visual encodings from the
encoding space are produced according to a mapping to a
presentation model, the grounding space must have an an-
chor for each component of the presentation model in order
to define a complete mapping from visual artifacts to loca-
tions in the grounding space.

While in ARQuery we use visual tracking in order to an-
chor encodings in the camera feed, a more complicated map-
ping to anchors could be used. If a world tracking module
was employed then encodings could be anchored on to the
world space for persistence even when the table is not within
the camera feed. The modularity of the grounding space
definition allows for a wide range of such mappings.

4. INTERACTION MODEL

As described in our data model section, we model query
sessions as a series of operations that successively modify
the result set — namely selection, projection, groupby/ag-
gregate, and ordering. Each operation has its parameters
and an encoding function associated with it. Following an
operation, the results are visually encoded and anchored in
AR until another operation occurs, changing the result set
and its encoding.

Gestural Query Specification: The query session operations
are triggered by gestures on the encoded result set in AR. We
adopt a gestural query specification that is inspired heavily
on concepts from GestureDB [18], and defines the mapping
from gestures to result set operations.

Mapping Gestures in AR to the Query Space: In order to
map from gestures that occur in AR to operations in the
query space we map from the grounding space to the query
space. When creating visual encodings from operations on
the underlying data, we map from the query space, to the
encoding space, to the grounding space. When obtaining
operations from gestures, we go in the opposite direction
with the following process:

1. A gesture G occurs in AR that involves some sequence
of key points K in the grounding space’s target coor-
dinate system.

2. K is mapped to a sequence P that corresponds to the
presentation model components that occupy the points
defined in K.

3. Using the inverse data model to presentation model
mapping, P is mapped to query space operation pa-
rameters p, for an operation that is determined using
rules of the form (G,p,) = o, where o is a query
session operation. The antecedent (G, p,) corresponds
with a gesture in the gestural query specification.

This process allows us to effectively obtain query session
operations from gestures in AR, and defines a model for
interacting with structured data in AR using gestures.

S. A VISUAL QUERYING GRAMMAR FOR

SELECT * FROM Products SELECT "Product Name" FROM Products WHERE Price<15
Product Name | Supplier ID Unit Price [Product Name | supplier ID Unit Price
Chais 1 0 boxes x 20 bag 18
Ikura 4 12 - 200 ml jars 31
Chang 1 24 - 12 0z bottles 19
Syrup 1 12 - 550 ml bottles 10 ‘ Syrup
Kobe Niku 4 18- 500 g pkgs. o7
Konbu 6 2 kg box 6 ‘ Konbu
Tofu 6 40 - 100 g pkgs, 2325
Geitost 15 5009 25 ‘ Geitost

SELECT * FROM Products ORDER BY Price SELECT * FROM Products GROUP BY "Supplier ID"

Product Name | Supplier ID

[ProductName [suppliertd | unit | Price |

Chais 1 0 boxes x 20 bag 18
L Lo |2 zoomies | st]
Chang 1 24- 12 0z bottles 19
Syrup 1 [12 - 50 mi botties 10
Kobe Niku 18- 500 g pkgs.
[keow 1o | 2igbor | o || | kowu | 2hgbox |
Tofu 40- 100 g pkgs. 2325
Geitost 15 5009 25

AVG(Price)
1475 [s s
25 64

Figure 4: Query operations in ARQuery. Tapping
and holding a value filters all rows that contain that
value, excluding all others using a visual mask (se-
lection). Tapping and holding a column header ex-
cludes the column (projection). Swiping up or down
on a column header sorts the column, yielding a se-
quential color gradient. Swiping right on a column
header performs an aggregation, yielding a diver-
gent color annotation and a virtual result pane.

We construct an interactive visual querying grammar, build-
ing on previous work [18, 25]. From a query experience
standpoint, a user is presented with an interface in which
they view a table is present on ARQuery’s video feed. Our
system detects the table and extracts the query space data
representation of the table schema, along with the corre-
sponding presentation model. Following the extraction, the
tracking of the table at the cell level commences and is
maintained in the grounding space. Once the table is being
tracked, the user can perform a gesture on the table in the
video feed in order to carry out a query. The query is then
executed in the query space, the result of which is stored as
a materialized view. Using the query operation, the result
set, and the presentation model, we then derive the visual
encoding for the results using encoding functions. Once the
visual encoding has been anchored in the grounding space,
we render results in to reality (the live camera feed).

5.1 Visual Encoding for Real-world Data: Aug-
mented Highlights and Virtual Results

As described earlier, mixed reality environments impose
constraints that are not present in virtual environments, and
require that result set encodings are additive. To do this,
we devise the concept of two classes of additive visual en-
coding elements, augmented highlights and virtual results, as
shown in Figure 1. These visual encodings maintain a strict
connection to individual cells in the original table’s presen-
tation model in order to be tracked and rendered correctly
in realtime.

Augmented highlights utilize visual cues (occlusion masks,
colors, text annotations) to encode information. These are
used above existing data elements in the real-world data ta-
ble, in order to modify the meaning of these elements.

Virtual results on the other hand are “synthetic” visual
artifacts that do not fit the shape or schema of the real-world
data table. In Figure 5, the first four columns (orange/red),
and the last 3 rows (masked grey) are augmented highlights,
representing grouping and filtering respectively. The last
column (AVG(Price)) is a virtual result, which does not
exist in the real-world table, and “floats” as a virtual element
next to it. Note that virtual results can also be highlighted,
as depicted with the green ORDER BY gradient coloring.

SELECT * FROM Products GROUP BY "Supplier ID" HAVING AVG(Price) > 15

Product Name Supplier ID Unit Price

| wa |4]| coomps | s |

Kobe Niku 18 - 500 g pkgs.

Figure 5: Example of augmented highlights (first
4 columns, last 3 masked rows) and virtual re-
sults (last column). GROUP BY, HAVING, and
ORDER BY queries are represented in our encod-
ing using augmented highlights and virtual results.

5.2 Encoding Functions

The encoding functions produce the visual encoding el-
ements in the coordinate space defined by a presentation
model. Each of the functions is associated with a set of
query session operations, and uses its associated operation
along with the result set from the query space in order to
produce the visual encoding. The encoding functions that
we use in ARQuery are described below. While we found
these functions to work well in our studies, it is important
to note that a different set of encoding function may be
used to satisfy differing requirements and produce another
encoding.

exclude(rowIndez, columnlndex) - Excludes attributes, tu-
ples, or individual cells from the table. This can be used
to exclude tuples for filtering, exclude attributes for projec-
tion, or to exclude individual cells within a tuple to denote
a null value. When excluding a full row, only the rowIndex
provided. Excluding a full column is done similarly with
columnindex. Exclusion of a table component is represented
visually with a white occlusion over the component.

group(rows) - Groups the specified rows within the relation
defined by the query session table. Note that the group of a
row is a one-to-one relationship, so a row cannot be grouped
twice. Visually, grouping is done through the use of distinct
color hues.

appendRow(tuple) - Appends tuple as a row to the table.
The tuple parameter must fit into the schema of the table it
is being appended to. Appended rows are visually encoded
using synthetic rows that are drawn on the bottom edge of
the table, and thus they are virtual results.

appendColumn (attributeName, attributeValues) - Appends
the attributeValues sequence to the table in a column with
a header defined by attributeName. The number of values
in attributeValues must match the number of tuples in the
table that is being appended to. Appended columns are
encoded similarly to appended rows, also as virtual results.

associate(group Values, valueType) - Associates a value with
each group through the groupValues parameter, a mapping
from each group to a value. The wvalueType parameter de-
scribes the values that are being associated with groups
(AVG(Value) for example). Association is used in order to
encode aggregate results. Legends are used in order to vi-
sually encode the values that are associated with a group,
where each group is identified by its color and the associated
value is displayed next to the color. The valueType descrip-
tor is used as a legend header to give context to legend
values. Figure 4 shows an example legend for associating
AVG(Price) values.

appendAggregate(group Values, value Type) - This is a special
case of appendColumn, and is defined for convenience in rep-
resenting aggregate results. This function Appends group-
Values to the table in a column defined by the attribute
value Type. For each row in the table, its value for the value-
Type attribute is determined by its group and its associated
value in the group Values mapping. By appending a column
for aggregate results, you can perform the equivalent of a
HAVING query by filtering on the appended column. Sort-
ing by the aggregate results can also be done by utilizing an
appended column, as demonstrated in Figure 5.

order(column) - Order is defined for three cases. In our def-
inition we use the term synthetic to describe when the type
of column is a virtual result (a column that was added to the
end of the table). If the query session table is not grouped
then all rows in the table are ordered globally. When the
table is grouped and column does not represent an aggregate
value, the rows in the table are ordered within their respec-
tive groups according to attribute defined by column. When
column is synthetic and represents an aggregate value, the
rows are ordered within the table globally according to the
attribute defined by column. Note that synthetic rows are
used to represent aggregate results for separate groups so by
ordering globally we allow for ordering based on aggregate
results. Visually, ordering is represented using the notion of
color value from the HSV color model.

5.3 Encoding Joins

We now utilize the grammar above to define a visual en-
coding for join queries. In ARQuery, the table for a given
query session could be joined with another relational table
to produce a new result set. While not yet implemented, we
define an encoding for joins for completeness.

In keeping with the additivity in AR constraint we defined
previously, we construct all joins as left outer joins: R4 <
R;, where R, is the current query session’s table and R;
is the table being joined with. This operation produces a
resultset that contains all matching tuples without excluding
tuples from the left operand of the join, which is the query
session table in our case. Thus left outer joins are inherently
additive on the query session table, and fit naturally into our
additive visual encoding. Note that we also could encode
other joins (inner joins, right outer joins, etc.) with the
addition of extra exclusions and row and column appending,
but the overuse of these operations clutters the context of
the table in reality. For these reasons, we adopt left outer
joins.

Consider the result of a left outer join R, = Rq Dags Rj,
where a € Attributes(R,), b € Attributes(R;), and a6b is
the join predicate. For any tuple t; € Ry, define:

matches(tq, z, y, 0) = {t» € Ry : z(tq) 0 y(t-)} (1)

which is the set of matches for a tuple ¢, in the query session
table using the join predicate x 6 y. Additionally, define:

left TuplesWithSameAttribute(ty,) = or=s(1,)(Rq) (2)

which is the set of tuples in the query session table with the
same value for attribute = as the tuple ¢,. In order to derive
a visual encoding for joins, we consider three important cases
for matches(tq, z,y,0).

For some join between R, and R, consider a tuple t; € Rq
and a join predicate x 0 y. Let m be the result of equation 1
with parameters tq, x, y, and theta. Then let [be the result
of equation 2 with parameters ¢, and x.

Case: 0 < |m| < |l|. In this case, we can associate every
tuple in ! from the query session table with a tuple from
the result of the join under the predicate = 6y, with no left-
overs. By using the appendColumn encoding function for
each attribute gained in the join that was not originally in
the query session table, we capture all the information in m.
Observe that this case can be used to encode joins with the
following data relationships: 1 to 1, many to 1.

Case: |m| = 0. In this case, there is not a matching tuple
for t4 in the result of the join under the predicate x6y.
Because we use left outer join, we must encode this lack of a
match as a null value. In order to encode the null values that
result from this join, we use the exclude encoding function
on cells in the columns we appended for the join for each
tuple that cannot be associated with a match. Using this
case in combination with the first, we can encode joins with
1 to 0 or 1 relationships, and many to 0 or 1 relationships.

Case: |m| > |l|. In this case, we can associate every tuple
in [from the query session table with a different tuple from
the result of the join under the predicate x 60y, but there
are leftover matching tuples from the join result. We han-
dle the tuples that can be associated with a matching tuple
(the tuples that aren’t leftover) the same way we did in the
first case. In order to encode the additional matches, we use
the appendRow encoding function with these tuples, which
have attributes contained in RqUR;. Observe that this case
enables the encoding of 1 to many relationships, and when
combined with the second and first approach we can encode
1 to 0 or many relationships as well.

Considering these three cases for every tuple in a query ses-

sion table, We define an encoding for left outer #-joins. Ad-
ditionally, vlookup queries can be encoded and we model
them as a left outer join composed with a filter and a pro-
jection, producing one value. The value is added as a virtual
result over top of the cell that the vlookup query was pred-
icated on.

Join Specification: We consider the problem of join speci-
fication a separate problem, which is domain specific. For
joining a query session table with a table that is within close
proximity to it in the grounding space, The query model for
GestureDB [18] could be adapted, allowing for gesture based
join specification. If, however, a join of the query session
table with a table in some back-end data store is desired,
another form of specification would be required. This would
require a method for specifying which table you would like
to join with in the data store, and a method for specifying
the predicate to join the tables with.

5.4 Going Beyond Tables

The implementation of ARQuery that we have built op-
erates on real-world tables that inherently fit in to the re-
lational model. While it may seem that this limits the use
of ARQuery to a small subset of structured data, it should
be noted that non-tabular layouts are well within the realm
of possibilities for ARQuery. Extending ARQuery to other
layouts is equivalent to changing presentation models in the
visual querying grammar we have defined.

Consider extending ARQuery for use with restaurant menus.
The menu has sections for different food types (entrees, ap-
petizers, etc.), and each section has food items, along with
prices; this is our presentation model. In order to augment
this data according to relational operations, a mapping from
presentation model components to data model components
is required, which will allow us to represent the menu in our
relational data space. The inverse of this mapping is used
to produce the visual encodings of the result sets. With the
addition of a query specification (in any modality, be it ges-
tural, speech, etc.), we have everything we need in order to
query the structured data that is the restaurant menu.

6. SYSTEM DESIGN

Figure 1 gives an overview of the ARQuery system, the
individual components are described as follows. ARQuery
taps into the device’s camera video feed, and each frame
is processed by our computer vision module to detect, seg-
ment, and filter tables. These tables are then OCR’ed and
extracted into a typed 2-D array, which facilitates correct
ORDER BY and GROUP BY operations. For extraction at the
computer vision level, by detecting parallel lines, straight
lines, and co-aligned text groups, we use a simple table de-
tection method that makes the assumption that the table is
the maximally connected component in the area determined
to contain a table. This step is made performant by tracking
objects across frames, minimizing the number of times the
extraction pipeline is called.

Table Extraction: The transcribed 2-D array is then sent to
the table extraction module, which is similar to efforts such
as DeepDive [27] and Fonduer [26]. Due to the nature of our
gestural query specification, we make the assumption that a
header row exists, and the header row text and the contents
of the table are then used to determine the schema of the
table at hand. ARQuery further assumes a “row major”

visual layout, and uses this assumption to convert the typed
2-dimensional array provided into a SQL table.

Table Tracking and Rendering: A critical component of aug-
mented reality is to track the rendered augmented layer to
the camera feed in realtime. This is done by finding the
contours of the table cells, and then subselecting all cor-
ner points of the table in an optical flow tracking using the
Lucas-Kanade method. This keeps the grounding space rep-
resentations up to date and allows the user to continuously
move the camera view, but still have the visual encoding of
the current query session be correctly grounded on to the
real-world data.

Interactive Query Session: Due to the small size of the data
in view, the interactive query session is maintained as a se-
quence of a configurable number of materialized views. Each
operation is performed as a CREATE MATERIALIZED VIEW ¢;41
AS SELECT...Qi+1(¢;). This allows users to use two fin-
gers to swipe outside the table view, moving back and forth
through the query session by performing a succession of
“undo” and “redo” steps.

7. EXPERIMENTAL EVALUATION

Experimental Setup: In order to evaluate the ARQuery sys-
tem, we compared it against two typical methods of ana-
lyzing real-world tabular data: using Microsoft Excel, and
performing the analysis manually (i.e., by hand, without
any digital tools). We chose Microsoft Excel since it is the
most popular querying interface that supports filter, sort,
and group operations (grouping performed using pivot), and
is the typical tool to use in ad-hoc settings. For these oper-
ations, database frontends typically use interface paradigms
similar to Excel (or directly connect to Excel), hence mak-
ing Excel a good reference for evaluation. A within-subjects
design was employed for this experiment, which is appropri-
ate as the three methods that were being compared are dis-
tinguishable and carryover effects should be minimal. Our
studies were conducted with 15 users recruited from the
Columbus area with median age of 23, 8 of which were fe-
males and 7 were males, a sample size consistent with prior
efforts in evaluating interactive data systems [16]. We used
our i0S implementation of ARQuery for user studies, on an
Apple iPad Pro 10.5” device. We used a synthetic table of
student data with seven columns and seven rows (plus an
additional attributes header row) for testing. To stay con-
sistent amongst users, each was given the same tutorial for
each tool that was used in testing (Excel and ARQuery).
In addition, each user was given a chance to get familiar
using these tools before the study. We consider biases and
confounding factors that are common when evaluating in-
teractive data systems: learning, interference and fatigue
[16]. By altering the order in which each system was evalu-
ated for each user, we counterbalance carryover effects and
reduce learning and interference effects. These effects were
reduced further by providing a new table with shuffled rows
for each query, and randomizing the order of the queries the
users were asked to perform. To handle fatigue, the users
were offered breaks between tasks.

For our tests, the user flow for ARQuery is as follows:
the user holds an iPad in camera view in front of a printed
sheet of paper with our dataset (Figure 1). A table is de-
tected automatically and the table inference stage is run,
deciphering the “shape” of the table. After this, the user

performs their query session, issuing queries over the data
by using the gestures described in the previous sections on
the iPad touchscreen. The user ends their session once the
query tasks are completed.

7.1 Performance

We were able to achieve perceptibly instantaneous [4] per-
formance by providing immediate visual feedback well within
100ms. Upon testing over the user query sessions, we ob-
served that ARQuery runs consistently at least 15fps (67ms
per frame) while table tracking, which is a continuous op-
eration for the lifetime of the query session. We found this
performance to scale well for increased data size, we found
the frame rates to stay over 15fps even when we doubled
the cells to a 12x10 table. At the beginning of the session,
the table inference stage (when ARQuery gains an under-
standing of the schema and data in the camera view) is
run, which takes 68ms. During the same stage, a one-time
OCR step (using the Tesseract library) took an average of
1.3s; putting the total initial setup time at under 2 seconds.
The system-facing latencies for gesture detection and query
specification, which includes the updating of the model that
results from the specified queries, are negligible (under 1ms
per frame).

7.2 Task Completion Time: Comparing with
other methods

We measured the time it takes users to perform queries
with three different methods on three different classes of
queries. The three classes of queries tested were Filter, Sort
and Group By/Aggregate queries. The users were given three
tasks in the form of queries to perform using the three dif-
fering mediums. Queries were provided in natural language
in both written and spoken form. Time was counted after
the query has been read by the user and read out loud, and
is stopped when the user indicates they have obtained the
answer (i.e., says “Done”).

This metric (completion time) serves as our objective mea-
sure of efficacy. In our experiment, we define completion
time as the time it takes a user to go from a resting state to
obtaining the answer to a query (for ARQuery, this includes
the table inference and other system-facing times listed in
the previous paragraph). For each class of query, users were
read out loud and shown a query as an English sentence,
and timed on how long it took for them to return the an-
swer to the query. It should be noted that for Excel, the
spreadsheets were already populated: we do not consider
the spreadsheet input time into our completion times (Excel
would be shown to be even slower if that were considered).

As we can see in Figure 6, when comparing ARQuery to
the other two systems we found that ARQuery has a lower
average completion time as well as a lower variance, denot-
ing a faster and more consistent user experience, especially
for group/aggregate queries. Furthermore, variances typi-
cally increase over the three query classes for the 3 different
methods, but are quite small for ARQuery across the board.
In order to show the statistical significance of the differences
between ARQuery and other systems, we performed 1-tailed
t-tests and confirmed that users perform the queries signif-
icantly faster with ARQuery than the with the other two
methods with all significance levels (P-values) under 0.05.

>
[24]
Q
=]
° 90.0
(U]
€
[}
1%]

ARQuery

m Excel

o] H Manual
2 15.8 anua
=

1 2 4 8 16 32 64 128
Completion Time, log(s)

Figure 6: Average completion type for three classes
of queries performed with different methods. Com-
pletion time for ARQuery was significantly faster
than that of the other two methods.

7.3 Insights

ARQuery’s average completion time for all queries tested (Fil-

ter, Sort, and Group/Aggregate queries) was lower (ie., a
faster querying experience) and had less variance (i.e., a
more consistent querying experience) when compared to other
the other two query methods (with no tools a.k.a. manual,
or with Excel). We observed there to be some variance in
completion times across query classes, which correlates with
the complexity of the interaction involved: sort queries were
the fastest to perform, followed by filter, followed by group
by/aggregate. This ordering is consistent with the other
methods, with the exception of filter in manual (no tool),
which reflects the human ability to quickly find things by
browsing. While it seems at first that performing filter and
sort queries by hand (manually) might be quicker than us-
ing ARQuery, our study results show otherwise. We expect
this speedup to increase as the dataset gets larger and more
complex — while ARQuery’s times are expected to remain
relatively constant or scale sub-linearly, the human cognitive
costs [2] towards grappling with large and complex data are
known to not scale well. From an ingestion standpoint prior
to querying, it should be noted that while we included table
inference times (less than 2s) in ARQuery’s user completion
times, time taken to populate the Excel spreadsheets was not
factored in. Doing this would have found Excel to be even
slower: we estimated (using the KLM model [5] and man-
ual tests) that data input would have taken approximately
97 seconds for the data used in our study. Another subjec-
tive insight gathered from the user studies was that users
were hesitant about their answers when performing manual
calculations, and unsure if they had made mistakes. Thus,
ARQuery (when used through a touchscreen, or through a
headset) has the power to not only expedite user queries,
but also to empower them with confidence and reduce pos-
sible human error. Overall, we find ARQuery to be perfor-
mant for typical datasets, and it the fastest way to perform
basic analytical queries over real-world data. Further, we
observe that users feel more confident answering questions
when ARQuery is enabled.

7.4 Future Evaluation

In the future we hope to test our hypothesis that task
completion time for ARQuery grows sub-linearly with in-
creasing data size. Additionally, we would like to consider
common quantitative metrics such as usability and learn-

ability. These qualitative measures could help to provide
insight in to the perception of ARQuery and how it com-
pares to similar systems that do not utilize augmented re-
ality. Further, our observation of the increased confidence
while using ARQuery warrants further investigation, bring-
ing about the possibility of exploring a new metric for the
evaluation of interactive data systems.

8. CONCLUSION AND FUTURE WORK

Performing ad-hoc analytical queries over real-world data
— either in paper or digital form — is challenging. With the
recent advances in modern computer vision, and with the
pervasive availability of camera-enabled devices, we look to-
wards using augmented reality as a popular way to query the
real world. By translating query results into visual encod-
ings, and then grounding them in reality, the user is able
to “hallucinate” analytical query sessions and answer fil-
ter, sort, and aggregation queries faster and more effectively
than performing the action by hand, or with a spreadsheet-
based query interface.

While ARQuery is able to perform well with typical datasets
and traditional queries, we foresee several exciting avenues of
future work. ARQuery currently handles unary operations;
performing truly binary operations such as joins can be
added on by enabling ARQuery on multiple juxtaposed ob-
jects (e.g., holding a calorie table next to a restaurant menu),
similar to the gesture-driven action in GestureDB [18], which
has been shown to be easy-to-use for non-expert users. Fur-
ther, ARQuery only supports the relational model — being
able to add support for nested relational, hierarchical, and
other data models are straightforward: this would entail
creating a polygon-to-data inference mechanism and an in-
teraction mapping for each data model. Finally, from a visu-
alization standpoint, supporting 2-D and 3-D visualizations
are a trivial next step (while histograms and pie charts are
already supported in ARQuery, an interaction grammar or
heuristic needs to be articulated about which visualization to
generate for each column — visualization recommendation is
itself an orthogonal and separate area of research). Finally,
we are building support for a spatial mode into ARQuery,
allowing users to map result visualizations onto real-world
2-dimensional and 3-dimensional spaces, allowing for immer-
sive, context-specific analytics.

Acknowledgment: This material is based upon work sup-
ported by the National Science Foundation under Grant
Nos. 1IS-1527779 and CAREER I1S-1453582.

9. REFERENCES

[1] R. Azuma, Y. Baillot, R. Behringer, S. Feiner,

S. Julier, and B. MacIntyre. Recent Advances in
Augmented Reality. IEEE CGEA, 2001.

[2] J. Baker, D. Jones, and J. Burkman. Using Visual
Representations of Data to Enhance Sensemaking in
Data Exploration Tasks. JAILS, 2009.

[3] J. Bernardes, R. Tori, R. Nakamura, D. Calife, and
A. Tomoyose. Augmented Reality Games. Extending
FExperiences, 2008.

[4] S. K. Card. The Psychology of Human-Computer
Interaction. CRC Press, 2017.

[5] S. K. Card, T. P. Moran, and A. Newell. The
Keystroke-level Model for User Performance Time

with Interactive Systems. CACM, 1980.

C. Chabot, C. Stolte, and P. Hanrahan. Tableau
Software. 2003.

K. Chen, A. Kannan, Y. Yano, J. M. Hellerstein, and
T. S. Parikh. Shreddr: Pipelined Paper Digitization
for Low-resource Organizations. ACM DEV, 2012.

A. Crotty, A. Galakatos, E. Zgraggen, C. Binnig, and
T. Kraska. Vizdom: Interactive Analytics through Pen
and Touch. VLDB, 2015.

D. W. Deaton and R. G. Gabriel. Check Reader
Method and System for Reading Check MICR Code,
1993. US Patent 5,237,620.

Q. Dong. Skip the Line: Restaurant Wait Times on
Search and Maps. Google Blog, 2017.

K.-S. Fu and J. Mui. A Survey on Image
Segmentation. Pattern Recognition, 1981.

H. Fuchs, M. A. Livingston, R. Raskar, K. Keller,

J. R. Crawford, P. Rademacher, S. H. Drake, and

A. A. Meyer. Augmented Reality Visualization for
Laparoscopic Surgery. MICCAI, 1998.

P. Hanrahan. VizQL: A Language for Query, Analysis
and Visualization. SIGMOD, 2006.

A. Henrysson and M. Ollila. Umar: Ubiquitous Mobile
Augmented Reality. MUM, 2004.

S. Idreos and E. Liarou. dbTouch: Analytics at your
Fingertips. CIDR, 2013.

L. Jiang, P. Rahman, and A. Nandi. Evaluating
Interactive Data Systems: Workloads, Metrics, and
Guidelines. SIGMOD, 2018.

M. Khan, L. Xu, A. Nandi, and J. M. Hellerstein.
Data Tweening: Incremental Visualization of Data

Transforms. VLDB, 2017.

A. Nandi. Querying Without Keyboards. CIDR, 2013.
A. Nandi, L. Jiang, and M. Mandel. Gestural Query
Specification. VLDB, 2013.

J. M. Rzeszotarski and A. Kittur. Kinetica:
Naturalistic Multi-touch Data Visualization. SIGCHI,
2014.

C. Stolte, D. Tang, and P. Hanrahan. Polaris: A
System for Query, Analysis, and Visualization of
Multidimensional Relational Databases. TVCG, 2002.
R. Szeliski. Computer Vision: Algorithms and
Applications. 2010.

G. R. Vesto. Augmented Reality Enhanced Triage
Systems and Methods for Emergency Medical
Services, 2011. US Patent App. 13/204,524.

C. Wang, Y. Feng, Q. Guo, Z. Li, K. Liu, Z. Tang,
A. K. Tung, L. Wu, and Y. Zheng. ARShop: a
Cloud-based Augmented Reality System for Shopping.
VLDB, 2017.

H. Wickham. A Layered Grammar of Graphics.
Computational & Graphical Statistics, 2010.

S. Wu, L. Hsiao, X. Cheng, B. Hancock,

T. Rekatsinas, P. Levis, and C. Ré. Fonduer:
Knowledge Base Construction from Richly Formatted
Data. SIGMOD, 2018.

C. Zhang. DeepDive: a Data Management System for
Automatic Knowledge Base Construction. Madison,
Wisconsin: University of Wisconsin-Madison, 2015.
E. Zhu, A. Hadadgar, I. Masiello, and N. Zary.

Augmented Reality in Healthcare Education: An
Integrative Review. PeerJ, 2014.

