
Making DBMSes Dependency-Aware

George Chernishev, JetBrains Research, Information Syst. Eng. Lab., chernishev@gmail.com

Recently, discovery of functional (both exact and approx-
imate), conditional, inclusion, and other types of dependen-
cies has experienced a surge of interest [2–4]. Among others,
the Metanome project [1] offers a plethora of high perfor-
mance algorithms for mining all kinds of dependencies.

Up until now, mined dependencies have existed as rel-
atively passive database objects. Functional dependencies
(FDs) have been used for data cleaning and analysis, as well
as in several proposals for query optimization. However,
even they still are largely external objects and DBMSes are
mostly unaware of them.

Our idea is to “attach” dependencies to their respective
table and allow the user to query them and to use them for
querying data, thus making the DBMS dependency-aware.
Effectively, this will include:

1 an ability to query dependencies contained in a table;

2 an ability to use filtering conditions using dependencies
while querying the data itself (in the SELECT clause);

3 an ability to pre-mine and store dependencies.

The goal is to provide the user with in-database analysis
tools that employ various dependency concepts. It will al-
low users to discover regularities in data, that in turn will
lead to generation of hypotheses and domain-specific con-
clusions. Such analysis would be useful for business and sci-
entific applications (e.g., astronomy, bioinformatics) where
data is represented via wide tables.

Note that here we do not specify which types of depen-
dencies should be used. Intuitively, one may say that exact
and approximate FDs should be the first candidates for im-
plementation. In reality, this depends on the domain area.
For example, the biologists we have interviewed were more
interested in differential and conditional dependencies.

1 allows to easily navigate a collection of mined depen-
dencies. Despite the fact that usually only minimal, non-
trivial dependencies are of interest to users, it is still a prob-
lem to present them all for analysis: a table featuring sev-
eral dozens of attributes may have millions of dependencies.
State-of-the-art approaches output FDs either as a plain list
or using simple visualization techniques [1], which are not
suitable even for medium-sized tables. Therefore, a special
language which will allow to declaratively query a collection
of FDs is needed.

Some examples of user queries: “for a given table, output
all FDs that involve a given attribute”, “for a given table and
a given attribute, output all FDs that functionally determine
it”.

2 allows to perform in-depth analysis of data while em-
ploying various dependency-related predicates. For exam-

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2019.
9th Biennial Conference on Innovative Data Systems Research (CIDR ‘19)
January 13-16, 2019 , Asilomar, California, USA.

ple, an analyst may be interested in such queries as: “find
all rows which prevent a given functional dependency from
holding” or “project all attributes that functionally deter-
mine a specified attribute”.

3 is motivated by the fact that dependency discovery
even for small tables takes hours even on modern server-
class hardware. Therefore, an online approach is not viable.
Instead, dependencies should be pre-mined in advance of
querying and stored in a special table. This table will serve
as an intermediate layer between mining and querying. It
will be controlled by the user who specifies its population,
i.e. what will be mined. Moreover, in order to make the
proposed analytics viable, it allows the user to restrict the
length of the desired dependency and explicitly guide the
discovery process (e.g. by selecting participating attributes).
This will allow to reduce run times of discovery algorithms.

It is worth to move such analysis inside a database due to
the following: 1) SQL and RDBMes are immensely power-
ful and convenient tools to query and explore data. These
qualities stem from their declarative nature and the presence
of a query optimizer, which result in unparalleled flexibility.
Such capabilities are required during FD-related data explo-
ration. For example, one may want to re-check the presence
of a FD on a subset of a table. Filtering it outside is in-
convenient and costly. 2) FDs are inseparable from data in
a sense that they should be stored together with the data
they belong to. Moving them outside will require synchro-
nization in case of changes in data. This can be prohibitively
expensive in some cases. 3) Finally, there is a trend for in-
database analytic processing. Note that a similar integration
happened to XML processing, temporal extensions, and is
currently happening to ML.

Designing this system will require: 1) for 1 , extending
SQL with clauses that support selecting a dependency out
of a dependency collection, 2) for 2 , designing a set of
dependency-related predicates (which will be dependency-
specific) and modifications of the query engine, 3) for 3 , in-
tegrating existing discovery algorithms into DBMSes, which
will most likely involve the partition [2] intersection ap-
proach. Therefore, column-stores are the preferred choice
for ensuring maximum performance.

[1] T. Papenbrock et al. 2015. Data Profiling with Metanome.
Proc. VLDB Endow. 8, 12 (Aug. 2015), 1860–1863.
[2] T. Papenbrock and F. Naumann. 2016. A Hybrid Ap-
proach to Functional Dependency Discovery (SIGMOD’16).
[3] P. Schirmer et al. 2019. DynFD: Functional Dependency
Discovery in Dynamic Datasets (EDBT’19).
[4] L. Caruccio et al. 2017. Evolutionary Mining of Relaxed
Dependencies from Big Data Collections (WIMS’17).
[5] L. Caruccio et al. 2016. Relaxed functional dependencies
— a survey of approaches. IEEE TKDE, 28(1).


