
Data Management for Data Science
Towards Embedded Analytics

Mark Raasveldt
CWI Amsterdam

m.raasveldt@cwi.nl

Hannes Mühleisen
CWI Amsterdam

hannes@cwi.nl

ABSTRACT
The rise of Data Science has caused an influx of new users
in need of data management solutions. However, instead
of utilizing existing RDBMS solutions they are opting to
use a stack of independent solutions for data storage and
processing glued together by scripting languages. This is not
because they do not need the functionality that an integrated
RDBMS provides, but rather because existing RDBMS im-
plementations do not cater to their use case. To solve these
issues, we propose a new class of data management systems:
embedded analytical systems. These systems are tightly
integrated with analytical tools, and provide fast and effi-
cient access to the data stored within them. In this work,
we describe the unique challenges and opportunities w.r.t
workloads, resilience and cooperation that are faced by this
new class of systems and the steps we have taken towards
addressing them in the DuckDB system.

1. INTRODUCTION
The rise of Data Science has considerably increased the

complexity of data analysis tasks. As a result, these tasks re-
quire more advanced tools than standard SQL queries [11]. At
the same time, computer capabilities have improved tremen-
dously, which allows increasingly large data sets to be pro-
cessed locally on personal computers. Due to these factors,
data scientists are using scripting languages (e.g. Python or
R) to run medium-sized analyses on their personal comput-
ers [15] instead of on large dedicated servers.

These data scientists are still in need of data management
solutions, however, the data management community has
fallen short of providing them. Data warehouses, the tradi-
tional solution to analytical workloads, are ill-equipped to
support this use case. They are designed to run on server-
grade hardware and be set up and maintained by experts.
The standard SQL interfaces that they provide are insuf-
ficient to perform complex analysis tasks, and integrating
these data warehouses with local tools is cumbersome and
slow due to inefficient client protocols [21].

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2020.
10th Conference on Innovative Data Systems Research (CIDR ‘20) January
12-15, 2020, Amsterdam, The Netherlands.

Due to the lack of systems that effectively support the local
data analysis use case, a plethora of database alternatives
have sprung up. For example, in Python and R basic data
management operators are available through extensions such
as dplyr [24] and Pandas [12]. Instead of re-reading CSV files,
binary data files are created through ad-hoc serialization and
large collections thereof are manually managed in complex
folder hierarchies. Custom scripts are used for orchestra-
tion and changes without anything close to transactional
guarantees. Data corruption and data loss is commonplace.
No dedicated buffer management exists, files are typically
loaded into memory in their entirety, often exceeding avail-
able resources and making yet another level of workarounds
necessary. In essence, this zoo of one-off solutions, when
viewed in their entirety from a distance, resemble a database
management system that compares very poorly with state-
of-the art solutions.

An orthogonal but related problem is found in the world
of edge computing. Currently, edge nodes typically forward
data to a central location for analysis. This is problematic
due to bandwidth limitations especially on radio interfaces,
and also raises privacy concerns. Performing analysis or pre-
aggregation directly inside the edge node can help to limit
the amount of data that has to be transferred to a central
location, alleviating these problems.

To solve these problems, a new class of data management
systems is required that efficiently supports embedded an-
alytical use cases. These are systems that locally provide
storage and querying capabilities together with transactional
guarantees on large amounts of data. At the same time,
tight integration with analysis tools is required to facilitate
easy access to the data stored within the RDBMS and to
eliminate traditional data transfer bottlenecks.

It might seem that it would only take minor re-engineering
of existing systems to meet those requirements. Indeed we
have tried to do just that in our previous work with Monet-
DBLite, which was derived from the MonetDB system [22].
MonetDBLite proved successfully that there is a real interest
in embedded analytics. However, it also uncovered several
issues that proved very complex to address in a non-purpose-
built system. Those issues can be generalized to the general
group of OLAP systems and originate from design assump-
tions that no longer hold in the embedded analytics scenario.
For example, a big assumption in standalone OLAP systems
is that they are running on hardware specifically dedicated
to them that has no other tasks to complete otherwise. In
the embedded scenario, this is not the case. A system admin-
istrator is expected to carefully monitor system health, and



the reliability of hardware is typically higher, for example
through the use of error-correcting memory and redundant
disks. The following requirements for embedded analytical
databases were identified:

1. Combined OLAP & ETL Workloads. High effi-
ciency for OLAP workloads is required together with
efficient support for bulk appends and bulk updates.
Bulk appends occur when new data arrives. Bulk up-
dates are common in “data wrangling” workloads to
address missing or encoded values, unit conversions
etc [5]. Concurrent data modification is common in
dashboard-scenarios where multiple threads update the
data using ETL queries while other threads run the
OLAP queries that drive visualizations.

2. Transfer Efficiency. Efficient transfer of tables to
and from the database is essential since not all tasks
(e.g. training, classification or plotting) can be con-
veniently performed inside the database [10]. Since
both database and application run in the same process
and thus address space, there is a unique opportunity
for efficient data sharing which needs to be exploited
to allow for seamless passing of data back and forth
between the application and the RDBMS.

3. Resilience. Consumer-grade hardware is more prone
to hardware problems than server-grade hardware mon-
itored by administrators. An embedded database needs
to be able to detect these problems and prevent them
from causing silent data corruption.

4. Cooperation. The system needs to gracefully adapt
to resource contention. As the embedded database is
no longer the sole inhabitant of the machine, it can no
longer make constant use of all the underlying hardware
as that would cause the underlying application to be
starved for resources.

In this paper, we explore the requirements of embedded
OLAP systems in detail and summarize the challenges that
arise from these requirements. Afterwards, we discuss our at-
tempts at tackling these challenges in DuckDB; our purpose-
built embeddable relational database management system.

2. COMBINED OLAP & ETL WORKLOAD
The OLAP workloads encountered by embedded analytical

systems are similar to workloads encountered by “standard”
OLAP systems. The queries typically consist of large ta-
ble scans and involve multiple aggregates and complex join
graphs. The workloads also typically only target a subset of
the columns of a large table. Much like in data warehouse
workloads, bulk appends are also common place.

The extract-transform-load (ETL) process is also critical
in analysis workflows. In fact, most analysis time is spent
on data pre-processing [2]. Traditionally, the ETL process
would be a separate pre-processing step before data is loaded
into the data warehouse. However, in the embedded analytics
case integrating both ETL and querying into the same system
is feasible and desirable. Feasible because the database can
directly scan existing files (e.g. CSV), reshape the result and
then append it to a persistent table. Desirable because out-of-
core processing, parallelization and transactional behaviour
is also highly relevant in the ETL process.

ETL queries involve large batch updates or deletes. For ex-
ample, a common data representation is to implicitly encode
missing values as a special member of the domain, e.g. the
value −999 [13]. The correct value can be reconstructed using
the following query: UPDATE t SET d = NULL WHERE d
= -999. In case there are many missing values, this query
will update a large part of the column. As such, these queries
are very different from traditional OLTP updates which touch
only a minute fraction of the database.

There are several architectural implications stemming from
these requirements. For the query processor, only a compara-
bly low amount of CPU cycles per value can be spent. Vec-
torized or Just-in-time compilation query processing engines
are the two state-of-the-art possibilities here [6]. Efficient
bulk updates also require bulk granularity in the concur-
rency control. An important consideration here that in this
scenario updates will typically affect only a small subset of
columns, where deletes will affect entire rows.

The column-focused updates also influence the on-disk
storage format. When some columns in a table are changed,
the unchanged columns should not be rewritten in any way for
performance reasons. Partitioning columns is still required
though, otherwise changes again force an unnecessary rewrite
of large amounts of data.

3. RESILIENCE
Ensuring transactional guarantees even in the presence of

hardware failures is part of most DBMS implementations.
Systems contain defensive code that will guarantee that
committed transactions are persistent even if power fails
immediately after the commit. In distributed installations,
care is also taken to tolerate the intermittent loss of network
connections. Redundant hard disk setups (RAID) are also
recommended to tolerate loss of hard disks. Database server
hardware will make use of error-correcting code (ECC) mem-
ory, which decreases the likelihood of bits being accidentally
flipped in memory [4]. All of this occurs under the watchful
eye of system administrators which are able to monitor and
react to failures.

The hardware environment for embedded analytics data
management is fundamentally different. The DBMS runs
on user hardware, without RAID, ECC or system adminis-
trators. Hardware failure is more common, and the system
administrator is the end user himself, who is unlikely to
keep constant watch to ensure correctly functioning hard-
ware. Providing transactional guarantees in this environment
requires a radical departure of system building conventions.
The hardware environment needs to be distrusted in every
aspect to achieve a reasonable degree of resilience.

Failure Pr[1st failure] Pr[2nd fail | 1 fail]
CPU (MCE) 1 in 190 1 in 2.9
DRAM bit flip 1 in 1700 1 in 12
Disk failure 1 in 270 1 in 3.5

Table 1: 30-day OS crash probability [19]

Failure Rates. A recent comprehensive real-world study
of desktop computers has found that for desktop computers
running for 30 days, 1 in 190 will have a CPU failure, 1 in
1700 will have a bit flip in kernel memory, and 1 in 270 will
have a disk failure [19]. Table 1 reproduces the numbers from
this study. Notably, for systems that have suffered hardware



failures previously the probability for the next hardware
failure is increased by two orders of magnitude. Hence a
system that has failed once is very likely to fail again.

Failure Types. There are two failure types for hardware:
(1) detected errors and (2) silent errors. In case of a detected
error, the hardware malfunctions but the hardware itself
has detected that it has malfunctioned. Silent errors occur
when the hardware malfunctions but continuous to operate
as if nothing went wrong. In case of a detected error, we
can simply report the hardware malfunction to the user
and stop operation. Silent errors are much more dangerous,
as they have the potential to cause silent data corruption.
Rather than allowing data corruption through silent errors
an embedded analytics DBMS needs to detect these errors
and correct them if possible or cease operation entirely.

RAM Failure. Silent bit flips in RAM are a serious
danger to DBMS integrity. An obvious approach to test its
correct operation is to write a known pattern into RAM and
read it back. This is not enough, however, because intermit-
tent and data-dependent errors are missed [23]. Intermittent
failures stem from interactions between adjacent cells in the
memory chip. For example, writing to a cell might flip a
neighboring cell. While this could be exhaustively tested in
theory, exact knowledge of the chip layout would be required.
If bit flips occur in the data to be written to the WAL or
during checkpointing, database integrity is compromised. If
bit flips occur in intermediate results or hash tables during
querying, the DBMS might crash or return incorrect results.
The failure modes are also interconnected; for example if a
query result is written back to storage, a wrong query result
will also compromise the persistent data’s integrity.

Silent memory failures are extremely dangerous if an obliv-
ious DBMS runs for an extended amount of time, slowly
increasing the degree of data corruption. If finally detected
at all, the stored data is likely useless. The issue is exacer-
bated in high-performance OLAP engines because they rely
on larger chunks of memory to work correctly. Hence for an
embedded analytical system, detecting these silent memory
failures is crucial to ensure correct operation.

Persistent Storage Failure. The state of the art for
hard disks is complex: The physical disk hardware will typ-
ically checksum individual blocks as they are written and
check them as blocks are read again. In addition, error cor-
recting codes are used to recover the original data transpar-
ently if an error is detected. If the data cannot be recovered,
an exception is thrown which will be communicated to the
kernel and the DBMS. Silent errors do occur however [16].
Even if a RAID setup exists, only some RAID levels (2 and
up) store parity bits, and these are only used for the (ex-
pensive) data reconstruction process when a disk reports
errors or stops responding. They are not used to detect silent
errors.

There exist higher-level defenses to detect silent disk errors:
some file system implementations such as ZFS will checksum
any block written to disk and verify the checksum on read [25].
However, an embedded system cannot rely on running on
a specific file system. Instead, the database itself needs to
protect against these types of data corruption.

CPU Failure. Another hardware component that could
fail is the CPU. CPUs contain self-checking, for example
checking register and cache parity bits as well as enforcing
several internal invariants [7]. If any discrepancy is detected,
a machine-check exception (MCE) is issued, which stops the

system from continuing. Hence, these issues are less critical
because they cannot lead to silent data corruption [19].

State–of–the–Art. Standard disk failures and power
outages are very well studied in database literature, and
any ACID-compliant database handles these types of fail-
ures correctly through the use of e.g. Write-Ahead-Logs
or rollback journals. Some DBMS implementations such as
SQL Server also contain an optional feature to checksum and
verify database pages on disk [14].

Unfortunately hardware errors beyond these issues are not
very well studied. To the authors’ best knowledge, the only
work done on mitigating memory errors in the context of
main memory systems is the work by Kolditz et al. [9, 8]. In
this work error detection is efficiently implemented through
the use of AN codes, resulting in resilience against random
bit flips in the data while operating between 1.1× and 1.6×
slower. While an excellent first step, more work needs to be
done w.r.t. different data types, compression and adaptivity
of the error detection. Another area that is unexplored in
this work is detecting whether the hardware itself is broken
and using that information. This detection can be performed
similar to how memtest operates [23]. As bit flips are unlikely
to happen on correctly functioning hardware, we could afford
to use more lightweight error detection routines if we can
verify that the hardware is working as expected. Another
potential direction here is that often only specific areas of
the RAM are broken whereas others function correctly [23].
A potential mitigation could therefore be figuring out which
areas are broken and avoiding the use of those memory areas.

4. COOPERATION
Another unique property of embedded analytics is the

co-inhabitation of DBMS and analysis application code on
the same physical computer. Traditional OLAP systems rely
on the Client-Server architecture and expect to be the sole
application running on a dedicated database server. Hence,
they typically assume all available computing resources are
available and dedicated to the DBMS operations. For ex-
ample, it is typical for a traditional OLAP DBMS to probe
the amount of available CPU cores and main memory on
startup and then configure internal buffers, parallelism etc.
to use all the available resources. In an embedded analytics
scenario, this approach is very problematic. The analysis
application (for example a dashboard) will also need some
hardware resources to operate properly; if all memory is
taken by the DBMS, overall end-to-end system performance
will suffer.

The conventional solution to resource contention between
application and DBMS is to allow the system administrator
to configure the memory limits that the DBMS is allowed to
use for buffers etc. The task of deciding the limits however
is non-trivial, how should for example the memory require-
ments of application and DBMS be weighed such that the
overall system achieves best end-to-end performance? There
exist statistical learning techniques to optimize DBMS con-
figuration settings to maximize performance in isolation [20].
However, they do not consider the added complexity of re-
source sharing between application and DBMS. In addition,
these approaches are reactive to the current DBMS workload
but do not allow for adaptive resource sharing. It is likely
that a front-end application will exhibit “bursty” CPU usage,
to which the DBMS could react as to not interfere.

There are plenty of run-time choices in a DBMS that influ-



ence the resource consumption across the different hardware
devices. An embedded OLAP system can monitor resource
usage of all other running applications and then tweak its
run-time behavior accordingly, such that the DBMS will use
the resources that are under-utilized at the moment. This
will lead to an faster end-to-end system response by not
competing with the application in its time of need. In the
following, we list some examples where resources can be
traded off at run-time. The DBMS can make more impactful
choices at this point than the operating system. Scheduling
multiple competing applications is normally left to the OS,
but because the algorithmic choices of the competing pro-
cesses cannot be influenced by the OS, which is limited to
swapping virtual memory in this case.

5. TRANSFER EFFICIENCY
Result set transfer from DBMS to external tools is noto-

riously slow [21]. The reasons for this are two-fold: Result
set serialization to byte streams and value-based APIs. Se-
rialization traditionally occurs due to the need to transfer
a result set to a client program over a network connection.
Network connections are byte streams, but result sets are
two-dimensional structures of possibly complex values. While
not particularly complex, the serialization and deserialization
protocols used by virtually all popular DBMSs are not opti-
mal and even if they were, data transfer over a network socket
to another computer is limited by the available bandwidth,
e.g. 1 Gbit/s.

A second bottleneck is present in the common value-based
APIs to fetch data from query results. Common examples
are the ODBC and JDBC APIs, but also the SQLite APIs.
These APIs are convenient for programmers that for example
seek to display a table with the query results. However, when
transferring large result sets, the function call overhead for
each value becomes excessive. In these cases, bulk access to
e.g. a subset of a column in the query result is preferable.

A unique opportunity to avoid both issues exist in the em-
bedded analytics system architecture. Because both DBMS
and analytics tool are located in a single process’ address
space, data transfer can be particularly efficient. In fact, one
of the motivations to develop embedded analytical DBMSs
is to exploit this opportunity.

Improved transfer efficiency can potentially lead to a
change in database workloads. In traditional client-server
based database systems it is infeasible to transport large
amounts of data outside of the RDBMS, requiring the user
to write large and complex queries that perform many opera-
tions simultaneously. A highly efficient, or even zero-cost[22],
data export allows the user to instead use multiple simple
queries interleaved with application code to achieve the same
result.

6. THE DUCKDB SYSTEM
We have started to develop the first representative of the

new class of embedded OLAP DBMSs, DuckDB. DuckDB is
a new purpose-built embeddable relational database manage-
ment system. DuckDB is available as Open-Source software
under the permissive MIT license1.
OLAP & ETL: DuckDB uses a vectorized interpreted exe-
cution engine [1] that is optimized for OLAP queries. This
approach was chosen over Just-in-Time compilation (JIT) of

1https://www.duckdb.org

SQL queries [17] for portability reasons. JIT engines depend
on massive compiler libraries (e.g. LLVM) with additional
transitive dependencies. For practical embeddability and
portability, external dependencies have been found to be
extremely problematic.

The execution engine executes the query in a so-called
“Vector Volcano” model. Query execution commences by
pulling the first “chunk” of data from the root node of the
physical plan. A chunk is a horizontal subset of a result set,
query intermediate or base table. The chunk consists of a set
of column slices. This node will recursively pull chunks from
child nodes, eventually arriving at a scan operator which
produces chunks by reading from the persistent tables. This
continues until the chunk arriving at the root is empty, at
which point the query is completed.

DuckDB provides ACID-compliance through Multi-Version
Concurrency Control (MVCC). Because queries might run
for considerable time, lock-free Multi-Version-Concurrency
control is a sensible choice that is able to provide multiple
consistent views on the same dataset without blocking query
progress[18]. We implement HyPer’s serializable variant of
MVCC that is tailored specifically for hybrid OLAP/OLTP
systems [18]. This variant updates data in-place immediately,
and keeps previous states stored in a separate undo buffer
for concurrent transactions and aborts.

DuckDB uses a single-file storage format to store data on
disk. The file format is designed to support efficient scans
and bulk updates, appends and deletes. While single-value
or single-row updates are supported, their efficiency is not a
design goal. The format allows to scan individual columns
and skip irrelevant blocks of rows during a scan.

The fact that the database only consists of a single file
was inspired by SQLite [3] and repeated user requests for
this feature in MonetDBLite. As an exception, the WAL is
written to a separate file until consumed by a checkpoint.
The storage file is partitioned into fixed-size blocks of 256KB
which are read and written in their entirety. The first block
contains a header that points to the table catalog and a
list of free blocks. The catalog contains pointers to lists of
schemas, tables and views. Each table consists of a number
of blocks that hold the data. Checkpoints will first write new
blocks that contain the updated data to the file and as a last
step update the root pointer and the free list in the header
atomically.
Resilience: DuckDB computes and stores check sums of all
blocks in persistent storage and verifies this as blocks are
read. This protects against bit flips in the persistent storage
which would go unnoticed or cause inconsistencies.

As next steps, we plan to implement protection by testing
whether regions in memory are broken or not. There exist
approximate memory error detection algorithms like “moving
inversions” that can uncover memory issues in a generic
way [23]. However, these tests create significant traffic on
the memory bus, it is thus not feasible to constantly test
the entire memory. As a compromise, we plan to integrate
memory tests into the buffer manager, which will test all
buffers on allocation to detect existing errors and periodically
to detect new errors.
Cooperation: DuckDB for now allows the user to manually
set hard limits on memory and CPU core utilization. In
the future, we envision an adaptive resource usage scheme
where all levels of the system react to an observed resource
utilization scenario in real time. For example, RAM and



Example

 9

Time

CPU

RAM
DBMS

APP

APP

No  
Compression

DBMS

Light 
Compression

Heavy  
Compression

Figure 1: Example reactive resource usage pattern

CPU can be traded-off against each other rather elegantly.
On the physical plan level, a hash join can be transparently
replaced with a out-of-core merge join. The hash join uses a
large amount of main memory to store the hash table, but
few CPU cycles to compute the actual join result because of
its lower complexity class. The merge requires fewer main
memory resources to run, but O(n log n) CPU cycles as well
as disk IO. If the DBMS detects that the application currently
uses a large amount of main memory but not a lot of CPU
cores, it can switch to merge join to reduce the load on RAM
and use CPU cores and the disk instead.

On the engine level, we can also choose to compress tem-
porary structures like hash tables in memory with different
compression algorithm. Figure 1 shows an example of how
a reactive intermediate compression might operate. As the
RAM usage of the application increases, the DMBS chooses
first lightweight compression to reduce its memory footprint
at the expense of extra CPU cycles. As the RAM usage
of application increases further, the DBMS switches to a
heavy compression algorithm that will further reduce the
memory footprint. The compression and associated overhead
will reduce the response time of the DBMS, however, the
end-to-end response time is improved by reducing memory
pressure for the application.
Transfer Efficiency: DuckDB implements a highly effi-
cient client API. The API allows the client application to
essentially become the root operator in the physical query
processing plan. The application will poll the database en-
gine for chunks of data to be computed. Once a chunk has
been filled, it is handed over to the client application. This
continues until the query has finished executing. The chunks
are represented as a collection of column slices, exactly iden-
tical to the internal representation. Because DuckDB is an
embedded DBMS, the database and the client application
share the same address space, the chunk is handed over with-
out requiring copying. The same is true for appending data
to tables, the client application can fill chunks with its data.
Once filled, they are handed over to DuckDB and appended
to persistent storage. All APIs are built around bulk value
handling to prevent function call overhead from becoming
a bottleneck. The bulk API allows efficient data transfer to
and from R and Pandas/NumPy.

7. CONCLUSION
Traditional DBMS implementations have been largely ig-

nored by Data Science practitioners because the research
community failed to see and support their use case. In order

to recover this lost terrain, a paradigm shift is required in
thinking about what constitutes a “proper” DBMS. In this
paper, we have argued for the focus to shift on embedded
analytical data management.
Research Challenges. We have described the pressing
issues as well as our first steps in addressing them in the
DuckDB system. However, many open questions remain:

• How can we efficiently handle bulk updates and deletes
in ETL-like workflows?

• How does a modern data analysis workload look like
beyond TPC-DS? What part of ETL needs to be part
of benchmarks?

• How does fast data transfer impact query workloads?
Are large complex queries still required when data
export is nearly free?

• How can we increase DBMS reliability in light of silent
hardware errors without compromising performance?

• How can we implement effective resource sharing through
reactive DBMS reconfiguration?

8. REFERENCES
[1] P. A. Boncz, M. Zukowski, and N. Nes. Monetdb/x100:

Hyper-pipelining query execution. In CIDR 2005,
Second Biennial Conference on Innovative Data
Systems Research, Asilomar, CA, USA, January 4-7,
2005, pages 225–237, 2005.

[2] T. Dasu and T. Johnson. Exploratory Data Mining and
Data Cleaning. John Wiley & Sons, Inc., New York,
NY, USA, 1 edition, 2003.

[3] R. Hipp. Database file format.
https://www.sqlite.org/fileformat.html, 2019.

[4] Intel. Delivering Resilient and Reliable Workstations:
The Role of ECC Memory. 2015.

[5] S. Kandel, J. Heer, C. Plaisant, J. Kennedy, F. van
Ham, N. H. Riche, C. Weaver, B. Lee, D. Brodbeck,
and P. Buono. Research directions in data wrangling:
Visualizations and transformations for usable and
credible data. Information Visualization, 10(4):271–288,
2011.

[6] T. Kersten, V. Leis, A. Kemper, T. Neumann,
A. Pavlo, and P. Boncz. Everything You Always
Wanted to Know About Compiled and Vectorized
Queries but Were Afraid to Ask. Proc. VLDB Endow.,
11(13):2209–2222, Sept. 2018.

[7] A. Kleen. Machine check handling on Linux. 2004.

[8] T. Kolditz, D. Habich, W. Lehner, M. Werner, and
S. T. de Bruijn. AHEAD: Adaptable Data Hardening
for On-the-Fly Hardware Error Detection During
Database Query Processing. In Proceedings of the 2018
International Conference on Management of Data,
SIGMOD ’18, pages 1619–1634, New York, NY, USA,
2018. ACM.

[9] T. Kolditz, T. Kissinger, B. Schlegel, D. Habich, and
W. Lehner. Online bit flip detection for in-memory
b-trees on unreliable hardware. In Proceedings of the
Tenth International Workshop on Data Management on
New Hardware, DaMoN ’14, pages 5:1–5:9, New York,
NY, USA, 2014. ACM.



[10] J. Lajus and H. Mühleisen. Efficient data management
and statistics with zero-copy integration. In Proceedings
of the 26th International Conference on Scientific and
Statistical Database Management, SSDBM ’14, pages
12:1–12:10, New York, NY, USA, 2014. ACM.

[11] V. Linnemann, K. Küspert, P. Dadam, P. Pistor,
R. Erbe, A. Kemper, N. Südkamp, G. Walch, and
M. Wallrath. Design and Implementation of an
Extensible Database Management System Supporting
User Defined Data Types and Functions. In Proceedings
of the 14th International Conference on Very Large
Data Bases, VLDB ’88, pages 294–305, San Francisco,
CA, USA, 1988. Morgan Kaufmann Publishers Inc.

[12] W. McKinney. Data structures for statistical
computing in python. In S. van der Walt and
J. Millman, editors, Proceedings of the 9th Python in
Science Conference, pages 51 – 56, 2010.

[13] Q. McMullen. How to Represent Missing Data: Special
Missing Values vs. 999999999. 2001.

[14] Microsoft. Microsoft SQL documentation, 2017.

[15] P. Mooney. Kaggle Machine Learning & Data Science
Survey. Oct. 2018.

[16] J. Myers. Data Integrity in Solid State Drives: What
Supernovas Mean to You. Feb. 2014.

[17] T. Neumann. Efficiently compiling efficient query plans
for modern hardware. PVLDB, 4(9):539–550, 2011.

[18] T. Neumann, T. Mühlbauer, and A. Kemper. Fast
serializable multi-version concurrency control for
main-memory database systems. In Proceedings of the
2015 ACM SIGMOD International Conference on
Management of Data, Melbourne, Victoria, Australia,
May 31 - June 4, 2015, pages 677–689, 2015.

[19] E. B. Nightingale, J. R. Douceur, and V. Orgovan.
Cycles, Cells and Platters: An Empirical Analysisof
Hardware Failures on a Million Consumer PCs. In
Proceedings of the Sixth Conference on Computer
Systems, EuroSys ’11, pages 343–356, New York, NY,
USA, 2011. ACM.

[20] A. Pavlo, G. Angulo, J. Arulraj, et al. Self-driving
database management systems. In CIDR 2017,
Conference on Innovative Data Systems Research, 2017.

[21] M. Raasveldt and H. Mühleisen. Don’t hold my data
hostage - A case for client protocol redesign. PVLDB,
10(10):1022–1033, 2017.

[22] M. Raasveldt and H. Mühleisen. Monetdblite: An
embedded analytical database. CoRR, abs/1805.08520,
2018.

[23] P. Software. MemTest-86 User Manual. Technical
report, 2018.

[24] H. Wickham, R. François, L. Henry, and K. Müller.
dplyr: A Grammar of Data Manipulation, 2018. R
package version 0.7.8.

[25] Y. Zhang, A. Rajimwale, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. End-to-end Data Integrity for
File Systems: A ZFS Case Study. In 8th USENIX
Conference on File and Storage Technologies, San Jose,
CA, USA, February 23-26, 2010, pages 29–42, 2010.


