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ABSTRACT
Sampling is the most versatile and easiest to implement car-
dinality estimation method. Therefore, it is implemented in
almost every database management system, commercial or
not. Consequently, the main purpose of this paper is to pro-
vide the reader with an intuition about sampling precision.
In the context of query optimization, the basic procedure
can be described as follows. From a relation R containing n
tuples, a sample of m < n tuples is drawn. Then, a query
predicate p is evaluated on the m sample tuples, and the
number k of qualifying sample tuples is recorded. Assume
the evaluation of the same predicate p on the relation R
results in l qualifying tuples. The task now is to produce
an estimate l̂ for l where n,m, k are given. The standard
answer to this task is l̂ = k n

m
. However, there are some (yet

unanswered) fundamental questions:

1. Is the standard estimator the best way to derive an
estimate?

2. What are the upper and lower bounds for l?

3. How can we derive an estimate that minimizes the q-
error?

4. How large is the q-error we can expect for this esti-
mate?

5. For a given maximal allowed q-error, which sample size
m should we choose?

Since sampling is a probabilistic process, we will give prob-
abilistic answers to these questions. Further, we show how
result cardinality estimates for selections and joins can sig-
nificantly be improved.

1. INTRODUCTION
The purpose of this paper is twofold. Firstly, we want to

sharpen the reader’s intuition about q-errors produced by
sampling. Secondly, we provide means to minimize the q-
error by introducing new estimators for selections and joins.
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R relation (or view content)
S sample of R
p query predicate
Rp σp(R)
Sp σp(S)
n := |R| number of tuples in relation
l := |σp(R)| number of qualifying tuples
m := |S| number of samples
k := |σp(S)| number of qualifying samples

Table 1: Abbreviations

After some preliminaries, we start out with a simple ex-
periment establishing the q-error of estimates produced by
sampling using the standard estimator (Sec. 3). Then, we
improve the precision of these estimates by introducing two
new estimators (Sec. 4). Afterwards, we look at some curves
which solely serve the purpose of gaining more insights into
sampling and errors produced (Sec. 5). Here, we gain some
insights into the connection between sample size and ex-
pected q-errors. If the query optimizer is given a query
with a conjunction of predicates, it typically needs estimates
for partial conjuncts. Sec. 6 treats this case. Finally, we
show how to significantly reduce the q-error of join size esti-
mations produced by correlated sampling [21] and two-level
sampling [7] in case of zero qualifying sample tuples (Sec. 7).

2. PRELIMINARIES
We assume that we are given a set of tuples R as a base

relation or the contents of a view. From these tuples, we
draw without replacement a sample (random subset) S ⊆ R.
By n := |R| we denote the number of tuples in R and by
m := |S| the sample size. Further, we are given a query
predicate p. The result of evaluating p on R is denoted by
Rp := σp(R) and its size by l = |Rp|. Analogously, we
define Sp := σp(S) and k := |Sp|. For convenience, these
abbreviations are summarized in Table 1.

The q-error of some estimate e for some true value t is
defined as max(e/t, t/e). We will use the q-error throughout
this paper since it is the only known error metric with a
tight connection to plan quality [15, 20]. For convenience,
Appendix A summarizes the most important facts.

A weaker error is introduced in [19]. It is motivated by
the fact that if the estimate is 21 tuples, but the true value
is 3 tuples, then the q-error is 7 and thus pretty high. An
estimate e for some true value t is called θ, q-acceptable if
either both e ≤ θ and t ≤ θ or the q-error of e is at most



q. It has been shown that a careful choice of θ prevents the
query optimizer from making wrong decisions [19].

Given a set of estimates (e.g., for many different queries),
the q-error is the maximum of all q-errors of each estimate,
and the θ, q-error is the minimum q such that all estimates
produced are θ, q-acceptable. Thereby, θ will be given.

3. THE START
The experiments reported are based on the forest data

set1, which is a relation with 54 attributes and n = 581.012
tuples. Since sampling is a random process, experiments
with other datasets lead to similar results if sufficiently many
and diverse queries are used. More on this can be found in
Appendix B.

3.1 The Standard Estimator
For the standard estimator ESTS , the estimated selectiv-

ity is |Sp|/|S| = k/m if |Sp| 6= 0. and 1/|S| if |Sp| = 0. This
approach is often found in current systems.

3.2 Experiment 1
For 10 different numbers of range predicates (z ∈ [2, 11]),

50.000 conjunctive query predicates containing z range pred-
icates were randomly generated. For a given z, a random
conjunctive query predicate is generated by picking z at-
tributes at random. For each randomly picked attribute, a
random range predicate is then generated by randomly pick-
ing two numbers from the domain of the attribute. Then,
the smaller number serves as the lower bound of the range
predicate, and the higher number serves as the upper bound.
A query is rejected if it yields the empty result. For each
of these queries, samples of different sizes (1000, 2000, 4000,
8000) are used to produce estimates using ESTS . Thus, a
total of 10*4*50000 = 2.000.000 estimates is produced. The
following table gives the number of queries for which ESTS
exhibits a q-error larger than 2.02, broken down by sample
sizes:

m #query
1000 202438
2000 152860
4000 118390
8000 91503

These numbers are out of a total of 500.000 queries for each
sample size. We observe that the number of estimates with
a high q-error decreases only very slowly with increasing
sample sizes. Remember that 1000 is a typical sample size
used in current systems.

Fig. 1 shows the maximum observed q-error for differ-
ent numbers k of qualifying sample tuples. We added a
horizontal line at a q-error of 2.0 to make it easier to distin-
guish between good and bad estimates. We observe that the
largest q-errors are found for those queries having a small
k. Especially the case k = 0, i.e., no sample tuple qualifies,
leads to the largest q-error: the estimates can be orders of
magnitudes away from the truth even for large sample sizes.

Beyond |Sp| > 30 or |Sp| > 40, sampling yields pretty
precise estimates. Consequently, it is a good idea to have a

1http://kdd.ics.uci.edu/databases/covertype/covertype.html
2For an argument why 2.0 is a reasonable boundary for the
q-error in order to distinguish good from bad estimates see
[20] or Appendix A.
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Figure 1: Forest: q-error vs. number of qualifying
sample tuples (k = |Sp|)

large sample of say 10000 tuples and stop if 30 or 40 sam-
ple tuples qualify among the first 1000 sample tuples. (For
a formula calculating the exact value see next section and
Sec. 5.4.) Thus, depending on the query, it may be possi-
ble that only a fraction of the samples must be read. The
large sample extracted just serves as a fallback and must not
always be processed in total. It simply consumes memory
and only consumes as much cpu time as is necessary for the
query. Let us see how often k exceeds 30 or 40 (again, out
of 500.000 queries per sample size):

m #(|Sp| > 30) #(|Sp| > 40)
1000 123735 109433
2000 156292 145671
4000 194909 177970
8000 233771 214777

Thus, for all these queries the predicate is evaluated on more
sample tuples than necessary. Breaking early is not a new
idea (e.g., [13, 12, 16]). However, the stopping critera used in
these papers have no connection to the q-error. Our stopping
criterion will exhibit a clear connection to the q-error and,
thus, to plan quality.

However, even if the sample is large, still many queries
will yield empty sample results:

m #(|Sp| = 0)
1000 167888
2000 127585
4000 99350
8000 79982

4. A SIMPLE FORMULA
Recall that

n := |R| number of tuples in relation
l := |σp(R)| number of qualifying tuples
m := |S| number of samples
k := |σp(S)| number of qualifying samples

Then, k ≤ l, k ≤ m, l ≤ n, m ≤ n, and m − k ≤ n − l
must hold. Keeping this in mind, we can see that the total
number of samples is

(
n
m

)
and the number of samples for a

given combination of l and k is
(
n−l
m−k

)(
l
k

)
. If each sample is

equally likely, we can conclude the following:



Sample A Sample B Formula
k α∗ ω∗ µ∗ ρ∗ α∗ ω∗ µ∗ ρ∗ α ω µ ρ
0 1 3687 60.7 60.7 1 4158 64.5 64.5 1 6646 81.5 81.5
1 1 5520 74.3 74.3 1 5416 73.6 73.6 1 8170 90.4 90.4
2 6 7109 206.5 34.4 13 7832 319.1 24.5 4 9464 194.6 48.6
3 90 8114 854.6 9.5 52 8655 670.9 12.9 25 10642 515.8 20.6
4 256 8302 1457.8 5.7 124 8805 1044.9 8.4 77 11748 951.1 12.4
5 409 9643 1985.9 4.9 313 9436 1718.6 5.5 163 12801 1444.5 8.9
6 638 9792 2499.5 3.9 619 9998 2487.7 4 280 13815 1966.8 7
7 843 10310 2948.1 3.5 763 10585 2841.9 3.7 425 14798 2507.8 5.9
8 874 12441 3297.5 3.8 910 11000 3163.9 3.5 594 15754 3059.1 5.1
9 1358 12936 4191.3 3.1 1133 12279 3729.9 3.3 784 16690 3617.3 4.6
10 1255 14530 4270.3 3.4 1303 14671 4372.2 3.4 994 17607 4183.5 4.2
11 2318 13557 5605.8 2.4 1923 13111 5021.2 2.6 1219 18508 4749.9 3.9
12 1296* 16555 4632 3.6 2214 14512 5668.3 2.6 1460 19395 5321.3 3.6
13 2590 16775 6591.5 2.5 2199 17411 6187.6 2.8 1714 20270 5894.3 3.4
14 2183 15366 5791.7 2.7 2731 17993 7009.9 2.6 1980 21133 6468.6 3.3
15 2269 18237 6432.7 2.8 3137 16250 7139.8 2.3 2256 21987 7042.9 3.1
16 3806 16287 7873.3 2.1 3796 19474 8597.9 2.3 2543 22831 7619.7 3
17 4096 18619 8732.9 2.1 3817 18735 8456.4 2.2 2839 23667 8197 2.9
18 5225 19157 10004.8 1.9 3362 19321 8059.6 2.4 3143 24495 8774.3 2.8
19 3938 18835 8612.3 2.2 4610 20078 9620.8 2.1 3455 25316 9352.4 2.7
20 4111 19570 8969.5 2.2 5138 20134 10171 2 3774 26130 9930.5 2.6
21 5842 23280 11662 2 5380 21486 10751.5 2 4100 26938 10509.3 2.6
22 4941 22589 10564.7 2.1 5465 21916 10944 2 4433 27741 11089.4 2.5
23 5204 23015 10944 2.1 6472 22242 11997.9 1.9 4771 28538 11668.5 2.4
24 7164 24877 13349.9 1.9 6257 22920 11975.4 1.9 5114 29330 12247.2 2.4
25 6479 24075 12489.3 1.9 6891 24434 12975.9 1.9 5463 30117 12826.9 2.3
30 9474 27520 16147 1.7 9928 29302 17056.1 1.7 7277 33991 15727.4 2.2
35 12238 33012 20099.8 1.6 10944 31131 18458 1.7 9186 37778 18628.7 2
50 18931 41667 28085.5 1.5 16814 38659 25495.3 1.5 15324 48761 27335.2 1.8
99 47233 74548 59339.1 1.3 44733 71544 56571.9 1.3 37710 82480 55770.3 1.5

Table 2: Comparison of experimental and theoretical values for two different samples of size 1000

Theorem 1. Assume we are given a relation R and a
query predicate p. Define n := |R| and l := |σp(R)p|. Then,
for any sample S ⊆ R of size m := |S|, the probability that
for some k k = |σp(S)| holds is

P(n,m, k, l) :=

(
n−l
m−k

)(
l
k

)(
n
m

) . (1)

This is known as the hypergeometric distribution.
Let us now come to the major definitions of this paper.

They will serve as a basis for all observations made further
down and allow us to derive better estimators. For a given
probability ε, define

α(n,m, k) := min{l|P(n,m, l, k) ≥ ε} (2)

ω(n,m, k) := max{l|P(n,m, l, k) ≥ ε} (3)

µ(n,m, k) :=
√
α(n,m, k) ∗ ω(n,m, k) (4)

ρ(n,m, k) :=
√
α(n,m, k)−1 ∗ ω(n,m, k) (5)

ζq(n,m) := min{k|ρ(n,m, k) ≤ q} (6)

Assume n and m and ε are fixed. Then, for a given number
k of qualifying sample tuples, α (ω) is the smallest (largest)
number of tuples from R that has a probability larger than ε.
Their geometric mean is denoted by µ. The q-error of µ with
respect to α and ω is denoted by ρ. ζq denotes the minimum
number of qualifying tuples needed to assure a maximal q-
error less than q. Thus, ζq gives us the number of qualifying
samples we should consider before we stop evaluating further
samples (see Sec. 5.4 for details).

Their experimentally determined counterparts are denoted
with an additional asterisk. Thus, α∗ contains for some k

the minimal l observed whereas ω∗ contains for some k the
maximal l observed.

Table 2 illustrates these definitions. For the forest rela-
tion with n = 581012 tuples and two different samples A
and B, each of size m = 1000, it contains the observed and
calculated (with ε = 10−5) values for α, ω, µ, ρ. Addition-
ally, we can determine ζ2 = 35, whereas ζ∗2 seems to be 24
for Sample A and 22 for Sample B. Table 3 contains under
otherwise equal conditions the results for a sample of size
m = 8000. We observe that α∗ and α and ω∗ and ω are rel-
atively close together. However, since sampling is a random
process, it might happen that α∗ < α or ω∗ > ω. One such
case occurred for k = 12 and is marked by a ’∗’ in Table 2.
Further, note that the calculated and the observed values
for ρ- and µ are close together. More on α∗ and ω∗, also for
a different dataset, can be found in Appendix B.

4.1 The Estimators EstM and EstT
Since α, ω, and µ seem to be close to reality, let us exploit

them to derive two new estimators. The µ-estimator EstM
returns µ(n,m, k). If some θ is given, the estimates can
be improved by returning an estimate of at least θ. The
estimator EstT returns max(θ, µ(n,m, k)).

Since µ can (easily) be derived from α and ω, there is a
need to efficiently calculate α and ω. Appendix C shows
how this can be done.

4.2 Experiment 2
Table 4 shows experimental results using the estimators

EstS , EstM , and EstT . For the experiments, we have chosen
a moderate θ = 1000. As expected, there is an improvement



Sample C Formula
k α∗ ω∗ µ∗ ρ∗ α ω µ ρ
0 1 602 24 24.5 0 830 28 28.8
1 1 787 28 28.1 1 1022 32 32
2 3 795 48 16.3 2 1185 48 24.3
3 8 946 87 10.9 4 1333 73 18.3
4 25 1091 165 6.6 11 1472 127 11.6
5 41 1267 227 5.6 22 1605 187 8.5
6 84 1623 369 4.4 37 1733 253 6.8
7 79 1605 356 4.5 56 1857 322 5.8
8 131 1531 447 3.4 77 1978 390 5.1
9 148 1675 497 3.4 101 2096 460 4.6
10 171 1765 549 3.2 127 2212 530 4.2
11 195 1860 602 3.1 156 2326 602 3.9
12 322 2040 810 2.5 186 2438 673 3.6
13 349 2083 852 2.4 218 2549 745 3.4
14 397 2045 901 2.3 251 2658 816 3.3
15 449 2288 1013 2.3 286 2766 889 3.1
16 475 2417 1071 2.3 321 2873 960 3.0
17 456 3134 1195 2.6 358 2979 1032 2.9
18 687 2782 1382 2.0 396 3084 1105 2.8
19 696 3367 1530 2.2 435 3188 1177 2.7
20 610 2904 1331 2.2 475 3292 1250 2.6
50 2506 6132 3920 1.6 1907 6173 3431 1.8
99 5434 9791 7294 1.3 4660 10498 6994 1.5

Table 3: Sample size 8000, comparison of experi-
mental and theoretical values

of the q-error for the EstS and EstT . Especially for the very
difficult case of no qualifying sample tuple (k = 0), we see
that we can reduce the maximum θ,q-error from 3687 (EstS)
to 3.7 (EstT ).

5. SHARPENING INTUITION

5.1 Sample Size and Selectivity
Remember that ζq gives us the minimal number of quali-

fying sample tuples needed to guarantee a q-error of at most
q. An obvious question is to ask for several relation sizes n
and sample sizes m, how many qualifying sample tuples k we
need to observe in order to be quite sure that the produced
estimate µ(n,m, k) is precise up to a given q-error of, say,
2. Further, it might be interesting to look at the selectivity
at this point. The latter can be determined by

λq(n,m) := µ(n,m, ζq(n,m))/n. (7)

Table 5 contains ζ, µ, and λ values for different sample sizes
and a fixed maximal q-error of 2.0. We observe that only
for relatively large selectivities, sampling yields a maximal
q-error of 2. Take the quite common sample size m = 1000
for example. There, we observe that we need a selectiv-
ity of at least 2% to guarantee a q-error of at most 2. If
we double the sample size, selectivities higher than 1% can
be estimated precisely. Note that these selectivities are al-
most independent of the relation sizes. Only for very small
relations and very large sample fractions, λ2 deviates signif-
icantly. Even for m = 8000 sample tuples only selectivities
above 0.25 percent can be estimated precisely. Further, 0.25
percent of a large relation containing 109 or more tuples is
a significant number.

These findings might be unsatisfactory and we might ask
whether for a less strict error definition, where we essen-
tially ignore q-errors for cases where both the true cardi-
nality and the estimated cardinality are below a certain

Est S Est M Est T
theta theta theta

k - 1000 - 1000 - 1000
0 3687.0 3687.0 81.5 45.2 1000.0 3.7
1 581.0 9.5 90.4 61.1 1000.0 5.5
2 193.7 193.7 36.5 36.5 166.7 7.1
3 19.4 19.4 15.7 15.7 11.1 8.1
4 9.1 9.1 8.7 8.7 8.3 8.3
5 7.1 7.1 6.7 6.7 6.7 6.7
6 5.5 5.5 5.0 5.0 5.0 5.0
7 4.8 4.8 4.1 4.1 4.1 4.1
8 5.3 5.3 4.1 4.1 4.1 4.1
9 3.9 3.9 3.6 3.6 3.6 3.6

10 4.6 4.6 3.5 3.5 3.5 3.5
11 2.8 2.8 2.9 2.9 2.9 2.9
12 5.4 5.4 4.1 4.1 4.1 4.1
13 2.9 2.9 2.8 2.8 2.8 2.8
14 3.7 3.7 3.0 3.0 3.0 3.0
15 3.8 3.8 3.1 3.1 3.1 3.1
16 2.4 2.4 2.1 2.1 2.1 2.1
17 2.4 2.4 2.3 2.3 2.3 2.3
18 2.0 2.0 2.2 2.2 2.2 2.2
19 2.8 2.8 2.4 2.4 2.4 2.4
20 2.8 2.8 2.4 2.4 2.4 2.4
21 2.1 2.1 2.2 2.2 2.2 2.2
22 2.6 2.6 2.2 2.2 2.2 2.2
23 2.6 2.6 2.2 2.2 2.2 2.2
24 1.9 1.9 2.0 2.0 2.0 2.0
25 2.2 2.2 2.0 2.0 2.0 2.0
26 2.0 2.0 1.8 1.8 1.8 1.8
27 2.0 2.0 2.0 2.0 2.0 2.0
28 1.7 1.7 1.8 1.8 1.8 1.8
29 1.9 1.9 1.8 1.8 1.8 1.8
30 1.8 1.8 1.7 1.7 1.7 1.7

Table 4: Q-error and θ, q-error of different Estima-
tors

threshold, there is more hope to achieve good results with
small samples. In order to answer this question, we use
θ, q-acceptability and ask for the minimum sample size such
that all estimates produced from sampling via µ are θ, q-
acceptable. This minimum sample size can be determined
by

ψθ,q(n) := min{m|∀kρ(n,m, k) ≤ q ∨ ω(n,m, k) ≤ θ}. (8)

The following table contains the size of the sample needed
(in percent of |R|) to assure different q-errors for θ = 1000:

θ = 1000
|R| 2.0 3.0 4.0 5.0 6.0 7.0 8.0

20000 6.31 3.73 2.99 2.51 2.34 2.17 2.17
40000 6.35 3.76 3.01 2.53 2.36 2.19 2.19
80000 6.36 3.78 3.02 2.54 2.37 2.2 2.20

160000 6.37 3.78 3.03 2.55 2.48 2.48 2.48
320000 6.40 3.79 3.03 2.48 2.48 2.48 2.48
640000 6.40 3.79 3.03 2.48 2.48 2.48 2.48

1280000 6.40 3.79 3.03 2.48 2.48 2.48 2.48

First, we observe that the sample fraction for sufficiently
large relations is almost a constant for a given q. Further, we
see that if we want to guarantee, e.g., 1000, 2-acceptability,
we need a sample fraction n/m of about 6.5% of the relation.

Increasing θ to 10000 gives the following results:



1000 2000 4000 8000
n ζ2 µ λ2 ζ2 µ λ2 ζ2 µ λ2 ζ2 µ λ2

16000 35 318 0.0199 33 163 0.0102 28 87 0.0054 17 22 0.0014
32000 36 625 0.0195 35 316 0.0099 33 163 0.0051 28 87 0.0027
64000 36 1240 0.0194 36 622 0.0097 35 315 0.0049 33 163 0.0025

128000 37 2469 0.0193 37 1234 0.0096 36 620 0.0048 35 315 0.0025
256000 37 4928 0.0193 37 2457 0.0096 37 1231 0.0048 37 620 0.0024
512000 37 9846 0.0192 37 4904 0.0096 37 2451 0.0048 37 1229 0.0024

1024000 37 19683 0.0192 37 9799 0.0096 38 4893 0.0048 38 2448 0.0024

Table 5: ζ, µ, and λ

θ = 10000
|R| 2.0 3.0 4.0 5.0 6.0 7.0 8.0

20000 0.48 0.3 0.24 0.21 0.19 0.18 0.16
40000 0.58 0.34 0.26 0.24 0.22 0.20 0.20
80000 0.64 0.37 0.29 0.26 0.23 0.21 0.21

160000 0.66 0.38 0.30 0.27 0.23 0.22 0.22
320000 0.67 0.38 0.30 0.27 0.24 0.24 0.22
640000 0.67 0.40 0.30 0.27 0.24 0.24 0.22

1280000 0.68 0.40 0.31 0.27 0.24 0.24 0.16

We observe that for q = 2, the sample fraction decreased
from 6.5% to 0.65%. This might suggest that we should
increase θ with the relation size. Let us look at the following
table, which contains for a fixed maximal q-error of 2.0 and
different θ the minimum sample size in percent of |R| in
order to guarantee θ, q-acceptability:

θ
|R| 1000 2000 4000 8000

20000 6.31 3.14 1.505 0.65
40000 6.3475 3.2425 1.605 0.7525
80000 6.3625 3.26 1.6263 0.805

160000 6.3725 3.3331 1.6688 0.8313
320000 6.3988 3.3394 1.6731 0.8356
640000 6.4014 3.3414 1.6755 0.8381

1280000 6.4024 3.3425 1.6766 0.8555

We observe again that the sample fraction for sufficiently
large relations is almost a constant and decreases almost
linearly with θ. However, remember that we cannot increase
θ arbitrarily, since there are clear bounds on it which prevent
the query optimizer from making wrong decisions.

5.2 k-Curves
Over a wide range of relation sizes and sample fractions,

the maximum q-error mainly depends on k. Let us consider a
fixed k > 0 and ask how the q-error decreases with increasing
sample sizes m. Optimists might assume that it decreases
linearily with the sample size. However, this is far from true.
Consider Fig. 2. For three different k = 4, 8, 28 it shows on
the x-axis the sample fraction m/n scaled by 1000. On the
y-axis, it shows the maximal q-error ρ of the estimator µ.
All curves start at a minimum sample size of 1000. We
observe that below a sample fraction of 0.1% and relation
sizes between 106 and 109, the maximum q-error is almost
a constant. Only for larger sample fractions and only if k is
small (k = 4 in this case), the q-error decreases significantly.

5.3 ω-0-Curve
In the previous subsection, we left out the case k = 0,

which we consider now. Since α(n,m, 0) = 0 for all n and m,

we concentrate on ω. Fig. 3 contains what we call the ω-0-
curve. It depicts for zero qualifying sample tuples ω(n,m, 0)
on the y-axis for different relation sizes n and sample frac-
tions n/m on the x-axis. Surprisingly, we observe that ω is
independent of the relation size and slowly decreases with
the sampling fraction. Thus, in order to guarantee an up-
per bound for ω at about 10.000 tuples, we need a sampling
fraction of 0.1% of the relation.

5.4 Breaking Early
Assume we have a sample of size m and want to break

early after having evaluated the query predicate on m′ sam-
ple tuples with m′ < m. Then, we can stop examining more
sample tuples if k ≥ ζ2(n,m′), where k denotes the number
of qualifying sample tuples seen so far. In a real implemen-
tation, it might be useful to prematerialize a break table. It
contains the values of ζ2(n′,m′) for different relation sizes
n′ and early breaks m′:

m′ n′

105 106 107 108 109

30 18 18 18 18 18
50 23 23 23 23 23

100 29 29 29 29 29
300 34 34 34 34 34

1000 36 37 37 37 37
3000 36 37 38 38 38

10000 34 37 38 38 38
30000 25 37 38 38 38

We observe that for a fixed m′, ζ(n′,m′) is almost indepen-
dent of the relation size. Further, for large m′ it does not
increase anymore. In fact, for small relation sizes it starts
decreasing again. Note that although the ζ(n′,m′) look sim-
ilar for m′ ≥ 300, they correspond to different selectivities
for different m′ (cf. Table 5). The break table can be used
as follows. At the prespecified break points m′, we compare
the observed number k of qualifying sample tuples with the
stored ζ2(n′,m′) values for n′ being the smallest value at
least as large as the cardinality n = |R| of the relation R for
which the estimate is to be produced. If k ≥ ζ2(n′,m′), we
can stop and produce the EM estimate using µ(n,m′, k).

We might ask the same question for the standard estima-
tor: What is the minimal k such that the standard estimator
leads to a q-error of less than q? The answer is given by η:

ηq(n,m) := min{k|k n
m
≤ q ∗ α(n,m, k), ω(n,m) ≤ qk n

m
}.

The following table gives some values for η2:
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m′ |R|
105 106 107 108 109

30 24 24 24 24 24
50 30 30 30 30 30

100 36 36 36 36 36
300 42 42 42 42 42

1000 44 44 44 44 44
3000 44 45 45 45 45

10000 40 45 45 45 45
30000 29 44 45 45 45

As expected, ηq is larger than ζq. This means that if we use
the standard estimator EstS instead of EstM , we need to
observe more qualifying sample tuples and, consequently, a
larger sample has to be inspected.

6. CONJUNCTIONS OF PREDICATES
Let P = {p0, . . . , pz−1} denote a set of z predicates. As-

sume we are given a query with a conjunction p0∧ . . .∧pz−1
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of z predicates pi. Then, the query optimizer during plan
generation requires estimates not only for the full conjunct
but also for conjuncts of subsets of the predicates in P [3,
15]. In this section, we consider the generation of estimates
for all subsets of the predicates in P using sampling.

6.1 Preliminaries
For a subset of predicates P ′ ⊆ P , we denote by Fβ(P ′)

the formula

Fβ(P ′) =
∧

pi∈P ′

pi.

Thus, β(P ′) is simply a conjunction of all predicates con-
tained in P ′. By Fγ(P ′) we denote the formula

Fγ(P ′) =
∧

pi∈P ′

pi ∧
∧

pi∈P\P ′

¬pi.

This formula is a conjuction in which every predicate of P
occurs exactly once, either positively (without ¬) or neg-
atively (with ¬ preceding it). These formulas are called
minterms.

Every subset P ′ ⊆ P can be expressed as a bitvector
bv(P ′) of length |P |. Also, bv(P ′) can be interpreted as
a positive integer in the range [0, 2z − 1], which it repre-
sents. Subsequently, we will identify these different nota-
tions. Thus, we will use P ′ as an integer index into some
vector. Define n := 2z. For a given relation R (or sam-
ple S), we introduce two vectors β ∈ Rn and γ ∈ Rn, each
containing exactly 2z values by defining

βP ′ := |{r|r ∈ R,Fβ(P ′)(r)}|, (9)

γP ′ := |{r|r ∈ R,Fγ(P ′)(r)}|. (10)

Thus, βP ′ contains the number of qualifying tuples for a
conjunction of the predicates in P ′, and γP ′ contains the
number of qualifying tuples for the minterm defined by P ′.
Note that the query optimizer needs estimates for βP ′ .

Define the complete design matrix C as

C[i, j] =

{
1 if j ⊇ i
0 else,

where j ⊇ i denotes the fact that every bit set to one in i
is also set in j, i.e., i = i&j and i, j range from 0 to 2z − 1.
Note that C is binary, non-singular, and persymmetric.
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Figure 4: Max q-errors for different estimators for γ-sampling

The complete design matrix C ∈ Rn,n allows us to go from
γ ∈ Rn to β ∈ Rn by

Cγ = β. (11)

Note that due to the recursive structure of C, a multiplica-
tion Cx can be calculated efficiently.

6.2 γ-Sampling
The following procedure gamma-sampling (proposed in [15])

takes as input a sample and a conjunction P = p1 ∧ . . .∧ pz
of simple predicates. Given an input sample S, for every of
the 2z possibilities

(¬)p1 . . . (¬)pz

of either negating or not negating a simple predicate, it
counts the number of occurrences within the sample S. These
counts correspond the γ-values introduced in the previous
subsection (Eqn. 10). Hence, the name of the sampling pro-
cedure.

gamma−sampling (P, z , S )
// P i s vec to r o f p r ed i ca t e s ,
// z i t s length ,
// S i s the sample
int n = (1 << z ) ;
// array o f counters , a l l i n i t i a l i z e d to zero
int c gamma [ n ] = {0} ;
for ( s : S ) // f o r a l l sample tup l e s in S

int k = 0 ;
for ( int i = 0 ; i < z ; ++i )

// p [ i ] ( s ) : eva luate p i on sample tup l e s
k |= (p [ i ] ( s ) << i ) ;

++c gamma [ k ] ;
return c gamma ;

For every sample tuple s ∈ S, gamma-sampling evaluates
each predicate pi and keeps all these z results in a bitvector
denoted by k. Interpreted as an integer, this z-bit bitvector
k is the correct index for γ. The evaluation of some predicate
pi on some sample tuple s ∈ S is denoted by p[i](s). The
result is either 0 or 1. Shifting this result by i and bitwise
or-ing it with k stores this result in the i-th bit of k. Thus,
after the inner loop, k contains a bitpattern representing
the outcome of all predicates. Then, k is used as an index
into an array of counters c_gamma, and the according field
is increased. In formulas, we will denote the result vector
c_gamma of gamma-sampling by γs.

6.3 Estimators

6.3.1 Estimator Eststd

The only estimator proposed so far in the literature [15]
is the following:

β̂std := C(max(1, γs)/|S|)|R|, (12)

where γs equals c_gamma produced by gamma-sampling. Fur-
ther, |S| denotes the sample size, ’/’ and max are applied
componentwise, and C denotes the complete design matrix.
Let us call this estimator Eststd. It corresponds to an ex-
tension of EstS to a vector of estimates.

Let us now extend α and ω to vectors by defining

~α(x)[i] := α(n,m, x[i])

~ω(x)[i] := ω(n,m, x[i])

for i = 0, . . . , 2z−1, where n is the relation size and m is the
sample size. Additionally, we will need the componentwise
geometric mean of these two bounds. Thus, we first define



for two vectors x, y ∈ Rn with x ≤ y and 0 < y, the vector
q-mid(x, y) ∈ Rn such that

q-mid(x, y)[i] :=
√

max(1, x[i]) ∗ y[i]

for all 1 ≤ i ≤ n. Then, for a given vector x ∈ Rn with
x ≥ 0, we define

~µ(x) := q-mid(~α(x), ~ω(x)).

6.3.2 Estimator E5
The idea of the first new estimator proposed here is to

use the probabilistic boundaries described in Section 4 to
produce probabilistic bounds for all components of γ. In
order to minimize the q-error, we take the geometric mean
of these bounds as a first approximation of our γ-estimate.
Then, as it is known that the sum of all components of γ
must equal the cardinality of the original relation/view, we
scale the γ-estimates linearly and equally. The estimates

β̂E5 for β are then calculated as

β̂E5 := C ∗ (s ∗ ~µ(γs)), (13)

where C is the complete design matrix and γs equals c_gamma
produced by gamma-sampling.

The scaling constant s assures that the sum of the ad-
justed γ-estimates still equals the total cardinality of the
relation or view R. It is thus defined as

s :=
|R|∑n

i=1 ~µ(γs)[i]
.

6.3.3 Estimator E6
The idea of this new estimator is to use the bounds and

geometric mean on the β-side. The estimates β̂E6 for β are
then calculated as

β̂E6 := ~µ(Cγs), (14)

where C is the complete design matrix and γs equals c_gamma
produced by gamma-sampling.

6.4 Evaluation
Since many estimates are produced, we examine the max-

imum of all q-errors of all components in the estimate for β.
An excerpt of our experiments can be found in Fig. 4. The
figure shows experiments for the forest dataset and the wtr
dataset (see Appendix B for details). Further, we consider
z = 5 and z = 7 predicates (also called boolean factors). On
the x-axis we find the number of qualifying sample tuples
k and on the y-axis the maximum q-error of estimates β[i]
for 0 ≤ i < 2z over all queries. We see that both E5 and
E6 are superior to Eststd. Further, E6 clearly outperforms
E5. Still, for very small numbers of qualifying sample tuples
(k < 5), the maximal q-errors are unacceptably high.

7. JOIN SELECTIVITY ESTIMATES
Consider two relations R and S. Assume both have an

attribute a. Further, we assume that a is the key in R and
a foreign key in S. The problem we consider is to produce
an estimate for

|σpR(R) B σpS (S)|, (15)

where pR and pS are selection predicates. We solve this
problem by two well-known sampling techniques: correlated

sampling (CS2) [21] and two-level sampling (TLS) [7]). We
also take a look at simple random sampling (SRS) [1], which
simply takes a random sample from the join. This can be
done quite efficiently in the presence of indices [12, 18], even
in case of many joins [6, 22].

Correlated sampling roughly works as follows. First, a
random sample

V := Sample(ΠD
a (R) ∩ΠD

a (S)) (16)

of the distinct values occurring in the join attributes is taken.
Then, for both relations R and S those tuples with an a-
value in D are selected to yield the samples for R and S:

Sample(R) := σa∈V (R),

Sample(S) := σa∈V (S).

Note that there is no randomness applied here to select the
tuples from R and S: simply all of them with an a-value in
V are selected.

Two-level sampling deviates in the second step. Instead
of selecting all tuples from R and S whose a-value occurs in
V , one tuple of R and S is randomly drawn for each value
in V , this tuple is called the sentry. Then, more tuples are
drawn with a certain probability. For every distinct value
v ∈ D, we denote by rv the sentries of R and by sv the
sentries from S. Then, two-level sampling can be described
as

rv ∈ σa=v(R) drawn randomly for all v ∈ V,
sv ∈ σa=v(S) drawn randomly for all v ∈ V,

Sample(R) := Sample(σa∈V (R) \ {rv|v ∈ V }) ∪ {rv|v ∈ V },
Sample(S) := Sample(σa∈V (S) \ {sv|v ∈ V }) ∪ {sv|v ∈ V }.

In both cases (CS2 and TLS), we are left with two samples
Sample(R) and Sample(S) of R and S. The size of the join
of these two samples is our sample size m, the size |R B S|
is our total size n, and the number of tuples in the join of
the samples satisfying the predicates pR and pS gives our k:

n = |RB S| (17)

m = |Sample(R) B Sample(S)| (18)

k = |σpR∧pS (Sample(R) B Sample(S))| (19)

Now, we can calculate α(n,m, k), ω(n,m, k), the estimate
µ(n,m, k) and its maximum q-error ρ(n,m, k).

To evaluate the precision of the estimator ESTM , which
returns µ(n,m, k), for the join size problem (15), we con-
ducted the following experiment. We generated two rela-
tions R(a, b, c) and S(a, d, e) with three attributes each. We
fixed the size of R to 105 and the size of S to 106. The values
are generated as follows:

• R.a is the key ofR and contains the numbers in [0, |R|−
1] exactly once.

• S.a is a foreign key referencing R.a. These numbers
are exponentially distributed with parameter λ and a
possible shift s.

• R.b and S.d are exponentially distributed with param-
eter λ and a possible shift s in the range [0 : 99999].

• R.c and S.e are copies of R.a and S.a resp.



For the exponential distribution, we use λ ∈ {1, 5, 10}. λ = 1
is mildly non-uniform, λ = 5 is pretty skewed and λ =
10 is highly skewed (see below). Since zero is always the
most frequent number under exponential distribution, we
added a shift s. A number for R.b, S.a, and S.d is generated
according to

brndexp,λ ∗ n+ sc mod n,

where rndexp,λ generates exponentially distributed floating
point numbers in [0, 1] and n = 100000. We examined 19
shifts s between 0 and 900 in steps of 50. For any of these
s, we derive the actual shifts for the attributes R.b, S.a, and
S.d by s/2, s, and 2 ∗ s, resp.

For our experiments, we use randomly generated range
queries on b, c, d, and e. Thus, we produce estimates for

|σb/c∈[blo,bhi](R) B σd/e∈[clo,chi]|, (20)

where blo, bhi, clo, and chi are randomly chosen constants.
For every relation instance, we generated 10000 random
queries for each of the four attribute combinations (b, d),
(b, e), (c, d), (c, e).

Both sampling methods were instructed to generate a sam-
ple such that |Sample(R)| + |Sample(S)| ≈ 0.01(|R| + |S|).
The sizes of the join of the samples were on average 15585
for TLS, 19982 for CS2. For SRS we chose 16500 as the
sample size. This corresponds to a sample fraction of 1.6%
of RB S.

Before we get to the evaluation of the different sampling
methods and estimators, let us take a brief look at the pre-
cision of the very simple estimator IDP:

(|σpR(R)|/|R|) ∗ (|σpS (S)/|S|) ∗ |RB S| (21)

Thus, IDP builds on the independence of the selection pred-
icates pR and pS . Its estimates have the following q-errors:

λ max avg
1 1.7 1.1
5 65.2 2.4

10 10902.9 36.6

The following table contains the theoretical q-errors (ρ-
values) for SRS for k = 0, . . . , 7:

k 0 1 2 3 4 5 6 7
ρ 26.3 29.2 22.2 16.7 11.1 8.4 6.7 5.7

The results of our experiments are shown in Tables 6, 7
and 8. Table 6 contains the maximum and average q-error
for every estimator. Tables 7 and 8 show the maximum
and average θ,q-errors for θ = 100. The first column con-
tains the parameter λ of the exponential distribution. The
second column k contains the number of qualifying sample
tuples. Under the original column, we find the aggregated
q-errors of the original estimators, as proposed in the accord-
ing papers. Under ESTM , we find the aggregated q-errors
of the estimate µ(n,m, k). In Tables 7 and 8, we also find
the aggregated q-errors of the estimator ESTT .

We would like to highlight the following findings from Ta-
ble 6:

1. Comparing the maximal q-errors produced by SRS us-
ing ESTM , we find that they are very close to the
theoretical q-error ρ given in the table above.

2. IDP is superior to all sampling methods for λ = 1.
Even for λ = 5, it provides better or comparable esti-
mates for k = 0 or k = 1.

3. Comparing the original estimators of CS2 and TLS,
we find TLS being mostly superior to CS2 for λ = 1.
For higher λ, there is no clear picture.

4. For SRS, the estimator ESTM is always superior to
ESTS .

5. Compared to the original estimators for CS2 and TLS,
ESTM can reduce the maximum q-error for k = 0 sig-
nificantly. For larger k, there is no clear picture.

6. ESTM performs better on TLS than on CS2.

The latter can be explained by the fact that CS2 is not really
a random sample of the join. This is also true for TLS, but
to a lesser extent.

For the evaluation of the θ,q-errror, we used a small θ of
100. The maximum and average 100, q-errors are shown in
Tables 7 and 8. Observe that ESTT is in almost all cases
the best estimator. Further, for λ = 1 and zero qualifying
sample tuples (k = 0), it allows us the reduce the maximum
100, q-error from 2538, 689, and 432 to 25.4, 6.9 and 4.3 in
case of CS2, TLS, and SRS, resp. The reductions are as
impressive for λ = 5, 10 and k = 0. The effect vanishes
for larger k in case of CS2 and TLS. Further, for k = 0 and
λ = 1, the average 100, q-error can be reduced from 242, 181,
160 to 2.4, 1.8, 1.6 for CS2, TLS, SRS, resp. For λ = 5, 10,
the results are similar.

8. CONCLUSION
We presented two new estimators EstM and EstT to more

precisely estimate the result cardinality of selections and
joins. Further, we hope that we sharpened the reader’s intu-
ition about the precision of estimates produced by sampling
using either the standard or the new estimators.

An interesting question for future research is the follow-
ing. Whereas TLS was successfully designed to minimize the
variance of the estimates, it would be interesting to know
whether there exists a sampling method that minimizes the
q-error.

APPENDIX
A. WHY Q?

This section reviews some findings which motivate the us-
age of the q-error instead of other error metrics. We start by
reviewing a theorem from [20]. We introduce the following
abbreviation:

‖y‖Q := max{y, 1/y}.

Let x > 0 be a value and x̂ > 0 be an estimate for x. Then,
the q-error of the estimate x̂ is defined as

q-error(x̂) := ‖x̂/x‖Q .

Note that the q-error is quite old (see, e.g., [5, 11]) and
already found its way into textbooks (see, e.g., [8]).

Let C(e) denote the result of some cost function applied
to some algebraic expression e, and let M(e) denote the



max q-error avg q-error
CS2 TLS SRS CS2 TLS SRS

λ k orig ESTM orig ESTM ESTS ESTM orig ESTM orig ESTM ESTS ESTM
1 0 2538.0 105.8 689.0 27.3 432.0 26.3 79.3 4.8 70.4 4.1 56.5 3.9
1 1 25.0 47.0 46.7 32.2 61.0 29.2 2.7 4.3 4.3 4.9 2.4 4.1
1 2 20.0 26.8 26.6 23.6 20.2 19.9 2.1 4.1 2.7 4.7 1.9 4.0
1 3 50.0 21.9 17.2 19.7 6.7 11.9 1.9 3.5 2.1 4.3 1.7 3.5
1 4 12.5 18.9 9.3 12.7 8.1 7.3 1.7 2.9 1.8 3.3 1.6 2.7
1 5 14.7 13.9 12.8 8.4 5.0 6.8 1.6 2.4 1.7 2.6 1.5 2.2
1 6 10.0 10.8 7.8 7.7 3.8 5.6 1.5 2.1 1.6 2.3 1.4 2.0
1 7 10.3 8.3 6.4 6.6 3.5 4.7 1.5 1.9 1.5 2.1 1.4 1.8
5 0 2586.0 108.0 757.0 28.0 519.0 26.3 80.2 5.2 53.0 4.5 45.4 4.0
5 1 69.1 130.9 168.0 34.8 61.0 29.2 3.1 4.8 5.4 4.2 2.4 3.7
5 2 50.0 80.4 68.0 27.0 40.3 17.3 2.3 4.4 3.1 4.1 1.9 3.7
5 3 25.3 62.5 29.6 18.5 18.2 13.0 2.0 3.8 2.5 3.7 1.7 3.3
5 4 14.5 32.1 22.8 14.4 12.1 9.2 1.8 3.1 2.2 2.9 1.5 2.6
5 5 31.3 23.4 14.6 24.1 8.2 7.0 1.7 2.5 2.0 2.6 1.5 2.2
5 6 18.8 16.2 11.2 16.1 6.9 5.5 1.6 2.1 1.9 2.3 1.4 1.9
5 7 29.2 18.6 10.9 14.3 5.1 4.8 1.6 2.0 1.8 2.3 1.4 1.8

10 0 3795.0 159.8 1003.0 37.0 814.0 30.9 71.6 7.6 31.6 7.8 25.1 6.9
10 1 104.5 198.1 266.7 31.7 61.0 33.6 4.2 5.9 5.4 5.5 3.0 3.4
10 2 52.2 130.0 116.4 26.6 60.5 22.2 3.0 5.2 3.3 4.7 2.0 3.3
10 3 50.0 96.2 45.9 22.9 30.3 16.6 2.3 4.0 2.4 4.3 1.7 3.1
10 4 50.0 76.6 28.3 22.8 12.1 9.5 2.1 3.2 2.1 3.8 1.6 2.4
10 5 50.0 34.0 24.2 33.8 9.8 7.0 2.1 2.7 1.9 3.5 1.5 2.1
10 6 42.9 25.0 23.4 32.1 9.3 5.8 1.8 2.3 1.8 3.4 1.5 1.9
10 7 50.0 31.9 36.0 26.2 4.8 4.8 1.9 2.2 1.7 3.4 1.4 1.7

Table 6: Q-errors of different sampling approaches and estimators

CS2 TLS SRS
λ k orig ESTM ESTT orig ESTM ESTT ESTS ESTM ESTT
1 0 2538.0 105.8 25.4 689.0 25.3 6.9 432.0 16.4 4.3
1 1 24.8 47.0 12.4 46.7 32.2 9.7 9.2 19.1 5.6
1 2 10.8 26.8 10.8 26.6 23.6 10.9 20.2 19.9 8.9
1 3 50.0 21.9 13.2 17.2 19.7 13.6 6.7 11.9 7.9
1 4 12.5 18.9 16.9 9.3 12.7 12.7 8.1 7.3 7.3
1 5 14.7 13.9 13.9 12.8 8.4 8.4 5.0 6.8 6.7
1 6 10.0 10.8 10.8 7.8 7.7 7.7 3.8 5.6 5.6
1 7 10.3 8.3 8.3 6.4 6.6 6.6 3.5 4.7 4.7
5 0 2586.0 108.0 25.9 757.0 28.0 7.6 519.0 19.7 5.2
5 1 69.1 130.9 34.5 168.0 34.8 10.4 10.6 22.2 6.5
5 2 32.4 80.4 32.4 68.0 27.0 12.3 40.3 17.3 7.7
5 3 25.3 62.5 38.0 29.6 18.5 12.7 18.2 13.0 8.7
5 4 14.5 32.1 29.0 22.8 14.4 14.4 12.1 9.2 9.2
5 5 31.3 23.4 23.4 14.6 24.1 24.1 8.2 7.0 7.0
5 6 18.8 16.2 16.2 11.2 16.1 16.1 6.9 5.5 5.5
5 7 29.2 18.6 18.6 10.9 14.3 14.3 5.1 4.8 4.8

10 0 3795.0 159.8 38.0 1003.0 37.0 10.0 814.0 30.9 8.1
10 1 104.5 198.1 52.3 266.7 31.7 9.5 16.1 33.6 9.8
10 2 52.2 130.0 52.2 116.4 26.6 12.2 60.5 19.7 8.8
10 3 50.0 96.2 58.0 45.9 20.9 14.4 30.3 16.6 11.1
10 4 50.0 76.6 68.7 28.3 22.8 22.8 12.1 9.5 9.5
10 5 50.0 34.0 34.0 24.2 33.8 33.8 9.8 7.0 7.0
10 6 42.9 25.0 25.0 23.4 32.1 32.1 9.3 5.8 5.8
10 7 50.0 31.9 31.9 36.0 26.2 26.2 4.8 4.8 4.8

Table 7: Maximum 100,q-errors of different sampling approaches and estimators



CS2 TLS SRS
λ k orig ESTM ESTT orig ESTM ESTT ESTS ESTM ESTT
1 0 242.7 10.2 2.4 181.5 6.7 1.8 160.6 6.1 1.6
1 1 3.8 7.1 1.9 4.9 7.1 2.1 3.0 6.4 1.9
1 2 2.1 5.2 2.1 2.7 5.6 2.6 1.9 4.7 2.1
1 3 1.9 3.9 2.4 2.1 4.5 3.1 1.7 3.7 2.5
1 4 1.7 3.1 2.7 1.8 3.3 3.3 1.6 2.7 2.7
1 5 1.6 2.4 2.4 1.7 2.6 2.6 1.5 2.2 2.2
1 6 1.5 2.1 2.1 1.6 2.3 2.3 1.4 2.0 2.0
1 7 1.5 1.9 1.9 1.5 2.1 2.1 1.4 1.8 1.8
5 0 279.4 11.7 2.8 182.1 6.7 1.8 153.7 5.8 1.5
5 1 4.8 9.0 2.4 7.4 6.8 2.0 2.9 6.0 1.8
5 2 2.4 5.9 2.4 3.4 5.3 2.4 1.9 4.6 2.0
5 3 2.0 4.4 2.6 2.6 4.3 2.9 1.7 3.6 2.4
5 4 1.8 3.3 2.9 2.2 2.9 2.9 1.5 2.6 2.6
5 5 1.7 2.5 2.5 2.0 2.6 2.6 1.5 2.2 2.2
5 6 1.6 2.1 2.1 1.9 2.3 2.3 1.4 1.9 1.9
5 7 1.6 2.0 2.0 1.8 2.3 2.3 1.4 1.8 1.8

10 0 351.3 14.7 3.5 174.9 6.5 1.7 149.1 5.7 1.5
10 1 6.9 13.1 3.5 7.2 6.9 2.1 2.7 5.7 1.7
10 2 3.2 8.0 3.2 3.8 5.6 2.6 2.0 4.3 1.9
10 3 2.3 4.8 2.9 2.6 4.5 3.1 1.7 3.4 2.3
10 4 2.1 3.4 3.1 2.2 3.8 3.8 1.6 2.4 2.4
10 5 2.1 2.7 2.7 2.0 3.5 3.5 1.5 2.1 2.1
10 6 1.8 2.3 2.3 1.9 3.4 3.4 1.5 1.9 1.9
10 7 1.9 2.2 2.2 1.8 3.4 3.4 1.4 1.7 1.7

Table 8: Average 100,q-errors of different sampling approaches and estimators

true measured costs (e.g., runtime). Then, according to our
definition, the q-error of the cost function C(e) is

q-error(C(e)) = ‖C(e)/M(e)‖Q .

Let E = {e1, . . . , ek} denote a set of plans. This set could be,
for example, a set of plans equivalent to a given query and
generated/explored by the plan generator. Further, let eopt
be the optimal plan for a query Q, minimizing M(e), and
ebest the best plan, minimizing C(e). We are now interested
in the factor by which the true costs of ebest are larger than
the true costs of the optimal plan eopt. An upper bound for
this factor is given in the following theorem.

Theorem A.1. If for all ei ∈ E

‖C(ei)/M(ei)‖Q ≤ q

for some q, then

‖M(ebest)/M(eopt)‖Q ≤ q
2.

An important corollary to the theorem is:

Corollary A.2. If for all ei ∈ E

‖C(ei)/M(ei)‖Q ≤ q

for some q and for all ei 6= eopt

q <
√
‖M(ei)/M(eopt)‖Q,

then

M(ebest) =M(eopt).

That is, if we are able to make the q-error of our cost function
small enough, then the corollary guarantees that we will find
an optimal plan.

As input, cost functions take some cardinalities. In order
to prove a result similar to Theorem A.1, the propagation
of q-errors through cost functions has to be analyzed. This
has been done in [20] for some cost functions, e.g., for hash
joins. The results given there show that if the q-error of
cardinality estimates is below q, then

‖M(ebest)/M(eopt)‖Q ≤ q
4.

Here, we have to assume that the cost function is precise
and errors only occur for the cardinality estimates. For de-
tails, an analogue to Corollary A.2 and more arguments,
we refer the reader to [20]. For example, Ioannidis and
Christodoulakis showed that errors propagate exponentially
through joins [14]. While they use the relative error, a sim-
ilar result can be shown for the q-error.

If both the cost function and the cardinality estimates
contain errors, their q-errors multiply. Further note that
the bounds given are tight. Comparing a quality loss of a
factor of q2 for cost function errors to the loss of a factor of q4

for cardinality estimation errors leaves us to conclude that
cardinality estimation errors are worse than cost function
errors. The authors of [17] draw the same conclusion from
their experiments.

B. COMPARING α∗, ω∗ TO α, ω
Let R be a relation in n = |R| tuples, S = {S1, . . . , Sz} a

set of z samples of size m = |Sj | and P = {p1, . . . , py} a set
of y predicates on R. Define li := |σpi(R)| as the number
of tuples in R satisfying pi and ki,j := |σpi(Sj)| to be the



number of qualifying sample tuples from Sj for pi. Then, the
ki,j for any given i will be hypergeometrically distributed,
independent of the dataset.

To show some experimental results illustrating this, con-
sider Tables 9 and 10. The first column contains k and the
last column the number of times k = ki,j , i.e., the total
number of observations of a number k of qualifying sample
tuples. We define

α∗(k) := min
i,j
{li|ki,j = k},

ω∗(k) := max
i,j
{li|ki,j = k}.

Further, α and ω are determined as in Eqns. 2 and 3 for
ε = 10−5. Finally, #(li < α) and #(li > ω) denote the
number of cases where li is below α or above ω. For the
forest dataset, n = 581012, m = 1000, z = 100 different
samples were considered for y = 400000 random queries.
The wtr data set consists of the 7 attributes latitude, longi-
tude and altitude of the weather station where the measure-
ments took place, the day of the year when the measurement
was taken, the minimum and maximum temperature as well
as the precipitation measured. It was extracted from the
weather data provided by ftp.ncdc.noaa.gov for the year
1962. The dataset consists of n = 3474701 tuples, we chose
m = 10000 and generated z = 100 samples and y = 50000
random queries.

For both datasets, we observe that α∗ ≈ α and ω∗ ≈ ω.
Further, the number of cases where li < α or li > ω are rare.

C. FAST CALCULATION OF α AND ω
Since α and ω are used to produce better estimates, their

fast calculation is vital. This is especially true if we need
many estimates, as for E6. We start this part of the ap-
pendix by giving an exact method to calculate P in Sec. C.1.
This calculation allows us to calculate P not only for posi-
tive integers but also for floating point numbers. In order to
calculate α(n,m, k) and ω(n,m, k), we work on the natural
logarithm of this continuous definition of P. Define

f(x) := log(P(n,m, k, x))− log(ε) (22)

and x0 and x1 such that f(xi) = 0, x0 < nk/m, x1 > nk/m.
Then,

α(n,m, k) = dx0e,
ω(n,m, k) = bx1c.

Thus, the problem can be reduced to finding the roots of f .
There exist many possibilities to find the root of a func-

tion. The simplest is bisection [9, p73]. Others include fix-
point calculation [9, p79], Newton’s method [9, p78], Brent’s
algorithm [4], and TOMS Algorithm 748 by Alefeld, Potra,
and Shi[2]. Here, we present the fixpoint calculation and
Newton’s method.

C.1 Calculation of P
P can be evaluated using the lgamma function, which cal-

culates the logarithm of the gamma function Γ. Define
F(x) := log(Γ(x + 1)) (since n! = Γ(n + 1)). This has the
advantage that P can then also be evaluated for non-integer

arguments. Using the definition of binomials, we have

P(n,m, l, k) =

(
n−l
m−k

)(
l
k

)(
n
m

)
=

(n−m)!m!

n! (m− k)! k!

∗ (n− l)! l!
((n−m) + (k − l))! (l − k)!

(23)

and, thus, we can calculate log(P(n,m, k, l)) by

log_prob(n,m,k,l)
if(0 == k)

return −F(n−m− l) + F(n− l)
+F(n−m)− F(n);

if(l == k)
return −F(m− k) + F(m) + F(n− k)− F(n);

return −F(k)− F(m− k) + F(m)
−F(l − k) + F(l)− F(n−m+ k − l)
+F(n− l) + F(n−m)− F(n);

The evaluation of lgamma needs approximately 18 ns, that
of P implemented using lgamma on average approximately
153 ns.

C.2 Approximation of P
Another way to evaluate F is to use Stirling’s approxima-

tion of factorials:

n! ≈
√

2πn(
n

e
)n =

√
2πnn+

1
2 e−n.

Replacing all factorials in Eqn. 23 by Stirling’s approxima-
tion and applying the logarithm, we get after some simplifi-
cations:

log(P(n,m, k, l)) ≈ −m− ln(d) +R+ l ∗N, (24)

where

d :=
n! (m− k)! k!

(n−m)!m!
(25)

≈
√

2πe−m
nn+

1
2 (m− k)(m−k)+

1
2 kk+

1
2

(n−m)(n−m)+ 1
2mm+ 1

2

,

R := +(n+
1

2
) ln(n− l) +

1

2
ln(l)

−(n−m+ k +
1

2
) ln(n−m+ k − l)

+(k − 1

2
) ln(l − k), (26)

N := ln(n−m+ k − l)− ln(n− l) + ln(l)

− ln(l − k). (27)

Note that d is independent of l, and N and R contain only
terms in which l occurs logarithmically. The evaluation of
log requires approximately 4.8 ns. The evalution of Eqn. 24
requires about 147 ns. This is not much of a gain, but
Eqn. 24 will be the basis for an efficient calculation of α and
ω. For small k, k! in d should be calculated exactly. Special
cases are required for k = 0, k = 1, and k = m. Since we
do not need α and ω for k ≥ η2(n,m), we ignore the latter
case here.

To treat the other two special cases, we define the selec-
tivity s := l/n and the sample fraction t := m/n. The rest
of the appendix assumes that 1− s− t ≥ 0.9, which assures
that subsequent approximations are relatively precise. Since



k α∗ ω∗ α ω #(li < α) #(li > ω) #obs
0 1 7251 0 6645 0 2 25337242
1 1 7706 1 8169 0 0 3913153
2 2 9540 4 9463 11 1 1742642
3 10 11088 25 10641 8 2 1067610
4 37 12577 77 11747 13 1 754422
5 124 12089 163 12800 7 0 574669
6 211 12782 280 13814 4 0 459945
7 309 14681 425 14797 9 0 379896
8 380 16217 594 15753 8 3 322437
9 613 16223 784 16689 4 0 277882

10 838 16052 994 17606 5 0 242548
11 990 18361 1219 18507 3 0 214886
12 1022 19536 1460 19394 2 1 191903
13 1467 20531 1714 20269 7 1 173017
14 1469 21831 1980 21132 1 2 158124
15 2313 20740 2256 21986 0 0 144492
16 2303 21894 2543 22830 3 0 132444
17 2402 22665 2839 23666 4 0 123376
18 3145 22864 3143 24494 0 0 114910
19 3216 24725 3455 25315 3 0 107034
20 3656 25051 3774 26129 1 0 99641

Table 9: Comparing α∗, ω∗ to α, ω: forest

k α∗ ω∗ α ω #(li < α) #(li > ω) #obs
0 1 3199 0 3992 0 0 4240748
1 1 4952 1 4911 0 1 178077
2 2 4544 3 5692 1 0 55821
3 29 5379 15 6405 0 0 31620
4 63 6519 47 7073 0 0 22428
5 113 7691 98 7710 0 0 16618
6 244 7296 168 8324 0 0 13832
7 346 7215 255 8918 0 0 11810
8 608 9359 356 9498 0 0 10386
9 494 8927 469 10065 0 0 9431

10 627 9017 594 10621 0 0 8654
11 730 9765 728 11167 0 0 7901
12 1005 10291 872 11705 0 0 7278
13 1245 10951 1023 12236 0 0 6699
14 1311 11109 1181 12760 0 0 6227
15 1490 11101 1346 13279 0 0 5665
16 1615 11714 1516 13791 0 0 5279
17 1990 13391 1692 14299 0 0 4913
18 1811 12794 1873 14803 1 0 4659
19 2705 13304 2058 15302 0 0 4240
20 2546 13431 2248 15797 0 0 3877

Table 10: Comparing α∗, ω∗ to α, ω: wtr



the sample fraction is at most a low single digit percentage,
and α and ω are only needed for low selectivities (cf. Table 5,
λ-column), this is no restriction in practice.

Using s and t, we have the following two approximations
for k = 0:

log(P(n,m, 0, l)) ≈ −stn, (28)

log(P(n,m, 0, l)) ≈ −stn(1 + 0.5s), (29)

where the latter approximation is a little bit more precise.
Deriving these approximations is quite tedious, but the main
idea is to use the approximations log(x) ≈ (x − 1) and
x log(x) ≈ x − 1, where additionally log(x) ≤ (x − 1) and
x log(x) ≥ x− 1 for x ∈ [0.9, 1]. We apply both approxima-
tions in turn to Eqn. 24 and then take the arithmetic mean
of the two resulting approximations.

Using

P(n,m, 1, l) =
lm

(n− l −m+ 1)
P(n,m, 0, l) (30)

and Eqn 28, it is easy to show that

log(P(n,m, 1, l)) ≈ log(n) + log(t) + log(s)− t+ (1− tn)s.
(31)

C.3 α, ω for k = 0

We have

α(n,m, 0) = 0,

ω(n,m, 0) ≈ − log(ε)
n

m
,

ω(n,m, 0) ≈ (
√

1− 2 log(ε)/(tn)− 1)n,

where the first equation is obvious. The latter two can easily
be derived using Eqn. 28 and Eqn. 29, resp.

C.4 α, ω for k = 1

To calculate α and ω for k = 1, we start by using Eqn. 31
and defining the following abbreviations:

a = 1− tn = (1−m),

b = log(ε)− log(n)− log(t) + t.

Then, we consider the following series of equivalent equali-
ties (in fact approximations only):

log(P(n,m, 1, l)) = ε,

log(s) + as = b,

s exp(as) = exp(b),

as exp(as) = a exp(b),

s =
W (a exp(b))

a
,

where W is the Lambert W function. Finally,

α(n,m, 1) ≈ dnW0(a exp(b))

a
e,

ω(n,m, 1) ≈ bnW−1(a exp(b))

a
c,

where W0 and W−1 are the two branches of the Lambert
W function. The Lambert W function can be implemented
efficiently using Fukushima’s excellent method [10], which
executes in roughly 37 ns.

C.5 α, ω for k > 1: Fixpoint
We start by solving Eqn. 24 for l, which yields:

l =
ln(ε) +m+ ln(d)−R

N
. (32)

Using this, it is easy to derive the following fixpoint proce-
dure:

fixpoint(n, m, k, lstart)
calculate d according Eqn. 25

e = log(ε) +m+ log(d)
l = lstart
do {

lold = l
calculate R according to Eqn. 26

calculate N according to Eqn. 27

l = (e−R)/N
} while(0.1 < |lold − l|)
return l;

C.6 α, ω for k > 1: Newton
Newton’s method requires the derivative of f . We use an

approximation of the derivative of f derived from plugging
Eqn. 24 into the definition of f (Eqn. 22) for log(P(·)) and
then calculating the derivative of this approximation of f .
For convenience, we give this derivative here:

f ′(x) ≈ (k −m+ n+ 0.5)/(k −m+ n− x)

−x/(k −m+ (n− x))

+ log(k)−m+ (n− x))

+(k − 0.5)/(x− k)

−x/(x− k)

− log(x− k)

−(n+ 0.5)/(n− x)

+x/(n− x)

− log(n− x)

+0.5/x+ log(x) + 1

Although Newton’s method is well known, we give its pseu-
docode:

newton(n, m, k, lstart)
l = lstart
do {

l = l − f(l)
f ′(l) // note: f, f ′ need n,m, k, l

} while(0.0001 < |l|)
return l;

C.7 α, ω for k > 1: Initial Value
Both the fixpoint procedure and Newton’s method need a

start value. We use for α

lstart :=



8n
11m

k if m < 3 ∗ k
0.4 n

m
k if 50 < k

0.3 n
m
k if 30 < k

0.2 n
m
k if 20 < k

0.1 n
m
k if 12 < k

n
xkm

k else,

where xk = 500, 80, 40, 20, 15, 10, 8, 7, 6, 6, 5 for k = 2, 3, . . . , 12.



For ω, we use

lstart :=



min(1.01 ∗ n
m
k, n− 10) if k > 0.95 ∗m

1.04 n
m
k if k > 0.9 ∗m

1.06 n
m
k if k > 0.8 ∗m

1.09 n
m
k if k > 0.7 ∗m

1.13 n
m
k if k > 0.6 ∗m

1.17 n
m
k if k > 0.4 ∗m

1.20 n
m
k if k > 0.3 ∗m

n/(m ∗ (0.75/(10 + 1.7 ∗ k))) else.

C.8 Runtime
The following table gives the time to calculate α and ω

via the three approaches discussed above.

runtime [ns]
bisection fixpoint Newton

α 2149 216 229
ω 3731 524 372

We consider Newton’s method to be the best. Since our im-
plementation of Newton’s method relies on approximations,
one might wonder about the error: the q-error is always less
than 1 + 7 ∗ 10−5.
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