
The Need for a New I/O Model
Tarikul Islam Papon

Boston University
Manos Athanassoulis

Boston University

Data-intensive applications performance is typically bounded by
the time needed to transfer data through the storage and memory
hierarchy. As a result, measuring and modeling disk I/O accesses is
used as a proxy to performance. The traditional I/O model [1] con-
siders a two-level memory hierarchy with a fast internal memory
of bounded size (memory) and a slow unbounded external mem-
ory (storage), which are both divided into fixed-size blocks. Any
computation requires to have the corresponding data blocks in
memory. Accessing storage is typically orders of magnitude slower
than accessing memory, thus, the traditional I/O model considers
only storage accesses. This modeling approach closely describes
reality when two key underlying assumptions hold: (i) disk reads
and writes have similar cost, and (ii) applications can perform one
I/O at a time. However, those two assumptions are not true for
solid-state disks (SSD). The mismatch between the I/O model and
contemporary devices is attributed to the fact that it was developed
for hard disk drives (HDD). HDDs have symmetric read-write per-
formance that is dominated by the seek time and rotational delay.
The mechanical components of HDDs, further, do not allow them
to serve multiple concurrent requests, since each request has to
individually go through the costly mechanical movement.
Read/Write Asymmetry and Concurrency. A key property of
SSDs (both off-the-shelf SATA, and high-end NVMe and PCIe de-
vices) is the erase-before-write. To overwrite a previously written
location, the corresponding location must first be erased before
writing new data, leading to a significant read-write asymme-
try [3]. The level of this asymmetry depends on the specific device
as well as the type of access (sequential/random).

Another fundamental design property of SSDs is their internal
parallelism in various levels (e.g., channel, chip, die, plane), which
can be exploited to increase performance [2]. In other words, a
device needs to receive multiple concurrent I/Os to reach its full
bandwidth. The level of concurrency needed to saturate the device
depends on the request type (read or write), as well as the prop-
erties of the specific device. Figure 1(A) shows the comparison of
several recent Intel SSDs with respect to both their asymmetry and
concurrency. The listed devices have asymmetry between 2× and
15.4× and concurrency between 7 and 18.

It is essential to know the level of parallelism of a specific device,
which in turn enables servicing concurrent requests, otherwise
the device may remain vastly underutilized. Figures 1(B) and 1(C)
show the impact of concurrency as well as asymmetry. Specifically,
Figure 1(B) shows the sustained read and write bandwidth when
issuing requests on a PCIe SSD device using 1 and 8 threads. We
observe that by increasing the concurrency from 1 to 8, there is
a 6.6× increase in read bandwidth and 2× increase in write band-
width. In other words, by matching the concurrency supported
by the device (and hence using 8 concurrent threads) we fully uti-
lize this device. Figure 1(C) depicts the impact of asymmetry and
concurrency combined, when considering a specific storage access
component of a Database Management System (DBMS). We focus

(A)

0

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16 18

A
sy

m
m

et
ry

 (
R

an
do

m
 R

/W
)

Concurrency (#channels)

Optane Series

Non-Optane Series

Sequental Asymmetry
5

1

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 L
at

en
cy

LRU Our Approach

0

500

1000

1500

2000

#conc.
I/Os=1

#conc.
I/Os=8

B
an

dw
id

th
 (

M
B

ps
)

Read Write

Device with 
⍺ = 1

Device with
⍺ = 8

(C) (B)

Figure 1: (A) Asymmetry and Concurrency in recent In-
tel SSDs. (B) Increasing concurrency increases device band-
width. (C) Considering asymmetry helps significantly more.

on the bufferpool of a DBMS, which is the component that sits
between the application (which is the SQL workload in this case)
and the storage device. The figure shows the latency of executing
a transactional workload in a bufferpool that uses LRU to evict
page (green bars), and a new asymmetry/concurrency-aware evic-
tion policy that batches write-back requests (from bufferpool to the
disk) in a storage-aware manner (yellow bars). Both experiments
are shown for a device with no asymmetry (behaving like a HDD)
and a device with an asymmetry level of 8×. For each device, the
latency is normalized with respect to LRU. We observe that our
asymmetry/concurrency-aware algorithm has a 1.5× speedup for no
asymmetry, while the benefit increases to 3.65× with asymmetry 8,
because we treat reads and writes differently, by taking into account
the different latency they have on the specific device.

The question we set out to answer is: How should the I/O model
be adapted in light of read/write asymmetry and concurrency?
The Need for a New I/O Model. To answer this question, we
propose a simple yet expressive storage model, that considers asym-
metry (α ) and concurrency (k) as parameters. This richer I/O model
is able to capture contemporary state-of-the-art (and future) devices.
By capturing α and k , we can make device-specific decisions at al-
gorithm design time, rather than as an optimization during deploy-
ment and testing. Specifically, we envision better algorithm design
for almost any component of a system that interacts with storage.
For example, by making asymmetry and concurrency-aware deci-
sions, a bufferpool will not trade one read for one write when it is
saturated, rather it will attempt to prioritize multiple concurrent
writes on the device and potentially some speculative concurrent
reads. As another example, algorithms for tree and graph traversal
will be able to access multiple nodes concurrently and avoid the
classical sequential paradigm of accessing one node at a time, of-
fering the same worst-case guarantees with faster search time on
average. Overall, incorporating α and k in algorithm design allows
for customizability for different devices which leads tomore faithful
storage modeling and, ultimately, to better device utilization.

REFERENCES
[1] Alok Aggarwal and Jeffrey Scott Vitter. The Input/Output Complexity of Sorting

and Related Problems. CACM 31, 9 (1988).
[2] Feng Chen et al. Essential roles of exploiting internal parallelism of flash memory

based solid state drives in high-speed data processing. HPCA (2011).
[3] Michael Cornwell. Anatomy of a solid-state drive. CACM 55, 12 (2012).


	References

