Using Deep Learning Models to Replace Large Materialized
Views in Relational Database

Jia Zou
Arizona State University

jia.zou@asu.edu

Materialized views are "materialized” result sets of database
queries. It is widely used to accelerate query executions.
However, "no gain is with no pains”, the memory and storage
space used to materialize a large view (e.g., the join output
of two large tables) could be expensive and thus sometimes
it is inhibitive to have such large materialized views. In the
recent decades, with the advances in heterogeneous hard-
ware such as Graphic Processing Unit (GPU), deep learning
has demonstrated its capability in accurately modeling non-
linear relationships with acceptable training and inference
costs. If we see a query as a function of mapping individ-
ual table cells to the position in the output table, indexed
by attributes and row keys, the question is whether we can
learn this relationship using a neural network model? If so,
we may utilize the trained models to replace materialized
views. Each of the subsequent queries against the views can
thus be transformed into a set of inference tasks that request
to map the individual source table cells to the positions in
the view, as illustrated in Fig. 1.

Select Orders.TotalPrice

From Orders, Customers

Where Orders.CustKey = Customers.CustKey
AND Zipeode=85247

[orierer [cusier | toutprice] orderdate | Name | _aduress|_zipcode|
wor w0 100 osoie e s
w0 osoieo w5207
s oo s0 | osoiom

Select Orders. TotalPrice
From View
Where Zipcode=85247

0001 0001 10.0 08012020
o o2 o000 osorao
o o050 osorao

0o w >

F
H 85249
G 85247

0004 0003 20000 08012020
0004 0003 20000 08012020

[coker | Name | adgaren | zipcose |
0001 A E 85248
0002 B E 85247 predict(Zipcode: 85247)
0003 c G 85247 => (0002, 0002). (0004, 0003)
0007 D H 5249 Select Orders. TotalPrice

From Orders
Where OrderKey=0002

Select Orders. TotalPrice

From Orders, Customers =
Where Orders.CustKey = Customers CustKey Select Orders.TotalPrice
AND Zipcode=85247 From Orders

Where OrderKey=0004

Figure 1: Learning-based materialization view

This work discusses two critical questions: (1) What are
the benefits and costs of using deep learning models to re-
place materialized views? (2) How is it possible to train a
neural network model to replace a materialized view?

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2021.
11th Annual Conference on Innovative Data Systems Research (CIDR ‘21)
January 10-13, 2021, Chaminade, USA.

Benefits vs. Costs. Reduction in storage overhead is a main
benefit. Deep learning models usually have significantly
smaller sizes compared to today’s open datasets. For ex-
ample, the size of the largest known model (i.e. GPT3 has
175 billion parameters) is significantly smaller than many
enterprise datasets that are at petabytes’ level. Among the
text embedding models that are available on TensorFlow
hub, the largest dataset used is common crawl that has 220
Terabytes in size, and 2.6 billions of tuples. However, the
embedding model trained on the common crawl dataset, us-
ing the language-agnostic BERT sentence embedding model,
is just 1.63 Gigabytes in size. There is significant saving in
storage overhead.

The costs associated with the deep learning approach are
mainly in its training overhead and the inference latency.
We find that the training data can be automatically cre-
ated from the view results, and the training overhead can
be amortized to many inferences. In addition, the inference
requests regarding individual source table cells are indepen-
dent with each other and can be concurrently served using
a distributed set of GPUs. Moreover, there is no physical
join operations required anymore, thus there is no need to
handle explosive intermediate data and expensive shuffling
operations. Another issue is that errors may be brought by
the deep learning approach. However many Big Data appli-
cations are error-tolerable, as long as the majority of source
cells are correctly mapped to the output table.

Preliminary Representation and Modeling Design. For the
feature representation, each cell is annotated using the cell’s
context, such as attribute name and row key in its source ta-
ble, forming a sequence of tokens, which is then transformed
into a sequence of vectors through a pre-trained embedding.

Regarding the design of the label space, logically each
position in the output view can be indexed by the attribute
name, and row key. It is easy to derive the set of attributes
from the query, and the set of row keys for join operations
that are with 1-1 mapping (i.e., two tables join on the shared
key, like joining populations and coronavirus cases on the
county attribute); and 1-N mapping (i.e., two tables join on
a foreign key, e.g., joining customers and orders on custkey).
While it requires a join to obtain a set of possible keys for
the M-N join cases, we only need to perform it once and
the join results can be discarded after training. Then the
label space is formulated as a probability distribution over
attributes and row keys. We can determine the position(s) of
an individual cell by sampling the probability distribution.

The view can be discarded once the model is trained, thus
the expensive memory and storage space will be saved.

