Putting Pandas in a Box

Stefan Hagedorn
TU limenau, Germany
stefan.hagedorn@tu-
ilmenau.de

ABSTRACT

Pandas — the Python Data Analysis Library — is a powerful
and widely used framework for data analytics. In this work
we present our approach to push down the computational
part of Pandas scripts into the DBMS by using a transpiler.
In addition to basic data processing operations, our approach
also supports access to external data stored in files instead
of the DBMS. Moreover, user-defined Python functions are
transformed automatically to SQL UDFs executed in the
DBMS. The latter allows the integration of complex com-
putational tasks including machine learning. We show the
usage of this feature to implement a so-called model join, i.e.
applying pre-trained ML models to data in SQL tables.

1. INTRODUCTION

Data scientists and analysts regularly need to process large
amounts of data. The Python Pandas framework is the de-
facto standard for reading data from different sources and
formats and processing it. The processing scripts can be
arbitrarily complex and include various kinds of operations.
Typical operations are filtering, projection to certain columns
or grouping, but also applying some user defined functions,
e.g., for transformations. In recent years, the usage of ma-
chine learning (ML) models has become quite popular and
several frameworks for Python have been developed to create,
train, and apply different artificial neural networks on some
input data. Such models can of course also be applied to
data initially loaded and pre-processed with Pandas.

However, companies often have their actual data in database
management systems (DBMS) for efficient storage, retrieval
and processing, rather than in multiple (text) files. Pro-
cessing such data with Pandas would mean to transfer the
(complete) data from the database server to the client ma-
chine to process it there in Python. Not only the large
transfer costs, but also the limited client memory impacts
the usability of this approach, as data might exceed typical
client memory amounts. This is reinforced by the fact that
Pandas operations often create copies of the internal data

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2021.
CIDR ’21 January 10-13, 2021, Chaminade CA, USA

Steffen Klabe
TU limenau, Germany

steffen.klaebe@tu-
ilmenau.de

Kai-Uwe Sattler
TU limenau, Germany

kus@tu-ilmenau.de

and therefore occupy even more of the client’s RAM and will
eventually fail. A solution would be to not bring the data
into the Python program (data shipping), but to bring the
program to the data (query shipping). Though, the latter
means the data scientists would need to write SQL queries
instead of Python programs to access the data, which is
often not desired since they are not familiar with SQL or the
problem is difficult to express.

In [4] we sketched our initial idea of the Grizzly framework,
a transpiler to generate SQL queries from a Pandas-like API.
The idea is to let users write a Python program locally and
send the generated SQL query to the DBMS storing the
data, which is optimized for processing large amounts of data
efficiently. In this paper we show the realization of the idea
and extend it with new features, namely support for external
files and Python functions. Our main contributions are:

e We provide a framework that creates SQL queries from
DataFrame operations, moving program complexity to
the optimized environment of a DBMS.

e Our framework supports the basic API of Pandas. This
way, we achieve high scalability and fast performance
while remaining the ease-of-use of Pandas.

e We extend the Pandas API with the possibility to
process external files directly in the database by using
DBMS specific external data source providers. This
especially enables the user to join files with the existing
data in the database directly in the DBMS.

e We move the complexity of user-defined functions to
the DBMS by exploiting the Python UDF support
of different DBMSs. This makes it possible to apply
pre-trained ML models to the data inside the database.

2. DATA SHIPPING VS. QUERY SHIPPING

Data shipping and query shipping [5] are two major
paradigms of data processing. Data shipping means that
data is moved to the environment where the computation
takes place, which is done in Pandas. On the contrary, query
shipping means that the actual program logic is moved to
the environment where data is situated in, e.g. a DBMS. In
this section, we discuss the advantages and disadvantages of
both paradigms and motivate our goal to combine the best
of both worlds.

Reasons to use Pandas. The core data structure in Pan-
das is the DataFrame. It is a tabular structure consisting of
columns and rows. Columns have a data type and an optional
name that can be used to reference columns. Furthermore, a
DataFrame can have an index column, which can be utilized
to directly access tuples/rows by value. The Pandas API

includes various operations that let users transform, filter,
and modify the DataFrame contents.

Since Pandas is just a framework to be used within any
Python program, it combines the advantages of a procedu-
ral programming language like loops, if-else branching or
modules and an algebra for data analyses and manipulation:

e The many different functions to access diverse data
sources (CSV, JSON, spreadsheets, database tables,
and many more) allow to focus on the actual data
processing instead of data loading and formatting.

e Pandas operations can be chained to solve a problem
step by step. It allows to apply user defined functions
to implement custom functionality for modification.

e With the procedural language features, one can react
on application parameters, data characteristics, etc.
This way complex processing pipelines can be built.

While these advantages let data workers easily create their
programs, every operation on a Pandas DataFrame is exe-
cuted eagerly and for many operations, Pandas creates copies
of the DataFrame contents internally. This means, when
chaining a few Pandas operations, many copies of the actual
data are created in memory, which needs effort to clean up
(if at all). Especially the read_sql_table method occupies
a large amount of RAM, because it uses other libraries (e.g.
sqlalchemy) that have their own data wrappers. Thus, the
local in-memory processing clearly becomes a bottleneck
already when the input data set grows to a few GB.
Reasons to use a DBMS. Relational databases have been
around since the 1970s and since then have been highly
optimized to deal with large data sets:

e The declarative and standardized query language SQL
gives the DBMS the opportunity to “understand” the
operations and to optimize the query to reduce latency
as well as the overall throughput in the system.

e Indexes can be used to speed up queries. Especially
selections and joins benefit from them.

e DBMS are optimized to handle data sets much larger
than the available RAM by maintining a buffer pool
and implementing buffer eviction strategies. This way,
a DBMS will not run out of RAM when processing
large data sets. Furthermore, main memory DBMS are
highly optimized in terms of memory access and mem-
ory utilization (e.g. by data compression) [3]. While
Pandas can also chunk the input data set when loading,
it has to be implemented manually and burdens the
developer with the responsibility to choose an appro-
priate chunk size. Also, chunking does not work with
read_sql_table!

e Most DBMS support a cluster setting with distributed
storage and query processing. Tables can be partitioned
and distributed among several nodes and the DBMS
takes care of distributing a query to these nodes to
fetch the results.

However, using a full-fledged DBMS is sometimes compli-
cated, too expensive, or simply too much to just process
a file-based data set with just a few hundred (thousand)
records. Especially in the latter case, the file would have
to be imported into the DBMS prior to querying it. User
defined functions to apply on the columns need to be created
as stored procedures first, too.

Getting the best of both Worlds. On the one hand,
DBMSs are able to process large amounts of data very effi-
ciently and easily scale with terabytes of input data due to

their highly developed optimizers and efficient storage and
buffer management. On the other hand, not every problem
can be (easily) expressed in SQL. A procedural programming
language with a framework to represent, modify, and query
tabular data greatly reduces the development efforts by data
workers. Thus, to combine these two worlds, in this project
we aim to execute operations on Python DataFrames in a
DBMS. This will give users the opportunity to create pro-
grams with potentially complex logic that process large data
sets. In order to achieve this goal, we need to overcome a
major drawback of query shipping, namely the conversion
of the client context to the server context. In our example,
a mapping from DataFrame operations to SQL queries or
expressions is needed.

3. GRIZZLY: MAPPING PYTHON OPERA-
TIONS TO SQL

In order to achieve the combination of the two worlds,
maintaining the ease-of-use of the data shipping paradigm
while achieving the scalability and the performance of the
query shipping paradigm, we introduce the Grizzly frame-
work?®, which consists of a DataFrame replacement and a SQL
code generator. It is intended to solve the scalability issues of
Pandas by transforming a sequence of DataFrame operations
into a SQL query that is executed by a DBMS or even on
Apache Spark via SparkSQL. The ultimate goal is to make
Grizzly a drop-in replacement for Pandas.

In this section, we describe the main architecture of the
Grizzly framework. We show how SQL code generation is
realized using a mapping between DataFrames and relational
algebra and present our approach to support external files
as well as pre-trained ML models.

3.1 Grizzly Architecture

Figure 1 shows the general (internal) workflow of Grizzly.
As in Pandas, the core data structure is a DataFrame that
encapsulates the data. Operations on these DataFrames are
tracked and stored in a lineage graph (a directed acyclic
graph), building an operator tree. For every operation a
new DataFrame object is created that has a reference to its
parent(s). Initially, such a DataFrame represents a table (or
view) that is stored in the DBMS. The operations resem-
ble the well-known operations from the relational algebra,
and hence, their results are again DataFrames . Exceptions
are aggregation functions which are not called in the con-
text of grouping operations as they produce scalar values to
summarize the complete content of a table or query result.

Building the lineage graph of DataFrame modifications
follows the design goal of lazy evaluation. DataFrame objects
that are created by operations simply record the operation,
but do not contain any query results. This is the same
evaluation behavior of RDDs in Apache Spark [9]. Apache
Spark divides the operations into transformations which are
just recorded and actions that trigger the computations. In
our setting, all operations can be recorded as transformations,
except for aggregation functions such as count, etc. To view
the result of queries that do not use aggregation, special
actions such as print or show are available to manually
trigger the computation. When an action is encountered
in a program, the lineage graph is traversed bottom up,
starting from the DataFrame on which the action was called.

! Available on GitHub: https://github.com/dbis-ilm/grizzly

DataFrame

92J) Jojesado
Pa32NJ3SU0d

DBMST Spor‘lA(ZSQL

Figure 1: Overview of Grizzly’s architecture.
While traversing the tree, for every encountered operation
its corresponding SQL expression is constructed as a string
and filled in a SQL template. As mentioned in Section 2 we
need a mapping from Pandas operations to SQL. Table 1
shows such a mapping.

Based on the lineage graph, the SQL query can be con-
structed in two ways: (1) generate nested sub-queries for
every operation on a DataFrame , or (2) incrementally ex-
tend a single query for every operation found in the Python
program. We found the first variant the easiest to implement.
Variant (2) has the drawback to decide if the SQL expression
of an operation can be merged into the current query or if a
sub-query has to be created. The SQL parser and optimizer
in the DBMSs have been implemented and optimized to
recognize such cases. Therefore, in Grizzly we decided to
generate nested queries for every DataFrame operation. As
an example, the following Python code

df = ... # load table (t0)

df = df[['a','b','c']] # projection to a,b,c (t1)
df = df[df.a == 3] # selection (t2)

df = df.groupby(['b','c']) # group by b,c (t3)

will be transformed into the nested query:
SELECT t3.b, t3.c FROM (

SELECT * FROM (

SELECT tl.a, tl1.b, tl.c FROM (
SELECT * FROM table tO
) t1

) t2 WHERE t2.a = 3
) t3 GROUP BY t3.b, t3.c
The reason we do not try to unnest the queries is to keep
code complexity low. Unnesting would mean to check if a
referenced column name, e.g., in a WHERE clause already really
exists or is being computed using a user defined function
in the projection. Although the unnesting imposes some
overhead to the optimizer in the DBMS, they are mostly well
tested and our experiments showed that they can rewrite
such nested queries easily to a flat query.

The generated query is sent to a DBMS using a user-
defined connection object, as it is typically used in Python
and specified by PEP 2492, Grizzly produces standard SQL
without any vendor-specific SQL dialect, except for state-
ments to create functions or access external data, as we will
discuss below. In such cases, the vendor-specific statement
template can be defined in a configuration file.

3.2 Accessing External Data

Executing DataFrame operations on a SQL database re-
quires that users can specify the tables and views to be used.

Zhttps://www.python.org/dev/peps/pep-0249/

However, not every data set is ingested into a database sys-
tem first. Often, especially when data is exchanged with
other people, they are exported into text file formats as
CSV or JSON and used only a few times. Manually im-
porting these files into a database is not desired and these
files should rather be loaded directly. Since it is our goal
to shift the complete processing into the DBMS, the files
need to be transferred and imported into the DBMS trans-
parently. In our framework, we achieve this by using the
ability of many modern DBMS to define a table over an
external file. In PostgreSQL this can be achieved by Foreign
Data Wrappers which can also access data in other DBMSs.
Loading flat files is also supported, e.g., in Actian Vector and
IBM Netezza, where this feature is called external table.
If a user references an external file, Grizzly must instantiate
the corresponding external table or data wrapper (depending
on the DBMS) before the actual query is performed. This
is realized using a list of pre-queries. Every time an exter-
nal file access DataFrame is found during code generation,
a pre-query is generated and appended to this list. This
query might be vendor-specific, so the template to create an
external data source is taken from the config file. Before the
actual SQL query is sent to the database server, all state-
ments in this pre-query list are executed on the server to
make sure all objects exist when the query is eventually run.

An important point to highlight here is that the database
server must be able to access the referenced file. We argue
that with network file systems mounts, NAS devices or cloud
file systems this is often the case. Even actively copying the
file to the database server is not a problem since such data
files are rather small, compared to the amount of data stored
in the database.

3.3 User-Defined Functions

A big challenge when converting Pandas scripts into SQL
queries is that that developers can create and apply custom
functions in Python. Such functions typically perform more
or less complex computations to transform or combine values.
In order to execute these functions within the DBMS, their
definitions must be read and transferred to the DBMS. This
requires that the Python program containing the Pandas
operations can somehow access the function’s source code
definition. In Python, this can be done via reflection tools®.
Most DBMS support stored procedures and some of them,
e.g. PostgreSQL, Actian Vector, and MonetDB also allow
to define them using Python. This way, defined functions in
Python can be transferred to the server and dynamically be
created as a (temporary) function.

Although the DBMSs support Python as a language for
UDFs, SQL is strictly typed language whereas Python is
not. In order to get type information from the user’s Python
function, we make use of type hints, introduced in Python 3.5.
A Python function using type hints looks like this:

def repeat(m: int, s: str) -> str:
r = n*s # repeat s n times
return r

Such UDFs can be used, e.g., to transform, or in this example
case combine, columns using the map method of a DataFrame :

apply repeat on every tuple using
columns name, num as input
df ['repeated'] = df[['num’', 'name']] .map(repeat)

3Using the inspect module: https://docs.python.org/3/
library /inspect.html#retrieving-source-code

Table 1: Overview of basic Pandas operations on a DataFrame df and their corresponding operations in SQL.

Python Pandas

SQL

. . df[’A’]
Projection af[[’A>,°B’1]
Selection df [df[’A’] == x]
Join pandas.merge(dfl, df2, left_on="x",
Grouping df .groupby([’A’,’B’])
Sorting df .sort_values(by=[’A’,’B’])
Union df1.append(df2)
Intersection pandas.merge(dfil, df2, how="inner")
) J 1
Aggregation df[’A’].min()

max () [mean() | count () | sum ()
df[’A’] .value_counts()
Add column df[’newcol’] = df[’a’] + df[’b’]

SELECT a FROM ...
SELECT a,b FROM ...

SELECT * FROM ...WHERE a = x
SELECT * FROM dfl inner|outer|right|left

right_on="y" ,how="inner|outer|right|left") join df2 ON dfl.x = df2.y

SELECT * FROM ...GROUP BY a,b

SELECT * FROM ...ORDER BY a,b
SELECT * FROM df1
UNION ALL SELECT * FROM df2
SELECT * FROM df1
INTERECTION SELECT * FROM df2
SELECT min(a) FROM ...
max(a)|avg(a)|count(a)|sum(a)
SELECT a, count(a) FROM ...GROUP BY a
SELECT a + b AS newcol FROM ...

Using the type hints, Grizzly’s code generator can produce
the code to create the function on the server. For PostgreSQL,

the generated code is the following:

CREATE OR REPLACE FUNCTION repeat(n int, s
— varchar(1024))

RETURNS varchar(1024)

LANGUAGE plpython3u

AS 'r = n*s # repeat s n times

return r'

The command to create the function in the system is taken
from a configuration file for the selected DBMS (PostgreSQL,
Actian Vector, or MonetDB currently). We then extract the
name, input parameters, source code and return type using
the inspect module and use the values to fill the template.
The function body is also copied into the template. Similar
to external data sources in Section 3.2, the generated code
is appended to the pre-query list and executed before the
actual query.

The actual map operation is translated into a SQL projec-

tion creating a computed column:
SELECT t0.*, repeat(tO.num, tO.name) as repeated
FROM ... tO

As explained above, the previous operation from which df
was derived will appear in the FROM clause of this query.

3.4 Applying Machine Learning Models

The UDF's can be arbitrarily complex and even import
additional packages as long as they are installed on the server.
We use this opportunity to let users apply pre-trained ML
models onto their tables. In the following, we name this
operation of applying a model to the data a “model join”.
Instead of realizing the this over a map-function in Pandas,
which leads to a client-side execution of the model join and
therefore faces the same scalability issues as Pandas, we
realize the model join functionality using Python UDFs. As a
consequence, we achieve a server-side execution of the model
join directly in the database system, allowing automatic
parallel and distributed computation.

Note that we talk about the usage of pre-trained models,
since database systems are not optimized for model train-
ing. However, applying the model directly in the database
has the advantage that users can make use of the database
functionality to efficiently perform further operations on the
model outputs, e.g. grouping or filters. For our discussions,
we assume that necessary Python modules are installed the
model files are accessible from the server running the DBMS.

Performing a model join on an DataFrame triggers the
generation of a pre-query, which performs the creation of
the respective database UDF. As the syntax for this opera-
tion is vendor-specific, the template is also taken from the
configuration file. The generated code has four major tasks:

1. Load the provided model.

2. Convert incoming tuples to the model input format.

3. Run the model.

4. Convert the model output back to an expected format.
While steps 2-4 have to be performed for every incoming
tuple, the key for an efficient model join realization is caching
the loaded model in order to avoid unnecessary model loading.
(Re-)Loading the model is necessary if it is not cached yet
or if the model changed. These cases can be detected by
maintaining the name and the timestamp of the model file.

The actual caching mechanism is carefully designed to
support arbitrary UDF realizations of the underlying system.
For PostgreSQL and Actian Vector, Python UDFs are only
available as a beta version. The main reason for this is that
there are severe security concerns about using the feature,
as especially sandboxing a Python process is difficult. As a
consequence, users must have superuser access rights for the
database or demand access to the feature from the adminis-
trator in order to use the Python UDF feature, and therefore
also the model join feature. While this might be a problem
in production systems, this should not be an issue in the
scientific use cases where Pandas is usually used for data
analytics. Additionally, the actual architecture of running
Python code in the database differs in the systems. While
some systems start a Python process per-query, other sys-
tems keep a single process alive over the system uptime. The
per-query approach has the advantage that it offers isolation
in the Python code between queries, which is important for
ACID-compliance. As a drawback, the isolation makes it
impossible to cache a loaded model to use it in several queries.
As a consequence, loading the model adds significant over-
head to every query. On the contrary, keeping the Python
process alive allows to load the model only once and use it
in several queries until the model changes or the database
system is restarted. As a drawback this approach violates
isolation, so UDF code has to be written carefully in order
to avoid side effects that might impact other queries.

We realize the caching mechanism by attaching the loaded
model, the model file name and the model time stamp to

a globally available object, e.g. an imported module. The
model is loaded only if the global object has no model at-
tribute for the provided model file yet or the model has
changed, which is detected by comparing the cached times-
tamp with the filesystem timestamp. In order to avoid that
accessing the filesystem to get the file modification times-
tamp is performed for each call of the UDF (and therefore
for every tuple), we introduce a magic number into the UDF.
The magic number is randomly generated for each query by
Grizzly and cached in the same way as the model metadata.
In the UDF code, the cached magic number is compared to
the magic number passed and only if they differ, the modifica-
tion timestamps are compared and the cached magic number
is overwritten by the passed one. As a result, the timestamps
are only compared once during a query, reducing the number
of file system accesses to one instead of once-per-tuple. With
this mechanism, we automatically support both Python UDF
realizations discussed above, although the magic number and
timestamp comparisons are not necessary in the per-query
approach, as it is impossible here that the model is cached
for the first tuple. This is also a drawback of the per-query
approach. We exploit the isolation violation of the second
approach that keeps the Python process alive and carefully
design the model join code to only produce the caching of
the model and respective metadata as intended side effects.

In Grizzly, we support three most popular model formats,
namely PyTorch*, Tensorflow® and ONNXS. For PyTorch and
Tensorflow, models can be stored in a serialized way during
the training process and reused by loading and restoring the
model. However, this needs some additional information from
the user, e.g. the model class implementation is needed for
PyTorch or name tags for input and output nodes are needed
for Tensorflow. The more easy-to-use approach is therefore
the ONNX model format, which is a intended as a portable
format and comes with it’s own runtime environment as a
Python package. Thus, only the path to the model needs to
be given by the user.

All three model formats have in common, that the user ad-
ditionally needs to specify model-specific conversion functions
for their usage in order to specify how the expected model
input is produced and the model output should be inter-
preted. These functions are typically provided together with
the model. With A, B, C, D being a list of data types, these
conversion functions have the signature in_conv : A — B and
out_conv : C'— D, if the model converts inputs of type B
into outputs of type C. With A and D being set as type
hints, the overall UDF signature can be infered as A — D
as described in Section 3.3

4. EVALUATION

In this Section, we show that the presented Grizzly frame-
work outperforms the Pandas framework. We present differ-
ent experiments for external data access as well as applying
a ML model in a model join. Please note again, that our
basic assumption is that data is already stored in a DB. The
experiments were run on a server consisting of a Intel(R)
Xeon(R) CPU E5-2630 with 2.30 GHz and 128 GB RAM.
This server runs Actian Vector 6.0 in a docker container. The
client runs on the server host system and connects to the

“https://www.pytorch.org/
®https://www.tensorflow.org
Shttps://www.github.com/onnx/

400

Grizzly
Pandas
350
w
R=
o 300
E
£ 4
=)
o
2
0

0.1M 05M ™ 1.5M 2M 2.5M 3M
Number of external tuples
Figure 2: Query runtime with database tables and
external sources

database inside the container. For fairness, we ran the Pan-
das experiments on the same server machine. As this reduces
the transfer costs when reading tables from the database
server, this assumption is always in favor of Pandas.

4.1 External Data Access

In order to evaluate data access performance, we investi-
gate a typical use case, namely joining flat files with existing
database tables. We base our example on the popular TPC-
H benchmark dataset on scale factor SF100 [1], which is
a typical sales database and is able to generate inventory
data as well as update sets. We draw the following use
case: The daily orders (generated TPC-H update set) are
extracted from the productive system and provided as a flat
file. Before loading them into the database system, a user
might want to analyze the data directly by combining it
with the inventory data inside the database. As an example
query, we join the daily orders as a flat file with the customer
table (1.5M tuples) from the database and determine the
number of orders per customer market segment using an
aggregation. For Pandas and Grizzly, the Python script is
similar except the data access methods. While Pandas uses a
read_sql_table and read_csv for table and flat file access,
Grizzly uses a read_table and a read_external_table call.
This way, an external table is generated in Actian Vector,
encapsulating the flat file access. Afterwards, the join as well
as the aggregation are processed in the DBMS, and only the
result is returned to the client.

For the experiment, we varied the number of tuples in
the flat files. The runtime results in Figure 2 show that
Grizzly achieves a significantly better runtime than Pan-
das. Additionally, it shows that Pandas suffers from a bad
read_sql_table performance, as the runtime is already quite
slow for small number of external tuples. Regarding scalabil-
ity we can observe that runtime in Pandas increases faster
with increasing number of external tuples than in Grizzly,
caused by the fast processing of external tables in Actian
Vector. Therefore, we did not increase the input data size
to real large data sets as these small values already show
a significant difference between the two systems. Overall
we can conclude that Grizzly significantly outperforms Pan-
das in this experiment and offers the possibility to process
significantly larger datasets.

Memory profiling showed that Pandas has a significantly
higher memory consumption than Grizzly. For the this test
data Pandas required 11 GB RAM, which is mainly caused by
the size of the 1.5M. tuples read with read_sql_table. Using

600

mmm Grizzly cached
Grizzly_uncached
Pandas

200 I
0 — || .
500

10 50 100 1000
Number of tuples
Figure 3: Runtime for model join query.

400

Runtime in s

larger input data would cause the memory consumption to
grow beyond the typical RAM of a desktop workstation. The
Grizzly client program required only 0.33GB, as it pushes
the program logic into the database system that is able to
cope with memory shortage using buffering strategies.

4.2 Model Join

As a possible use case for a model join, we evaluated a
sentiment analysis on the IMDB dataset [7] using the state
of the art ROBERTa model [6] with ONNX. The investigated
query applies the model to the review column and groups
for the output sentiment afterwards, counting positive and
negative review sentiments. Figure 3 shows the resulting
runtimes for different number of tuples. We can observe
a significant performance gain of using Grizzly (here with
Actian Vector as the underlying database system) compared
to Pandas for all data sizes. The figure is limited to 600
seconds to make the runtimes for small input sizes visible.
With Pandas it takes around 1 second per input tuple. Thus,
for an input size of 1000 tuples, Pandas needs 1113 seconds
(approx. 19 minutes) to complete. Additionally, with the
Python implementation of Actian Vector, which keeps the
Python interpreter alive between queries, it is possible to
reuse a cached model from a former query, leading to an
additional performance gain of around 6 seconds.

S. RELATED WORK

There have been some systems proposed to translate user
programs into SQL. The RIOT project [10] proposed the
RIOT-DB to execute R programs I/O efficiently using a
relational database. RIOT can be loaded into an R program
as a package and provides new data types to be used, such
as vectors, matrices, and arrays. Internally objects of these
types are represented as views in the underlying relational
database system. This way, operations on such objects are
operations on views which the database system eventually
optimizes and executes. Another project to perform Python
operations as in-database analytics is AIDA [2], which uses
NumPy as an extension for linear algebra. The AIDA client
API connects to the embedded Python interpreter in the
DBMS (MonetDB) to send the program and retrieve the
results. The creators of the famous Pandas framework also
tackle the problem of the eager client side execution in IBIS”.
Like Grizzly, IBIS collects operations and converts them
into a (sequence of) SQL queries. However, though IBIS
can connect to different database systems, it is not possible
to combine data from two different systems in a server-
side join. Also, UDFs can only be applied when either
Pandas (i.e. the program is executed on the client side) or

"http://ibis-project.org/

Google’s Big Query are used as a backend. Other frameworks
and platforms like Apache Spark® and Nvidia Rapids® also
provide a DataFrame API which internally is optimized and
used for efficient execution. The idea of Grizzly is similar to
IBIS and AIDA, as all three systems provide an API similar
to the Pandas DataFrame API with the goal to abstract from
the underlying execution engine.

However, in Grizzly we make use of only the existing fea-
tures of a DBMS, so that users can use their already existing
installations without any modifications. Furthermore, only
with Grizzly it is possible to join data sets from different
sources inside the main database system and it allows to ex-
ecute pre-trained ML models on the database server, instead
of on the client.

6. CONCLUSION

In this paper we have shown how data science and ML
frameworks can benefit from utilizing DBMSs by pushing
down compute-intensive parts to avoid expensive data trans-
fer into the client program. For this purpose we have a devel-
oped a framework to convert operations on DataFrames into
SQL queries for lazy evaluation. By exploiting DBMS fea-
tures such as foreign table interfaces and UDFs we can
also provide access to external file-based data and integrate
user-defined Python code. Particularly, the latter allows a
seamless integration of ML functionalities towards the vision
of ML systems [8].

7. REFERENCES

[1] P. A. Boncz, T. Neumann, and O. Erling. TPC-H
analyzed: Hidden messages and lessons learned from an
influential benchmark. In TPCTC, volume 8391 of
LNCS, pages 61-76. Springer, 2013.

[2] J. V. D’silva, F. D. De Moor, and B. Kemme. AIDA -
Abstraction for advanced in database analytics. VLDB,
11(11):1400-1413, 2018.

[3] F. Faerber, A. Kemper, et al. Main memory database
systems. Foundations and Trends in Databases,
8(1-2):1-130, 2017.

[4] S. Hagedorn. When sweet and cute isn’t enough
anymore: Solving scalability issues in python pandas
with grizzly. In CIDR, 2020.

[5] D. Kossmann. The state of the art in distributed query
processing. ACM Comput. Surv., 32(4):422-469, Dec.
2000.

[6] Y. Liu, M. Ott, et al. RoBERTa: A Robustly
Optimized BERT Pretraining Approach.
arXi:1907.11692 [cs], July 2019.

[7] A. L. Maas et al. Learning word vectors for sentiment
analysis. In ACL-HLT, pages 142-150, 2011.

[8] A. Ratner et al. SysML: The new frontier of machine
learning systems. CoRR, abs/1904.03257, 2019.

[9] M. Zaharia, M. Chowdhury, et al. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory
cluster computing. In USENIX, 2012.

[10] Y. Zhang, H. Herodotou, and J. Yang. RIOT: I/O
efficient numerical computing without SQL. In CIDR,
20009.

Shttps://spark.apache.org/
“https://developer.nvidia.com /rapids

