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ABSTRACT

Classical B-Trees were not designed for the modern hardware. They
often do not scale on today’s many-core CPUs because they do not
handle high-contention workloads well. Moreover, their fixed-size
nodes result in underfull nodes and a space utilization below 70%.
This low space utilization is economically undesirable, especially
with fast but relatively expensive NVMe SSDs, and causes unneces-
sary read and write amplification. In this paper, we address these
two shortcomings by introducing two techniques: The first, Con-
tention Split detects unnecessary contention on nodes and splits
them to allow higher concurrency. The second technique, XMerge,
saves space by lazily merging neighboring nodes. Both techniques
are lightweight, easy to integrate into existing database systems,
and result in substantial space and performance improvements.

1 INTRODUCTION

The choice of index data structures in database management sys-
tems is greatly influenced by the available hardware. For a long
time, database systems were limited by small DRAM sizes and
slow magnetic hard disk drives. This led to the classical disk-based
system architecture, where data is stored on fixed-size pages and
is cached in a DRAM buffer pool. In such a design, the standard
index data structure is the B*-Tree because its high fan-out mini-
mizes the number of disk IO requests. When systems with larger
DRAM capacities up to a few terabytes became available, many
data sets could be kept in main memory, making traditional buffer
management unnecessary. This led to the development of pure
main-memory database systems like Hekaton [6] and HyPer [17].
In main-memory systems, index data structures are not restricted
to fixed-size pages and can use virtual memory pointers instead
of buffer pool page identifiers. This new architecture allows new
index designs, for example, tries with variable-sized nodes [22].
Now we are witnessing another change in the hardware land-
scape. Today’s many-core commodity CPUs offer as many as 64
cores (128 HyperThreads) on a single socket. PCle-attached solid-
state drives (SSD) have become cheap and fast, while the DRAM
prices and capacities have stagnated [12]. Moreover, many data
sets are growing beyond the available DRAM capacities. How-
ever, extending pure in-memory systems with support for large
data sets is difficult. These factors have motivated recent work
on high-performance storage engines like Umbra [27] and our
LeanStore [20] system. These high-performance storage engines
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show that buffer managers can be redesigned to allow near in-
memory performance when the working set fits into the buffer
pool, while supporting large data sets on NVMe SSDs as well.

Because the access latency of SSDs is quite high compared to
DRAM (100 ps vs. 100 ns) only balanced data structures with large
nodes (i.e., B-trees) are suitable for SSD-optimized storage engines
like LeanStore. However, classical B-Trees were not designed for
the modern hardware landscape: they scale poorly on today’s many-
core CPU because they do not handle the physical latch contention
that modern CPUs can generate. In previous work [21, 23], we
implemented and advocated for Optimistic Lock Coupling (OLC)
to synchronize B-Trees. OLC eliminates contention generated by
readers and allows read-mostly workloads to scale perfectly. How-
ever, write contention is still an unsolved problem and a source
of performance degradation in real workloads. A second problem
with B-trees is space utilization. The average fill factor of B-trees is
typically below 70% and can get as low as 39% [14]. This might be
acceptable if data is stored on cheap disks but is wasteful on fast
NVMe SSDs, which are 5-10 times more expensive than disks.

In this work, we present two lightweight techniques for reducing
contention and improving space utilization in B-Trees. Contention
Split solves the problem of write contention that stems from the
fairly large node sizes of B-trees. It first detects unnecessary write
contention that is caused by different threads frequently updat-
ing different tuples in one node. Then, it splits the node into two
to distribute the contention and improve scalability. The second
technique, XMerge, lazily merges underfull B-tree nodes with their
neighbors to improve space utilization. This is done on randomly
selected nodes whenever the system runs out of memory. We in-
tegrate and evaluate both techniques in LeanStore. Both are also
directly applicable to other database systems that use B-Trees. Using
TPC-C and micro benchmarks, we show that the two complemen-
tary techniques result in substantial performance improvements
and space savings.

2 RELATED WORK

As the number of CPU cores keeps increasing, the problem of high
contention in OLTP systems is becoming more and more urgent.
For this reason, several approaches for mitigating high contention
in main-memory systems were proposed [2, 26, 28]. However, these
solutions require radical system redesign and are not directly ap-
plicable to most existing systems [1]. Latch-free indexes like the
KISS-Tree [18] and the Bw-Tree [24] appear promising but also
suffer from write contention. The Bw-Tree, for example, prepends
delta records to nodes using compare-and-swap instructions. In this
latch-free design, threads do not contend on the node’s latch but
on the head of the delta records list — resulting in similar scalability
problems. To the best of our knowledge, Contention Split is the
first technique that mitigates unnecessary write contention at the



B-Tree level and therefore can be incorporated into most existing
systems.

B-Trees have many nice properties and there have been many
studies on them [8-10]. However, space utilization has always been
one of their downsides. Textbook B-Trees guarantee a minimum
space utilization of only 50%. LSM-Trees, in contrast, store most of
the data in the last layer with 100% space utilization but at the cost
of more expensive reads. The B*-Tree as defined by Knuth [19] is a
variant of the B-Tree that guarantees 66% instead of 50%. Instead
of immediately splitting a node when it gets full, the B*-Tree tries
to redistribute the node’s keys with its right or left sibling. If both
siblings are full then redistribution is not possible, hence it splits
the current node and one of its siblings into three 66% full nodes.
The B*-Tree’s eager key redistribution between sibling and its two-
into-three split significantly complicate the implementation and
add latency to index operations. We are not aware of any practical
system that uses B*-Trees. Compared to the B*-Tree, our proposed
XMerge requires fewer CPU cycles per key, is easier to implement,
and results in higher space utilization.

3 CONTENTION MANAGEMENT

On today’s many-core processors, many software systems fail to
scale linearly with the number of cores. Even software that scales
well on N cores may scale badly or face performance degrada-
tion on 2#N cores [4]. Despite decades of research, it is difficult
to achieve good speedups in fully-fledged systems. Serialized (or
non-parallelizable) portions of a program impede scalability. The
optimal speedup is inversely proportional to the serialized portion
as Amdahl’s law states. For example, if we manage to reduce the
serialized portion from 2% to 1%, then we can double our theoretical
maximum speedup. Therefore, we have to pay attention to avoid
any unnecessary serialization in our systems.

In database OLTP workloads, serialization happens because of
contention on shared data structures. This is why we will speak of
contention instead of serialization from now on. Beside the work-
load itself, two design choices are the main sources of contention in
database systems: latching granularity and the latch design itself. In
the following, we address the issue of fixed latching granularity in
buffer-managed B-Trees and present our Contention Split technique
for preventing unnecessary contention. In the Appendix A, we will
also discuss a hybrid latch design that combines the scalability of
optimistic latches with the robustness of OS mutexes.

3.1 Contention in Buffer-Managed B-Trees

Concurrent data structures in buffer-managed database systems
are synchronized at the granularity of a single page. This is in
contrast to main-memory systems where the latching granularity
can be more flexible to a degree where latching single tuples is
possible. Synchronization at page granularity leads to unnecessary
contention when a certain node has more than one hot tuple that
gets updated very frequently by multiple threads. The updating
threads will then contend on the same physical latch even if they
access different tuples.

On a modern many-core CPU, a single point of heavy contention
can impede scaling. For example, TPC-C with 100 warehouses does
not scale past 60 threads on our vanilla LeanStore implementation.
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Figure 1: Illustration of Contention Split.

After we profiled the execution run, we found that some nodes have
very high contention. The TPC-C payment transaction, which con-
stitutes 43% of the workload, updates one of tuples in the warehouse
relation. Depending on the skew and the number of warehouses,
it might happen that a single node stores the tuples of the most
used warehouses, or a node has simply enough space for all of
them which is the case with 100 warehouses. This serializes all
update operations on any warehouse tuple and thereby limits the
scalability. Note that TPC-C has fairly heavyweight transactions
performing dozens of index accesses, the vast majority of which
are uncontended. Nevertheless, at today’s core counts, Amdahl’s
law means that even moderate contention may severely degrade
overall performance.

There is no straightforward solution to reduce contention in
existing systems. Fine-granular latching may reduce contention,
but in buffer-managed database systems, the latching granularity
is equal to the page size (node size), and a small page size would
hurt IO performance. Moreover, the physical organization of pages
and tuples is typically not exposed to users. There are no interfaces
to detect contention on latches or to manually reorder the tuples in
pages. Hence, even expert database administrators have no tools to
detect and solve scaling issues systematically.

3.2 Contention Split

Database systems should handle different workload scenarios with-
out manual user tweaks, and high contention is one of them. How-
ever, none of the existing systems in literature have an automatic
solution to prevent unnecessary contention at the B-Tree level. Con-
tention Split is a lightweight mechanism for B-Trees that detects
unnecessary contention on nodes. After detection, it splits the con-
tended nodes in order to separate frequently-updated tuples into
different nodes protected by different latches. It exploits the fact
that, in contrast to tries, the B-Tree structure is quite flexible, i.e.,
there are many possible B-Trees storing the same data.

Figure 1 illustrates the approach using an example. Thread 1 and
2 frequently update tuples A and D, respectively, and therewith
unnecessarily contend on the latch of node a. To reduce contention,
even though node a is not full, we explicitly split node a at the
middle point between the two updated tuples (A and D), namely at
C. Now both threads can update their tuples simultaneously at the
cost of an extra node.



Listing 1: Contention Detection and Split

struct Page {
HybridLatch latch;
// the three probabilistic counters for a period
int updatesCount; // # updates
int slowpathCount; // # encountered contention
int lastUpdatedPos; // last updated tuple position
unsigned char xpageContent; // B-Tree node
};
// pos: updated tuple position
void afterTupleUpdate (Page& p, int pos, bool isSlowpath) {
float r = randomNumber (@, 1.0);
if(r <= sampleProbability) { // track updates
p.updatesCount++;
p.slowpathCount += isSlowpath;
lastUpdatedpos = pos;
}
if(r <= periodProbability) { // check for contention
float ratio = p.slowpathCount/p.updatesCount;
if(ratio == 1) { // contention detected
if(pos != lastUpdatePos) { // unnecessary contention
int splitPos = mid(pos, p.lastUpdatepos);
btree.splitNodeAtPos(p.pageContent, splitPos);

3
}
p.lastUpdatedPos = -1; // period ends, reset counters
p.updatesCount = 0; p.slowpathCount = 0;

3
3

The implementation can reuse the existing split operation code
that every B-Tree uses for insert operations. The only difference is
that we choose a separator halfway between the two frequently-
updated tuples, where normally the middle tuple is picked as a
separator to make the two new nodes approximately equal in size.

3.3 Contention Detection

One crucial question is how to detect contention without signifi-
cantly slowing down normal operation. We mark a node as highly
contended when most of the worker threads in the current period
were not able to exclusively acquire the node’s latch immediately,
i.e., they had to take the slow path by spinning on the latch or
sleeping. A period is not defined by a wall clock time, but rather
by a probability. After a thread updates a tuple, we end the current
period and start a new one with period probability. The reason why
we refrain from using time and use a probabilistic approach is elas-
ticity. Finding a good time interval, so we neither run the checks
too early nor too late, is very difficult. Our approach, on the other
hand, reacts to changes in the workload quickly. If there are many
threads updating the same node, it will take a shorter time until a
thread hits the period probability and ends the period. If there are
few threads, then it will take longer.

During the period, worker threads update three probabilistic
counters of the node in which they update a tuple. Probabilistic
here means that these counters cover only a sample of the update
operations that happened in the last period, and the sample size is
determined by sample probability. We use sampling to avoid causing
additional contention on the counters’ cache-line. In Listing 1 we
show the C++ code for our algorithm and the probabilistic counters.
We found sampleProbability = 272 and periodProbability = 277 to
be good settings for small overhead and fast reaction to changes
in workload contention. Different settings are evaluated in the

Appendix B. When the period ends, the worker thread holding the
latch evaluates the counters by calculating how many times the
slow path has been taken for every update in the period. If the ratio
approaches one, then it treats the node as contended, and compares
the tuple position that it has just updated with the lastUpdatedpPos
that another thread has written before. If they are different, then
the contention is unnecessary. Hence, it splits the node between
the two positions, separating the two frequently-updated keys in
two nodes protected by two different latches. As a result, the two
tuples can now be updated in parallel.

3.4 Discussion

We have showcased Contention Split only for update operations
because we believe that tuple updates are the primary cause for
contention in B-Trees in most scenarios. However, Contention Split
is also applicable to other tuple-modifying operations like insert
and delete. The same logic and pseudocode can be followed after
inserting or deleting a tuple in a node.

In this paper, we have focused on latch-based B-Trees. But there
are also latch-free B-Tree data structures like the Bw-Tree [24] that
promise better scalability but still suffer from contention like their
latch-based counterparts [7]. Latch-free B-Trees manage to shorten
the critical section of update operations by doing most of the work
in thread-local fashion then publishing their update to the shared
data structures using atomic compare and swap (CAS) operations.
Hence, instead of contending on the node’s latch, these latch-free
designs contend on another cache-line that holds the atomic word
that protects the B-Tree node. When the CAS fails, the updating core
has to restart its operation, which resembles optimistic latching.
Contention Split can prevent unnecessary contention in latch-free
B-Trees just like it does in latch-based ones by splitting nodes and
distributing contention on different cache-lines.

With Contention Split, we improve performance at the cost of
additional space consumption. At any point in time, the number
of nodes with high contention is bounded by the number of cores,
bounding the number of splits as well. However, there are cases
where contention hot spots move over time. As a result, Contention
Split may leave underfull non-contended nodes as time progresses.
Moreover, as a consequence of using probabilistic counters, we
might, in rare cases, split an uncontended node. To counter these
effects and improve the overall space utilization, we propose our
XMerge technique in the next section.

4 SPACE MANAGEMENT

Textbook B-Trees with fixed-size keys and values guarantee that all
nodes, except the root, are at least half full. Space utilization there-
fore has a lower bound of 50%. The actual utilization depends on the
insertion order: for random inserts, the space utilization is about
70% [29]. If the keys are inserted in sorted order, as it is common for
primary keys, space utilization remains at the minimum of 50%. In
practice, industrial-strength B-Tree implementations diverge from
the textbook variant. For instance, they support variable-length
keys and extract the common prefix of the keys in a node to accel-
erate search and save space [25]. Rather than eagerly merging or
rebalancing the tree when a node becomes half-empty, they free
a node only when it is completely empty [11, 15]. These common
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Figure 2: Illustration of using XMerge to merge a group of 3 nodes into 2 to free 1 node.

modifications make space utilizations of 39% or even less possi-
ble [14].

In the era of ever growing data sets, space usage on modern
secondary storage such as NVMe SSDs is a significant cost factor
despite the recent decline in SSD prices. Moreover, low space uti-
lization wastes scarce DRAM resources and can hurt performance.
In the following, we propose a novel merge method to improve
space utilization in B-Trees, and describe how to integrate it into
database systems.

4.1 XMerge

The goal of XMerge is to free nodes by merging groups of X imme-
diate siblings into X-1 nodes. When XMerge is called on a node, it
searches for a group of X immediate siblings (including the starting
node) that have a total free space of at least one node. Once XMerge
finds such a group, it compacts all tuples in the group at the right
side. This makes the leftmost node empty, so we can reclaim its
page. The size of the group X is variable but should not exceed a
pre-defined constant K. XMerge tries every group size X from 2 to
K and starts compacting the group once the sum of the free space
inside is larger than one node. The choice of K forms a trade-off
between space utilization and performance. On the one hand, a
larger K allows larger groups of nodes that are more likely to have
a total free space of one node. On the other hand, compacting more
nodes takes time and reduces the concurrency because the parent
node gets exclusively latched during the process. We found K=5 to
be a good setting for a wide variety of data sets and workloads. In
the Appendix B, we evalute different K values for XMerge.

An example of XMerge with K=5 and X=3is illustrated in Figure 2.
We start at node a on the left and add the next right node to the
group, so the sum of their free space becomes 34 + 34 = 68% which
is less than a node. Hence, we continue and add node c¢. Now, the
sum is 118% of a node, so we stop looking into other nodes and start
compacting: first, we move tuples from node b to node ¢ as much
as c fits. This leaves node b around 84% empty which is enough to
store all tuples from node a. Thus, we fully merge node a into node
b and remove a’s separator from the parent node. The result is one
free node, one full node, and one 82% filled node.

Listing 2 shows the pseudo-code for XMerge, which consists of
two phases. In the first phase, we determine the size of the group X.
In the second phase, we compact the tuples at the right side then
free the starting node.

4.2 Where to XMerge?

To integrate XMerge into a database system, we first have to de-
cide which nodes to run XMerge on. It is often the case that index

Listing 2: XMerge
const int K = 5; // maximum number of nodes to merge
void XMerge(BTreeNode childNodes[], int startPos) {
int X = 1; // size of the group
int totalFreeSpace = childNodes[startPos]. freeSpace;
while(X < K && totalFreeSpace < NODE_SIZE) {
freeSpace += childNodes[startPos + X].freeSpace;
X++; // expand the group by one node to the right
}
if (totalFreeSpace >= NODE_SIZE) { // can free a node
int right = startPos + X - 1;
while(right > startPos) {
int left = right - 1;
moveTuples(childNodes[left],
right--;
}
freeNode (nodes[startPos]);

childNodes[right]);

}
}

accesses on keys exhibit a pattern: some keys are only read while
some are also updated or inserted. As a result, we can see the B-Tree
key space as a concatenation of read-only and write key ranges. Ide-
ally, to save space without degrading performance, we would want
to compact read-only key ranges next to each other while keeping
write key ranges intact. In practice, we do not know in advance
where these read-only ranges are. However, in many B-Trees, the
read-only key ranges represent the bulk of the B-Tree. Therefore,
we run XMerge on randomly selected nodes to improve the space
utilization in all nodes. The probability that XMerge hits a hot node,
in which worker threads are inserting new keys, is low because we
pick nodes randomly. If XMerge happens to put frequently-updated
key ranges together in one node, then Contention Split will quickly
undo the merge and fix any resulting performance degradation.

4.3 When to XMerge?

One naive way to integrate XMerge is to run XMerge in an infinite
loop in a background thread. The problem with this approach is
that it wastes CPU cycles when the space utilization is already high.
Therefore, we have to carefully decide when to run XMerge.

In buffer-managed systems, we want to run XMerge under mem-
ory pressure, i.e., when the buffer pool has no more free space. The
responsible component for freeing buffer space when needed is
the replacement strategy. From the replacement strategy’s perspec-
tive, it does not matter whether the free space comes from evicting
pages or from freeing buffered nodes using XMerge. Therefore, it
makes sense to attach XMerge to the replacement strategy. Before a
worker thread evicts a page, it picks a random page from the buffer
pool and runs XMerge on it with one slight modification. XMerge
merges only buffered siblings and never loads an evicted page. If



XMerge manages to free one page, then the thread simply uses the
freed page by XMerge. Otherwise, it evicts the next victim page
that the replacements strategy points to.

Unlike classical B-Tree merge and rebalance methods, XMerge
has no impact on the latency of fast in-memory index accesses.
XMerge is only called during index accesses that have to evict
a page before reading from disk, which is already a slow process.
Moreover, as we show in the evaluation, XMerge has little overhead
on throughput.

4.4 XMerge in LeanStore

We integrated XMerge into LeanStore [20]. Our implementation
is slightly different than previously described because LeanStore
diverges from the traditional architecture and uses a different type
of replacement strategy. The buffer pool is divided into hot, cooling
and free areas, and the system tries to maintain a fixed percentage
for each area using background threads [13]. When the buffer pool
runs out of free memory, the background threads evict the oldest
pages from the cooling area and move the same amount of pages
from the hot to the cooling area. Worker threads focus only on
transaction processing and allocate buffer space from the free area
without consulting the replacement strategy. Because the pages
that the background threads move from the hot to the cooling area
are selected randomly, we run XMerge on these pages and move
them to the cooling area only when XMerge does not manage to
free a page. To summarize, LeanStore runs XMerge in background
threads on randomly selected nodes. Other systems can integrate
XMerge differently depending on their replacement strategy.

5 EVALUATION

We experimentally evaluate the performance and space savings
gained by integrating Contention Split and XMerge techniques
into our storage engine LeanStore. Our baseline B*-Tree supports
variable-length keys and prefix compression and merges underfull
nodes with neighbors on deletion. LeanStore does not yet imple-
ment transaction isolation but does synchronize its B-Trees using
Optimistic Lock Coupling [21, 23]. We start by showing the impact
of each technique separately using TPC-C and micro benchmarks.
Then, we show how our two techniques complement each other in
an end-to-end evaluation using TPC-C and a synthetic benchmark.

We run all benchmarks on a single-socket system with AMD
EPYC 7702P 64-Core Processor (128 hardware threads) running at
2.0 GHz with 256 GiB of RAM. For persistence, we use four 1.6 TB
Huawei ES3600P V5 NVMe SSDs with specified 3,500 MB/s read
and 1,900 MB/s write throughput per SSD. The SSDs are logically
combined using software RAID-0. We used Ubuntu 19.10 as operat-
ing system, stored our binaries on a separate SSD, and set the page
size to 16 KiB. The source code is available at leanstore.io.

5.1 Contention Split

In the first experiment, we run TPC-C using 100 warehouses, a large
buffer pool to encompass all of it, and a variable number of threads.
The results are shown in Figure 3. Without Contention Split, the
workload stops scaling at 60 threads because of the high contention
on nodes that store hot frequently-updated tuples. Contention Split
successfully identified and split these nodes. These splits distribute
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the contention across different latches which allow higher con-
currency and linear scaling. We repeated the experiment on two
different machines provisioned from AWS EC2: a dual-socket Intel
Xeon 8275CL with 48 cores (96 HyperThreads) and an ARM-based
AWS Graviton2 with 64 cores (no HyperThreading). The resulting
curves are similar to Figure 3.

We also measured the performance and space overhead of Con-
tention Split on low-contention workloads. We found that the im-
pact on space is negligible and the performance penalty is at most
1.1%.

5.2 XMerge

We first evaluate XMerge using TPC-C and compare the storage
cost of each warehouse (i.e., initial data) and new order (i.e., newly
inserted data):

B-Tree +XMerge

Initial data MiB per Warehouse  182.2 114.9
New data  KiB per New Order 2.16 0.795

XMerge reduces the storage cost of the initial data by 37% and
each new order transaction by 63%. We would like to note that
simpler approaches that recognize sorted inserts and create new
nodes instead of splitting at half may not work here because TPC-C
has many sorted insertion points, e.g., one for each combination of
warehouse and district in the order relation. We believe that multiple
insertion points are common in real-world workloads.
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The next experiment compares the storage and CPU costs of
inserting a 20 GiB synthetic data set. Keys are 8-byte integers, values
are 100 bytes, and the insertion order is random:

B-Tree B*-Tree B-Tree + XMerge

Total size in GiB 31.3 26.6 25.1
Instructions per key 2870 3594 2995
Cycles per key 3497 4580 3645

The B*-Tree produces a compact tree but requires many more in-
structions than the B-Tree because of the frequent rebalancing
between neighboring nodes. XMerge achieves the smallest size
among competitors while requiring only around 125 instructions
per key in addition to the B-Tree insert. On average, XMerge costs
4 cycles to free one byte, which is in the same order of magnitude
as the cost of writing one byte to SSD. The exact cost of writing
to SSD depends on the used IO stack. For example, 10 stacks with
OS buffering and synchronous IO cost about 7 cycles per byte [12],
while stacks that use 0_DIRECT cost one cycle.

We also measure the storage size using two real-world data sets:
URLs (3.8 GiB in text) and Emails (3.0 GiB in text). The value is
simply a random 8-byte integer, and the insertion order is random.
Figure 4 shows that XMerge produces a compact B-Tree regardless
of the insertion order. The baseline B-Tree exhibits low space utiliza-
tion when keys are inserted in sorted order because of the following:
The insertion point of sorted keys always moves to the right. The
rightmost node has no upper bound and hence cannot use prefix
compression, and when it becomes full, the B-Tree splits it at the
middle. This leaves less than half-full nodes behind because the new
node left of the insertion point can now use prefix compression.
When XMerge encounters these underfull nodes, it realizes that
prefix compression would make them fit in one node and merges
them back. The end result is a very space efficient B-Tree, which is
even smaller than the original text in the case of “URLs (sorted)”.

5.3 End-to-End Evaluation

All experiments so far focused on one of the two techniques indi-
vidually. Next, we show how XMerge and Contention Split comple-
ment each other using TPC-C and a synthetic benchmark. For our
TPC-C evaluation, we fix the size of the buffer pool to 240 GiB, use
120 worker threads, and vary the number of warehouses from 10
to 10,000 which spans in-memory and out-of-memory scenarios.
We split Figure 5 into two regions: left of the vertical line where
the working set fits in main-memory, and right of the line where
it does not. In the in-memory case, Contention Split eliminates
write contention points when large number of cores work on small
number of warehouses and allows us to fully utilize our CPU. In the
out-of-memory case, XMerge relieves the IO subsystem by reduc-
ing read and write amplification and shrinks the TPC-C working
set size. This allows a larger portion of the working set to fit into
main-memory and improves the performance even in the extreme
out-of-memory case with 10K warehouses (1.8 TiB) by 1.18x from
55.6K to 66K txns/s (hard to see in the figure).

In the last experiment, we measure the performance using a
synthetic benchmark that models a news website (a session store
would be similar). We store articles with view counts in a B-Tree
index where the key is a sequentially generated 8-byte integer and
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Figure 6: Performance of 50% updates/lookups on recently-
inserted tuples. New tuples are inserted every 10 seconds.

the value is 128 bytes. We use 120 worker threads, half of which
read an article and half of which update the view count of an
article. Only the last 1 GiB of tuples are accessed using the Latest
distribution from YCSB [5] and a Zipfian factor of 0.75. The more
recent an article is, the more likely it is accessed. The buffer pool is
big enough to hold the working set in memory. Every ten seconds,
we insert 0.1 GiB of tuples which become the new hottest tuples. The
results are shown in Figure 6. Our method detects contention timely
(in less than 3s), splits the pages and therewith more than doubles
the overall average performance. Furthermore, as the contention
points move away, the old split and now cold pages are merged
back by XMerge—avoiding wasted memory.

6 SUMMARY

We presented two techniques for B-Trees: Contention Split detects
unnecessary contention on nodes and splits them to allow higher
concurrency. XMerge saves space by lazily merging neighboring
nodes together. While the former improves performance and the
latter mainly saves space, the two techniques also complement each
other: Nodes that are not contended will be eventually merged, and
contended nodes will be split. Moreover, both techniques are easy
to integrate into existing database systems and result in substantial
space and performance improvements.
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A ROBUST HYBRID LATCHES

The impact of contention on performance depends on the imple-
mentation of the latches used to synchronize the database data
structures. In LeanStore, we adopted a hybrid latch design that
combines the scalability of optimistic latches with the robustness
of OS mutexes. Similar to the HybridLock [3], we use an OS read-
/write mutex that protects an atomic version integer. This gives us
effectively three synchronization modes: optimistic for point reads,
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Figure 7: In-memory TPC-C Performance with 100 ware-
houses using different latch implementations.

pessimistic shared for scans, and pessimistic exclusive for writes.
An atomic version is used to synchronize with optimistic readers
and the mutex provides the pessimistic exclusive and shared modes.
After acquiring and before releasing the mutex in exclusive mode,
the holding thread increments the atomic version integer by one to
notify optimistic readers with changes.

The main advantage of adopting such a hybrid design is the
kernel-supported contention handling strategy of the OS mutex
that puts contending threads to sleep in a queue as long as the latch
is acquired by another thread. We refer the reader to the paper of
Bottcher et al. [3] for a detailed description and evaluation of the
hybrid latch and other busy-waiting latches. In this section, we
emphasize on the importance of implementing robust latches and
avoiding busy-waiting in scalable databases — particular given the
fact that even single-socket systems are becoming cache-coherent
NUMA (ccNUMA). Although spinlocks can achieve better peak
performance under low contention, they can lead to performance
degradation [3, 4] and unfairness in database systems as we show
in the next experiments.

A.1 Performance Degradation

We run in-memory TPC-C with 100 warehouses and two differ-
ent latch implementations: our Hybrid latch and a Spinlock with
optimistic mode and exponential backoff strategy. We also enable
Contention Split for both latches and show the results in Figure 7.
Although the Spinlock variant achieves the best peak performance
when Contention Split takes care of unnecessary contention, its
performance degrade in the vanilla B-Tree without Contention
Split as more threads contended on the Spinlocks. The performance
degradation happens because the critical section becomes longer
and requires more serial cycles as more cores spin on the cache-line
of the Spinlock [4]. The same applies for other busy-waiting lock
variants. The hybrid latch without Contention Split does not scale
beyond 50 but at least it puts the contending threads to sleep in-
stead of polluting the CPU caches and degrading the performance
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which is essential property for robust systems. The combination of
hybrid latch and Contention Split gives us the best balance between
robustness and performance.

A.2 Unfairness

Modern many-core CPU are becoming ccNUMA with multiple dies
in one package. This means that even single-socket systems are
not Symmetric Multiprocessing (SMP) systems anymore and the
internal physical organization of cores will be reflected in NUMA
domains. We take our EPYC 7702P CPU [16] as an example and
show how its multi-chip design affects the fairness of busy-waiting
latches.

Our CPU consists of 4 quadrants, each quadrant is a group of 2
Core Complex Die (CCD) and each CCD contains two Core Com-
plex (CCX) which in turn contains 4 Zen2 cores and a separate
L3 cache. Memory accesses between cores of different CCDs have
higher latency because they communicate over an “Infinity Fabric”
interconnect. We configure the processor as single NUMA domain
in BIOS and let all the 64 cores (no SMT) of our CPU repeatedly
update the same tuple in a B-Tree and measure the percentage of
updates that each core manages.

The results in Table 1 are grouped by CCD. The hybrid latch is
fair among cores whereas the Spinlock with and without backoff is
not. We observed that busy-waiting schemes make it more likely
that the next core to update the tuple lies in the same CCX or in
the same quadrant of the core that has just updated the tuple.

Table 1: Percentage of updates that each Core Complex Die
(CCD) of an EPYC 7702P manages using different latches.

CCD 1 2 3 4 5 6 7 8

Spinlock 0.8 09 462 509 02 02 05 04
+Backoff 13.6 134 214 216 7.1 7.1 80 8.0
Hybrid 127 125 127 125 125 123 123 124

To summarize, we avoid read contention using optimistic latches,
eliminate unnecessary write contention using Contention Split, and
guarantee robustness and fairness when contention is inevitable
using the pessimistic exclusive and shared modes of OS read/write
mutexes.

B PARAMETERS

The two techniques we introduced in this paper require few param-
eters. In this section, we empirically evaluate different settings and
show their impact on performance and space usage.

We start with Contention Split which takes two parameters:
sampleProbability and periodProbability. The first parameter de-
termines the percentage of the update operations that are covered in
the sample probabilistic counters. Frequently updating the counters
gives us more representative sample but cost all update operations,
including the non-contended ones, more CPU cycles. We evaluated
different values for sampleProbability and settled on 25.0% = 272
because it gives a good quality sample of the recent updates while
causing negligible overhead to non-contended workloads.

The second parameter controls the period length. In Contention
Split, we want to detect highly and unnecessarily contended nodes.
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Figure 8: Contention splits rate and TPC-C performance us-
ing different period probabilities.
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Figure 9: Size of a TPC-C warehouse using different K con-
stants for XMerge.

Thus, the period must be long enough to make sure that contention
on the node is really high and short enough to timely react to
changes in the workload. To illustrate the impact of this parameter
on performance and the number of split nodes, we run in-memory
TPC-C with 100 warehouses and 128 threads using fixed sample
probability and different period probabilities that should be smaller
than the sample probability. The results for values between 273
and 2716 are shown in Figure 8. Large periods, at the beginning of
the x-axis, lead to lots of node splits that are false positives. Short
periods, at the end of the x-axis, do not detect the contention. Values
in the middle, like 2~° which is our default, improve performance
and avoid unnecessary splits.

Our XMerge technique takes only one parameter K that deter-
mines the maximum number of immediate siblings that we can
merge. In all our of experiments, we set K to 5 which is, for instance,
enough to empty and free one node in a B-Tree with randomly in-
serted keys and presumed average fill factor of 70% [29]. Figure 9
shows the impact of the constant K on the storage cost of a TPC-C
warehouse initial data, showing that larger values offer little benefit
in terms of space reductions.
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