Ease.ML: A Lifecycle Management System for
MLDev and MLOps

Leonel Aguilart, David Daot, Shaoduo Ganf, Nezihe Merve Gurelt, Nora Hollenstein?
Jiawei Jiang', Bojan Karlast, Thomas Lemmint, Tian Li*, Yang Lit+, Susie Raof
Johannes Rauschf, Cedric Rengglit, Luka Rimanict, Maurice Weberf, Shuai Zhangt
Zhikuan Zhaot, Kevin Schawinski¢, Wentao Wu*, Ce Zhangt
TETH Zurich, *Microsoft Research, Redmond,

*Carnegie Mellon University, *Modulos AG, *Peking University
firstname.lastname@{'inf.ethz.ch, *microsoft.com, !modulos.ai, *cmu.edu, *pku.edu.cn}

ABSTRACT

We present Ease.ML, a lifecycle management system for machine
learning (ML). Unlike many existing works, which focus on im-
proving individual steps during the lifecycle of ML application de-
velopment, Ease.ML focuses on managing and automating the en-
tire lifecycle itself. We present user scenarios that have motivated
the development of Ease.ML, the eight-step Ease.ML process that
covers the lifecycle of ML application development; the founda-
tion of Ease.ML in terms of a probabilistic database model and its
connection to information theory; and our lessons learned, which
hopefully can inspire future research.

1. INTRODUCTION

The wide application of machine learning (ML) technologies has
spawned intensive and extensive research on ML systems. The in-
creasing complexity of ML systems, however, has perplexed many
application developers, especially those who are domain experts,
but do not have much of a background in statistics and/or computer
sciences. Although many of these users are proficient DBMS users
because of its fascinating usability and clean abstraction, they are
struggling with modern ML systems. We believe that an emerging
challenge of wider applications of ML techniques hinges on the
usability of ML systems for such non-expert users.

Recently, there has been a flurry of work focused on ML us-
ability. Researchers have developed systems that make it increas-
ingly easy to handle different components of the ML development
process. Examples include data acquisition with weak supervi-
sion (e.g., Snorkel [19], ZeroER [34]), debugging and validation
(e.g., TEX [16, 3], “Query 2.0” [35], Krypton [17]), model man-
agement (e.g., Cerebro [18]) and deployment (e.g., ModelDB [33],
MLFlow [37]), knowledge integration (e.g., DeepDive [38]), data
cleaning (e.g., HoloClean [21], ActiveClean [14]), and interaction
(e.g., NorthStar [13]). Thanks to these efforts, today’s users are
well-equipped with many powerful tools for different stages of ML
application development. However, there are still challenges in ML
usability. One hypothesis (and observation) we have is that
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One emerging barrier hindering the usability of ML
systems is not the limited availability, capacity, and
performance of existing ML tools, but rather the
complexity for a non-expert user to navigate a collec-
tion of ever-updating, overwhelmingly powerful tools.

Formulating this hypothesis is not trivial for us. It is the result of
a four-year long effort of collaboration with academic users such
as astronomers, biologists, social scientists [28, 31, 26, 30, 1, 29,
4,5, 2, 27], and with industrial partners via our spinoff company,
Modulos.ai. By observing the challenges and struggles that these
non-expert users have when using existing ML systems, our view
on ML usability has gradually shifted from emphasizing the speed
and efficiency of ML training and inference, to the capacity of au-
tomation of ML training, before finally developing into our current
view of the lifecycle/process management and the aforementioned
hypothesis.

As areflection of our hypothesis, we present Ease.ML, a research
prototype aimed at lifting the burden of managing the entire devel-
opment lifecycle from non-expert ML application developers. Un-
like existing AutoML work that aims to provide automated tools for
individual steps in the development cycle and other work that aims
at making each individual component perform more easily and ef-
ficiently, the goal of Ease.ML is to provide automated roolchains
and well-defined processes that stitch together existing/upcoming
tools to improve end-to-end development experience. Ease.ML de-
fines an eight-step, human-in-the-loop process to provide system-
atic guidelines for the users during the entire ML journey. Each of
these steps often requires us to formulate new research problems
and non-trivial technical solutions. Putting them together requires
us to rethink factors such as the data model and execution model.

In this paper, we present the Ease. ML process and design deci-
sions that we made in the model for data, execution, and user in-
teraction. This forms the main contribution of this paper. Although
the techniques to enable some version of each of the eight steps
have been described before in different venues [25, 20, 24, 11, 8,
6,7, 36, 15, 12, 22, 10, 23, 9], it is the first time that these com-
ponents have been put together to form an integrated system. By
presenting such a platform, we hope to stimulate discussion and in-
spire future research by exposing the limitations and mistakes that
we made when developing Ease.ML.

2. EASE.ML PROCESS

The goal of the Ease.ML process is to provide systematic guid-
ance for non-expert users building ML applications — by following
each step in the Ease.ML process, users end up with an ML appli-



cation with certain quality guarantees. The goal of the system is to
minimize human efforts in a way that is as systematic as possible.
The current version of the Ease.ML process contains eight steps,
organized into three subprocesses. This process starts before an
ML model is even constructed (we call it “Day 0” — Pre-ML Sub-
process), and it continues through the DevOps phase after an ML
model is constructed (we call it “Day 2 — Post-ML Subprocess).
In this section, we take the perspective of an end user, and walk
through a full user experience following an Ease.ML process.

Target User Profile. In Ease.ML, we assume the following
profile for a non-expert user:

1. The user understands the domain, application, and dataset well.
She knows how to clean up the data, where to acquire new data,
and how to measure the success and quality of an ML model.
The user also knows the specific task that she wants to achieve
by using ML.

2. The user knows how to write a simple Python script to manipu-
late and transform her data, if necessary.

3. The user knows how to invoke an AutoML system by following
the instructions or user manual.

4. The user knows basic concepts of ML (e.g., the meaning of ac-
curacy and a classifier); however, she does not have experience
in constructing real-world ML applications beyond the simpli-
fied examples she can find in a textbook.

2.1 Pitfalls and Confusions

Each step of Ease.ML is designed to avoid some of the pitfalls
and confusions that users often struggle with in our experience,
even when they are equipped with state-of-the-art ML tools. Before
we present the concrete Ease. ML process, we first describe the key
pitfalls and confusions that we hope to address. Note that, this list is
by no means a complete list of struggles that users have when using
existing ML ecosystems and by no means does Ease.ML provide a
full solution to the listed issues.

P1. Unrealistic expectations of quality.

A common problem is that many users often have unrealistic expec-
tations of the quality that ML can provide — it is not uncommon
that our users come to us with a very noisy or ill-defined dataset, but
still hope for >90% accuracy. Without identifying these problems
as early as possible, many users are set on a journey of AutoML
and feature engineering that is doomed to fail.

As an analogy to traditional software engineering, users need the
functionality of automatic feasibility study for ML workloads.

P2. “How many training/testing examples do 1
need?”

A common question that many users ask during our first meeting
is about the amount of data that they need to acquire. Systematic
answers to such questions are important to ensure that users are
working with representative data samples. Among these, a key step
to ensure the quality of the development and deployment process is
to automatically make sure users have a test set that is large enough
to be representative, but small enough to be affordable to acquire.
Another question, which most users do not explicitly ask, but is
somehow more important, focuses on how to manage the statistical
power of a test set. Even if given a large enough test set at the
beginning, it can quickly lose its statistical power during testing
and can lead to overfitting. This can often cause overly optimistic
expectations on accuracy and misguide the development process.

As an analogy to software engineering, users need the function-
ality of principled test-driven development support for ML work-
loads.

P3. “What should I do to further improve accuracy?”

It is rare for an AutoML system to directly output a model with sat-
isfactory quality — often, it is an iterative process in which users
need to continuously improve the data artifact via feature engineer-
ing, data acquisition, data labeling, and data cleaning, and to run
AutoML systems over different versions of the artifact. One con-
fusion that users often have is what to do next to further improve a
data artifact? Often, we see users who have access to a collection
of powerful tools such as (1) Snorkel for weak label acquisition,
(2) HoloClean for automatic data cleaning, (3) Label Box for label
acquisition, (4) manual feature engineering, and (5) manual data
cleaning, but nonetheless ask: which tool should I use next? It is
not uncommon for us to see users spend a huge amount of time on
one of these steps, but not end up with better ML accuracy.

As an analogy to software engineering, users need support to
avoid “pre-mature optimizations” for ML workloads.

P4. “Will this new model that I just found on arXiv
today work better?”

ML is an area that is undergoing rapid refreshing — everyday, there
seem to be new methods developed for a specific application. One
common question that users often have is whether these new tech-
niques, developed by different researchers, can end up helping their
ML tasks. However, maintaining an ML artefact with respect to
new models and new methods can be expensive (in terms of both
computation and manual efforts), and this is an area in which many
users are looking for a principled solution.

As an analogy to software engineering, users need the support of
“continuous integration and delivery” for ML workloads.

P5. “How can we know that we are not applying a
model trained on February’s data during
Christmas?”

We see a subset of users (especially those from industry who are
dealing with mission critical applications) who are continuously
worried about the mismatch between incoming production data and
models. Often, these users have access to a collection of models,
each of which is constructed under certain assumptions on the pro-
duction workload — for example, one may employ twelve models
within a one-year time frame, each dealing with a single month’s
workload. The challenges that these users are facing are (1) how
to automatically adapt to the ever-changing production data dis-
tribution; and (2) how to pick the best model to use given fresh
production data in a labor-efficient manner.

The design of the Ease.ML process is inspired by these pitfalls
and confusions, which we observed from interacting with our users.

2.2 Day 0: Pre-ML Subprocess

At the beginning of the process, the user provides Ease.ML with
a dataset D. We define the data model precisely in the next sec-
tion but, intuitively, a dataset D consists of: (1) Four sub-datasets
with similar schema: a labeled training set and validation set; and
an unlabeled pool example and an unlabeled test set; (2) All the
uncertainties — for example, missing feature value and all their
candidate values, different possible weak supervision labels, and
the results of different automatic data cleaning tools — are marked
down as meta-data. As we will see, the above will be modeled
using a data model that is a probabilistic database, which we will
describe later.
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Figure 1: Ease.ML Process

The goal of the Pre-ML subprocess is to make sure that the user
systematically improves the data artefact until the system expects
that ML can provide the level of quality that the user desires.

2.2.1 Automatic Data Injection and Augmentation

o Inspiring Pitfall/Confusion: N/A

e Input: Input dataset.

e Output: Augmented, machine readable, dataset.

o Next Step: Automatic Feasibility Study.

o Ease.ML Components: Ease. ML/DataMagic [25, 20]

As the first step of the process, the user needs to get her data
into the system. Data injection is often a painful process that is
frequently overlooked, especially for data stored in a diverse for-
mat. As an important preliminary step, Ease.ML contains a set of
default templates to deal with data injection. One such example is
the Document template, for which Ease.ML translates documents
stored in different formats, such as .PDF, .DOCX, and .HTML,
into a single, machine-readable data structure. It also contains a
set of default data augmentation templates that the systems can
automatically apply in order to increase the data volume. In this
step, the systems also automatically fire up existing automatic data
cleaning and weak supervision tools, each of which provides one
candidate value for uncertain features or labels.

2.2.2 Automatic Feasibility Study

o Inspiring Pitfall/Confusion: P1

e Input: (1) Augmented, machine readable, dataset; (2) Expected accu-
racy.

e Output: A {Yes, No} signal of whether the system believes that the
expected accuracy is achievable given the input dataset.

e Next Step: If No, Labor-efficient Data Cleaning and/or Labor-efficient
Data Acquisition; If Yes, AutoML.

e Ease.ML Components: Ease. ML/Snoopy [24]

Once the data is machine readable, Ease.ML conducts an auto-
matic feasibility study — just like how a real-world ML consultant
works, Ease. ML automatically looks at the data and provides its
belief of the best possible accuracy that an ML model can provide.
If the answer is “No,” Ease.ML advises the user to improve her data
artifact before firing up an expensive AutoML process.

Challenges.. To enable such an automatic feasibility study func-
tionality, the system needs to estimate the irreducible error of a
given task, known as Bayes error, in ML. Providing a practical
Bayes error estimator has been an open problem in ML for decades.

2.2.3 Labor-efficient Data Cleaning
o Inspiring Pitfall/Confusion: P3

e Input: Augmented, machine readable, dataset.

Output: A prioritized list of dirty data examples to be manually cleaned.

Next Step: Automatic Feasibility Study.
e Ease.ML Components: Ease. ML/CPClean [11]

If the answer returned by the automatic feasibility study compo-
nent is “No,” Ease.ML advises the user to improve her data artifact
before firing up an AutoML engine. To this end, the user has two
options: (1) clean up the data manually or (2) acquire more data and
labels. Ease.ML treats each of these two options as an “arm” in a
multi-armed bandit setting and automatically balances the efforts
spent on each of them. When the system asks the user to clean-up
the data manually, it provides the user with a prioritized list of dirty
examples. This list is selected by estimating the impact of cleaning
up a certain data example to the downstream ML prediction accu-
racy. The goal is to minimize the manual cleaning effort to reach
high ML accuracy. The system then reruns the Automatic Feasibil-
ity Study step and gets a new estimate on the irreducible error.

Challenges.. To enable such a labor-efficient data cleaning
functionality, the system needs to analyze the impact of data
cleaning over downstream ML tasks. Towards this goal, Active-
Clean [14] has done seminal work for a subset of ML. models. How-
ever, how to support this for more general ML models remains an
open question.

2.2.4  Labor-efficient Data Acquisition
o Inspiring Pitfall/Confusion: P3

e Input: Augmented, machine readable, dataset.

e Output: A prioritized list of data examples to be manually labeled.
o Next Step: Automatic Feasibility Study.

o Ease.ML Components: Ease.ML/Market [8, 6, 7]

When the system asks the user to acquire more data, it provides
her with a list of unlabeled data examples to look at. This list is
selected by estimating the importance of acquiring labels for these
unlabeled examples to impact the accuracy of downstream ML pre-
diction accuracy. Given this list, the user can label these examples
manually. The goal is to minimize the manual labeling effort to
reach high ML accuracy. The system then reruns the Automatic
Feasibility Study step and get a new estimate on irreducible error.

Challenges.. To enable such an labor-efficient data acquisition
functionality, the system needs to provide a notion of “value” to a
given data point with respect to the ML model. This is an emerging
topic, related to data market, ML explainability, and active learn-
ing.

2.3 Day 1: AutoML Subprocess

2.3.1 Multi-tenant AutoML
o Inspiring Pitfall/Confusion: P4

e Input: Augmented, machine readable, dataset.

e Output: An “endless” stream of ML models.

e Next Step: Continuous Integration.

e Ease.ML Components: Ease. ML/AutoML [36, 15, 12]

Once the user passes the Pre-ML subprocess, she now has a data
artifact that the system believes to have the potential to reach her



expected accuracy. At this stage, Ease.ML fires up the AutoML
component and generate ML models. Like other AutoML systems,
Ease.ML deals with the entire end-to-end ML pipeline, including
automatic feature selection and engineering, model selection, hy-
perparameter tuning, etc. The functionality of this step largely fol-
lows existing platforms, but with one specific twist — when there
is a new ML model made available to the system, all users’ appli-
cations that could potentially use this model are rerun. As a result,
the outcome of the AutoML component of Ease.ML is not a single
model, but a stream of models.

Challenges.. To enable such a continuously updated AutoML
component, the system needs to be efficient in how it prioritizes
different applications and different users. When there are multiple
applications, each of which can be updated with latest model, the
system needs to pick those applications that can benefit the most.
This poses a new challenge that we call multi-tenant AutoML.

2.4 Day 2: Post-ML Subprocess

2.4.1 Continuous Integration
o Inspiring Pitfall/Confusion: P2

e Input: (1) A stream of ML models output by the AutoML component;
(2) user-defined requirements of deployment.

e Output: A stream of ML models that satisfy the requirements.
o Next Step: Continuous Quality Optimization.
e Ease.ML Components: Ease.ML/ci [22, 10, 23]

The Post-ML subprocess concerns the deployment of models.
Given a stream of ML models output by the AutoML component,
not all models can be deployed. The first step in the Post-ML sub-
process is for Ease.ML to test whether each of the models satisfies
a user-defined deployment criteria, such as the new model must be
better than the old model by at least 5% or the new model cannot
change more than 10% of the old model’s predictions. The system
then only keeps those models that satisfy the given conditions. In
Ease.ML, all these criteria can be tested by using a test set. The
system lets the user know the number of test examples it needs to
achieve a rigorous statistical significance level and when it needs a
new test set to avoid overfitting.

Challenges.. The challenge is how to re-use a test set efficiently
to provide rigorous guarantees, without overfitting. Intuitively,
at the moment that Ease.ML provides the test result to a user, it
“leaks” some information from the test set to the user. To avoid
overfitting, the system needs to “measure” the information leakage
and then automatically manage the statistical power of the test set.
This is a challenging statistics problem known as adaptive analyt-
ics.

2.4.2  Continuous Quality Optimization

o Inspiring Pitfall/Confusion: P5

e Input: (1) A set of ML models that satisfy the user-defined requirements;
(2) A set of unlabeled, fresh test examples from the production.

e Output: A set of test examples to label such that one can pick the best
ML model to use in production.

e Next Step: Automatic Quality Debugging and Recommendations.
o Ease.ML Components: Ease. ML/ModelPicker [9]
In principle, all models passing the previous step can be candi-

dates to be deployed in production. This gives us a candidate set
of models. The goal of this step is to pick, from this candidate set,

the best model to use for the next period of time (e.g., a day). To
achieve this goal, Ease.ML asks the user to collect a set of unla-
beled test examples from production (e.g., at 8 a.m. everyday). It
then tries to pick the candidate model that performs the best on this
fresh test set, by acquiring as few labels as possible. This chosen
model is then used (e.g., the next day). The user repeats this pro-
cess, e.g., on a daily basis, such that one often uses the best model
for the ever-changing test data distribution. Ease.ML also automat-
ically applies existing domain adaptation techniques, which create
more models automatically — the system feeds them into the con-
tinuous integration step to make sure that they satisfy the deploy-
ment requirement and automatically add them to the candidate set.

Challenges.. The challenge is to minimize the number of labels
that we need to acquire to distinguish between a large collection of
models. This itself is an interesting online learning problem.

2.4.3  Automatic Quality Debugging and Recommen-
dations

o Inspiring Pitfall/Confusion: P3

e Input: (1) Model deployed in production; (2) Mistakes that this model
makes in production.

e Output: Recommendations of next steps to further improve this model.
o Next Step: Labor-efficient Data Cleaning and/or Data Acquisition.
o Ease.ML Components: N/A

At the end of the process, Ease.ML collects errors made by the
currently deployed model (picked by the previous step), and gives
users recommendations about how to further improve it. This step
has the same structure as that after automatic feasibility study and
directs the user to labor-efficient data cleaning, labor-efficient data
cleaning, and/or labor-efficient data acquisition.

3. EASEML SYSTEM DESIGN

In this section, we describe the high-level design of Ease.ML.
We focus on the design of the logical layer and omit the design of
the physical layer due to space limitation.

Unified, Principled, yet Practical Framework for Hu-
man Interaction in ML. One key realization that we have,
only after we constructed each of the individual components, is that
all user-facing components can be modeled via the same data model
— aprobabilistic database in which uncertainty is induced by dirty
data, unlabeled examples, weak supervision, etc. Moreover, all hu-
man interactions can be modeled as the process of mutual infor-
mation maximization, i.e., eliminating uncertainties to maximize
the “closeness” to an unknown, “ground-truth” world. This unified
framework is often expensive to implement, and one often needs
to develop non-trivial proxies and approximations for each indi-
vidual component. Note that this particular view definitely has its
own limitations, which we will discuss in the next section. Nev-
ertheless, it does provide a principled, yet practical, framework to
model human interactions in an end-to-end ML process.

3.1 A Probabilistic Data Model

The logical data model of Ease.ML is a probabilistic
database [32] in which each row has independent uncertainty. This
is our key design decision, which provides a unified abstraction
for (1) noises in features and labels; (2) weak supervision (e.g.,
Snorkel) that provides multiple alternatives to labels; (3) availabil-
ity of multiple state-of-the-art data cleaning tools that provide mul-
tiple candidates of the cleaned value; (4) unknown label values for



data and label acquisition; and (5) data augmentation. This design
decision was entirely unclear to us at the beginning — only af-
ter we put all components together, we realized how probabilistic
databases would provide a clean, unified abstraction for almost all
Ease.ML steps.

Logical Data Model. Let X be the feature domain and let
be the label domain. Note that, despite its name, the label domain
does not need to be categorical as in supervised classification. For
example, both domains can be images for an image translation task.
A dataset contains pairs of random variables, taking values in the
feature domain and the label domain, respectively:

D = {(x;,y;) : x; € X,y; € V},
and it induces two probability distributions
Prp[x; = X], X € X; Prply;=Y], Y e
As a concrete example, X; can be the output of multiple differ-

ent state-of-the-art automatic data cleaning tools, each of which

forms one candidate value that x; can take for the ¢*" data example
and Prp[x; = X] is our prior on their relative accuracy. y, can
be the output of multiple labeling functions, each of which forms
one candidate label that y, can take for the i*" data example and
Prply, = Y] is our prior confidence on each of the candidate la-
bels. Note that, in our setting, an unlabeled dataset is simply one
in which Prply; = Y] is a uniform distribution. One particular
direction we take in Ease.ML is that there exists a single, unknown
ground truth configuration for each uncertainty example (x;,y,),

and the ground truth dataset Gy, is

Gp ={(=7,v;) : (xi,y;) €D}
where (z7,y;) is the ground-truth value of (x;,y,). In practice,
the ground-truth dataset corresponds to the clean dataset if the un-

certainty is induced by dirty data, or true labels if the uncertainty is
induced by unlabeled examples and weak supervision.

Input to Ease.ML. The input to Ease.ML is four datasets, all
with the same feature domain and label domain: (1) Labeled
Training Set D.,., dataset to train an ML model — both features
and labels have uncertainty; (2) Pool of Unlabeled Data Exam-
ples D,,,;, pool of data examples that are unlabeled and can be
acquired to be included into the training set — features have un-
certainty and labels have uniform prior (unlabeled); (3) Labeled
Validation Set D,,,;, validation dataset that can be used during de-
velopment — features and labels do not have uncertainty, i.e., we
have access to Gﬁml ; (4) Unlabeled Production Test Set D04,
test set that comes from production — only labels have uncertainty
(unlabeled).

3.2 ML Model

We apply ML training only over a deterministic dataset, which is
the assumption of most ML models. A deterministic dataset is one
without uncertainty: D C X x ). Given a deterministic dataset
D, the training process of ML returns an ML model that is a map-
ping Ap: X — ). When we apply the training process over an
uncertain dataset D, it returns a random variable, Ap, taking values
over all possible classifiers. The inference process of a given model
Ap is to apply such a mapping to another deterministic dataset D':
Ap(D"). We use similar notation for datasets D and D’ with un-
certainties, in which Ap (D’) returns a random variable, depending
on the randomness in D and D'.

3.3 Semantics of Each Step

In Ease.ML, we implement the end-to-end process described in
the previous section by developing seven individual components.
In this section, we describe the semantics of each step.

3.3.1 Uncertainty Introduction and Elimination

The first collection of Ease. ML components introduce and elim-
inate uncertainties involved in the dataset, including DataMagic
(2.2.1), Snoopy (2.2.2), CPClean (2.2.3), Market (2.2.4), and Mod-
elPicker (2.4.2). Among these components, DataMagic introduces
uncertainties via weak supervision and automatic data cleaning,
while other components eliminate uncertainties via manual data
cleaning and labeling. One key design decision in Ease.ML is to
build uncertainty elimination components with the same principle
of information maximization. Directly applying this principle is
often hard. We develop therefore different proxies and optimiza-
tions for each individual component. This is derived from the same
underlying assumption that we call the GT-BEST Assumption: the
ground truth G always performs the best in terms of utility. As a
result, the process of maximizing the utility is to eliminate the un-
certainties such that we are as close to the ground truth as possible.

Ease.ML/DataMagic. Given an input dataset provided by the
user, DataMagic [25, 20] automatically parses it and generates a
dataset that is consistent with the Ease. ML data model. Specifi-
cally, DataMagic introduces uncertainties with the following steps:

1. Run state-of-the-art data cleaning methods to induce candidate
values for each feature vector and labels.

2. Conduct automatic data augmentation to induce candidate val-
ues for each feature vector.

3. If possible, run state-of-the-art weak supervision tools to induce
uncertainties over labels.

After DataMagic, the system produces the four datasets: (1) a la-
beled training set Dy,; (2) unlabeled data examples Dyni; (3) a
labeled validation set D,q;; and (4) an unlabeled production test
set Dproq-

Ease.ML/CPClean. The goal of Ease. ML/CPClean [11] is to
eliminate uncertainties over features via manual data cleaning. It
takes as input the validation set D,4; and prioritizes the cleaning
of examples in the training set Dy.. The goal is to find a subset
of K data examples 7 C [|Dy,|] to clean such that the expected
validation accuracy is maximized. Within our framework, this is to
solve
gy g TADL (Doat) | (%, ¥) = (X, ¥2)]

Directly optimizing for this objective is hard. In CPClean, we pro-
vide an efficient PTIME algorithm to calculate the entropy H for a
subfamily of classifiers .A [11], namely K -nearest neighbor classi-
fiers, and use it as the proxy for more advanced classifiers.

Ease. ML/Market. The goal of Ease.ML/Market [8, 6, 7] is to
eliminate uncertainties over the labels of unlabeled examples via
manual labeling. It takes as input the current training set Dy,
the pool of unlabeled examples D,,,;, and the validation set Dy,q;.
The goal is to pick K data examples to label in D,,,,; to maximize
the expected validation accuracy. Within our framework, this is to
solve

Do U = ;krv .
oy B HAD D (Doat) | (s ¥) = (X, ¥ )]
In Market, one design decision that we made is to treat this problem
as a prediction problem — use the Shapley value of each data ex-
ample with the right label as the proxy of the above term, and train



a predictive model to predict such a value given the feature vec-
tor and apply it to unlabeled examples [7]. The calculation of the
Shapley value can be hard for the general classifier, and we provide
a PTIME algorithm for a subfamily of classifiers .4 [6], namely the
K-nearest neighbor classifier, and use it as the proxy.

Ease.ML/ModelPicker. Given a collection of candidate mod-
els M;...My, the goal of Ease.ml/ModelPicker is to pick one that
has the maximum test accuracy by requiring as few labels as pos-
sible. It takes as input the unlabeled production test set Djoq4 and
selects K data examples to label in order to maximize the confi-
dence of picking the best model. In our framework, it is to solve

max H[M(D =Yr
(w0 0 i M Pproa) | ¥ = y)

where M(D) returns a k x k matrix with M(D); ; indicating
whether model M; performs better than M; on D. We show that
it is also possible to design an efficient algorithm to optimize for
certain versions of the above problem [9].

3.3.2  Quality Control, Estimation, and Optimization

The second collection of Ease.ML components aims at estimat-
ing the quality of ML models or automatically optimizing them.
These components include: (1) EASE.ML/SNOOPY [24], an auto-
matic feasibility study tool with a practical Bayes error estimator,
taking advantage of available embedding hubs such as TensorFlow
Hub, (2) EASE.ML/cI [22, 10, 23], an automatic management sys-
tem of statistical powers for test sets that controls the information
leakage from the test set to the user during the continuous testing
and integration process, and (3) EASE.ML/AUTOML [36, 15, 12],
an AutoML system that efficiently maintains applications given
new ML models by taking a multi-tenant view.

3.4 A Prototype Implementation

We built a prototype implementation of our system to showcase
the key aspects of our design. One key design decision is to base
our system with Jupyter notebooks as it not only represents a famil-
iar and powerful platform to many data scientists but also provides
naturally all interactions that Ease.ML has with its users.

The user interaction in Jupyter notebooks is conducted through
"code cells" where the user types in usually short code snippets
and then executes them, after which the output is presented im-
mediately below the cell. We use the same approach and we ex-
tend it with slightly enriched output cells that can contain vari-
ous Ul items such as buttons, progress bars and interactive graphs.
The user loads the data after which she can execute any sequence
of data manipulation operations (e.g. input preprocessing, clean-
ing, filtering) intertwined with various EASE.ML operations (e.g.
EASE.ML/SNOOPY or EASE.ML/AUTOML).

Each manipulation is tracked and stored in a lineage graph that
is used to represent the user’s ML workflow. This graph can then
be optimized, materialized, or stored for later use. A lineage graph
that is saved can also be executed at a later point, e.g. through a
command line shell or as part of some CI/CD workflow. Further-
more, the user can ask the system to give suggestions for next steps
given the current state of the lineage graph.

As mentioned earlier, the logical data model we assume for all
ML datasets is the probabilistic relational model where each row
is associated with a single data example (i.e. a sample from a data
distribution). Each data example is furthermore associated with
one or more possible candidate rows from which only one can be
selected at any given time. Each column has a type that can be
either a simple scalar value (e.g. numeric, Boolean, categorical,

string, etc.) or a more complex type (e.g. document, tensor, etc.)
This data model is implemented with the Relation class that
wraps around the Dat aFrame class taken from the popular Pandas
framework which we extend with the mentioned capabilities.

To manipulate the data stored in our data model, the user would
run various available operators. These operators work in a staged
manner whereby invoking an operator merely appends it to the lin-
eage graph. The return value of the operator invocation is the up-
dated lineage graph. At any point in the interactive ML process the
user can choose to materialize the graph by calling the eval ()
function. This process involves performing various optimizations
after which the resulting data view is shown in the output cell of
the Jupyter notebook while at the same time being cached for fu-
ture use. This approach allows us to treat ML workflows as first-
class citizens that can be managed like any other data artefact, while
at the same time preserving the interactive nature of Jupyter note-
books.

4. CONCLUSION AND FUTURE WORK

We have presented Ease.ML, a novel platform that aims for auto-
mated end-to-end lifecycle management of ML application devel-
opment. The current iteration of Ease.ML includes an eight-step
process that covers the entire development lifecycle, motivated by
the pitfalls and confusions we found during interactions with our
users. We have also presented the foundation of Ease.ML, in con-
nection with probabilistic database theory and information theory.
As a research prototype, the goal of Ease.ML is to “expose” limi-
tations in its design instead of “hide” them. We briefly describe the
most severe limitations of the current design. In our opinion, these
limitations indicate exciting directions for future research.

Efficiency. Whenever a design decision is made, the current
Ease.ML prioritizes more on a principled formulation rather than
an efficient way. One example is the unified information maxi-
mization framework for all human-related interaction. Although
for each of these tasks, we developed different proxy models and
approximations, it can be beneficial to explore how to conduct each
task directly on the target black-box training procedure.

Beyond Accuracy. The current design of the Ease. ML process
overwhelmingly focuses on a single target metric, i.e., accuracy.
This is a reflection of the focus of many ML systems and tools.
Recently, there has been an emerging collection of metrics, such as
robustness, fairness, and explainability, that has attracted intensive
interest. How to systematically support the engineering process of
these new metrics is an interesting direction, in our opinion.
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