Photon: A High-Performance Query Engine for the Lakehouse
Alexander Behm

alex.behm @databricks.com
Databricks Inc.

ABSTRACT

We present Photon, a new native vectorized query engine power-
ing the Databricks Runtime. Photon achieves state-of-the-art query
execution times and industry-leading price performance on real
workloads against data stored in the Parquet and Delta format, in
situ over data lakes such as Amazon S3, ADLS, and GCS. Photon
supports not only SQL but also the DataFrame APIs of Apache
Spark [3], PySpark, and Koalas.

We developed Photon in response to the observation that orga-
nizations are shifting to a new paradigm called the Lakehouse [2],
which combines the low cost, open access, and versatility of data
lakes with the reliability, performance, and governance features of
data warehouses. One reason for this trend is that the majority of en-
terprise data today (over 90% of bytes, in our experience) is already
stored in data lakes. Users have reported that it is time-consuming
and error-prone to copy and maintain subsets of this data in an exter-
nal data warehouse while maintaining data freshness and accuracy.
Instead, the Lakehouse enables applications to operate on the data
in-situ throughout the data lifecycle (e.g., from raw ingested values
to bronze/silver/golden) without compromising on fidelity or per-
formance. The full data lineage can be tracked and errors can be
corrected from the raw source data.

While in-situ processing simplifies the data architecture, it also
challenges the data processing engine with a greater variety of data.
On one end of the spectrum, users take great care to clean and
organize their data for read performance by designing schemas and
data indexes. On the other end of the spectrum, uncurated data may
have suboptimal data layouts like small files, many columns, sparse
or large data values, and no useful clustering or statistics. In addition,
strings are convenient and prevalent, even to represent numeric data
like integers and dates. Data is un-normalized, so string columns
may additionally use placeholder strings for unknown or missing
values instead of NULL. Schema information like NULL-ability or
string encoding (e.g., ASCII vs. UTF-8) is typically absent.

These differences reflect that not all data is equally valuable, so
simply optimizing all data is neither a cost-efficient practice nor
a desirable outcome. Thus, our goal with Photon is to design an
engine that is flexible enough to deliver good performance on arbi-
trary uncurated data, and excellent performance on data following
Lakehouse best practices—Ilike Hilbert clustering, reasonable file
sizes, and appropriate data types—across a variety of use cases such
as data science, ETL, ad hoc SQL, and BI.

We present our decisions with respect to Photon’s design and im-
plementation. First, we chose to design the engine around vectorized-
interpreted query execution in lieu of code generation. Although we
found some scenarios where the code generation model delivers bet-
ter performance (e.g., queries with complex conditional expressions),
our experience while prototyping both approaches and from working
on past database engines was that the vectorized model was easier to
build, profile, debug, and operate at scale. This allowed us to invest

more time in specializations that narrowed or eliminated the per-
formance gap between the two. Preserving abstraction boundaries
such as query operators also facilitates collecting rich metrics to
help end users better understand query behavior. Finally, vectorized
execution enabled us to support runtime adaptivity, wherein Photon
discovers, maintains, and exploits micro-batch data characteristics
with specialized code paths to adapt to the various degrees of data
quality in the Lakehouse for optimal performance.

Second, we chose to implement Photon in a native language
(C++) rather than following the precedent of the existing Databricks
Runtime engine, which is implemented in the JVM. One reason for
this decision was that we were hitting performance ceilings with the
existing JVM-based engine. For example, implementing operators
that used SIMD instructions in the CPU or prefetched data from
main memory was difficult without deep knowledge of the JVM
compiler internals. Another reason for switching to native code
was internal JIT compiler limits (e.g., on method size) that created
performance cliffs when JVM optimizations bailed out. Finally, we
found that the performance of native code was generally easier to
explain than the performance of the JVM engine, since aspects like
memory management were under explicit control.

Finally, Photon integrates with the Apache Spark-based Databricks
Runtime to coordinate work and resources. Users can accelerate their
existing workloads without code changes due Photon’s hybrid exe-
cution capability. Queries can partially run in Photon and fall back
to Apache Spark for still unsupported operations, while Photon fea-
tures are being continuously added to reduce these transitions. This
ability to partially roll out Photon has given us valuable operational
experience in using Photon in the field.

Since its release, Photon has run tens of millions of production
queries issued by hundreds of enterprise customers. Thus far, our
customers have reported speedups of up to an order of magnitude
with an average of 3x over the existing Databricks Runtime, which
in turn provides significant performance improvements over open-
source Apache Spark. As further validation, Databricks set an au-
dited 100TB TPC-DS world record [1] in November 2021 with
Photon and a Lakehouse system using the Delta Lake format on
Amazon S3, showing that state-of-the-art SQL performance is at-
tainable with open data formats and commodity cloud storage.

REFERENCES

[1] 2021. TPC-DS V3 Result Highlights, Databricks SQL 8.3. http://tpc.org/5013.

[2] Michael Armbrust, Ali Ghodsi, Reynold Xin, and Matei Zaharia. 2021. Lakehouse:
A New Generation of Open Platforms that Unify Data Warehousing and Advanced
Analytics. CIDR.

[3] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012.
Resilient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster
Computing. In Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation. USENIX Association, 2-2.


http://tpc.org/5013

	Abstract
	References

