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Today’s real-time data analytics applications are built using a range
of software platforms for distributed stream processing. Popular
stream processing platforms include Apache Storm [1], Spark [2,
3], and Flink [4]; Google Cloud Dataflow [5]; Microsoft Trill [6];
and emerging frameworks such as Timely [7, 8] and Differential
Dataflow [9]. However, engineering and performance advances
over the last two decades have not been met by adequate attention
to software correctness. Correctness is especially important in this
context because the amount of data, distributed deployment, and
real-time nature of these applications makes them difficult to un-
derstand and to debug [10–12]. Moreover, errors are catastrophic:
whereas an error in an offline application might go unnoticed if it
is diagnosed and fixed in a timely manner, an error in a streaming
application immediately results in either wrong results, delays, or
service outages for downstream consumers. To ensure the highest
level of safety for present and future applications, we advocate for
formal methods work in the rigorous formalization and verification
of stream processing programs and systems.

Challenges. Beforewe can achieve verified applications, researchers
and practitionersmust agree onwhat it means for stream processing
programs to be correct. Unfortunately, this remains an outstanding
challenge: there is no unifying language standard, specification, or
semantics that is understood across systems. For example, a stream
processing program is typically taken to be a dataflow graph of
operators, but systems disagree on whether edges in the graph can
be ordered streams, or whether all data may be out-of-order. The
details of how streams are partitioned between graph operators
is also system-dependent. To further complicate matters, modern
stream processing applications may support a number of complex
features, including user-defined stateful operators [1, 13, 14], com-
munication across partitions [15], querying or interfacing with
external services [16, 17], and iterative computation [8].

Broader context. In contrast to today’s stream processing appli-
cations, database query engines and batch processing applications
often benefit from formal semantics built on relational algebra that
is well-understood and agreed upon, leading to fruitful research
on semantically predictable query languages, optimization, and
distributed evaluation. In distributed systems, formal specifications
can be exploited in order to prove systems correct under faults,
to prove safety through model-checking or to test correctness at
runtime using traces. Formalization in these areas has enabled veri-
fication, testing, optimization, and synthesis.

Opportunities. We identify four correctness dimensions which are
common to all stream processing platforms, regardless of specific
system choices and features, and represent important opportunities
in this space. First, stream processing applications process both
out-of-order and in-order data. Data cannot be treated naively as an
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Figure 1: Envisioned Stream Processing Architecture: System
exposes formal execution semantics and supports pluggable
formal analyses.

unordered relation, because some time-series constructs (window-
ing, streaming aggregation, and interpolation) are implemented
in an order-dependent way, but it is also not solely ordered, be-
cause distribution and network delays often cause out-of-order
arrivals. This raises the need to encode precisely what ordering re-
quirements are made on physical events [8, 18–22]. Second, stream
processing systems perform program transformations to achieve
distribution: the (generally sequential or declarative) user query
is parallelized and distributed across nodes, which requires mak-
ing choices about how streams are partitioned and how operators
are replicated. This raises the need to ensure safe distribution: the
distributed code should be semantically equivalent to the original
program in some sense [20, 21, 23]. Third, we observe that the per-
formance of operators in a stream processing program is actually
critical for correctness, and not just a matter of efficiency. This is
because if a program receives more input items than it can handle,
it will crash and the fault is likely unrecoverable. This raises the
need to infer performance guarantees on operators to ensure pre-
dictable execution, ideally at compile time [24–29]. Finally, due to
distributed deployment, stream processing applications should be
fault-tolerant. This dimension is well-studied by existing work on
ensuring fault tolerance for distributed streaming applications [30–
34].

Outlook. If successul, formalization could shape design and tool
support for the future of stream processing systems. Figure 1 shows
how formal models could fit in a unified architecture for stream
processing applications. The system interface offers well-defined
formal semantics and supports formal analyses (checking whether
certain assumptions are met), which inform the compiler in generat-
ing an efficient and correct implementation. Ordering requirements
are encoded in the formal execution semantics, and can be exploited
by formal analyses and tools. Safe distribution semantics are ex-
ploited by the distributed implementation and compiler/optimizer.
Performance guarantees are provided by a formal analysis of the
user query, and preserved by the compiler/optimizer.
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