
Correctness in Stream Processing: Challenges and Opportunities
Caleb Stanford

castan@cis.upenn.edu
University of Pennsylvania

Philadelphia, PA, USA

Konstantinos Kallas
kallas@seas.upenn.edu

University of Pennsylvania
Philadelphia, PA, USA

Rajeev Alur
alur@cis.upenn.edu

University of Pennsylvania
Philadelphia, PA, USA

Today’s real-time data analytics applications are built using a range
of software platforms for distributed stream processing. Popular
stream processing platforms include Apache Storm [1], Spark [2,
3], and Flink [4]; Google Cloud Dataflow [5]; Microsoft Trill [6];
and emerging frameworks such as Timely [7, 8] and Differential
Dataflow [9]. However, engineering and performance advances
over the last two decades have not been met by adequate attention
to software correctness. Correctness is especially important in this
context because the amount of data, distributed deployment, and
real-time nature of these applications makes them difficult to un-
derstand and to debug [10–12]. Moreover, errors are catastrophic:
whereas an error in an offline application might go unnoticed if it
is diagnosed and fixed in a timely manner, an error in a streaming
application immediately results in either wrong results, delays, or
service outages for downstream consumers. To ensure the highest
level of safety for present and future applications, we advocate for
formal methods work in the rigorous formalization and verification
of stream processing programs and systems.

Challenges. Beforewe can achieve verified applications, researchers
and practitionersmust agree onwhat it means for stream processing
programs to be correct. Unfortunately, this remains an outstanding
challenge: there is no unifying language standard, specification, or
semantics that is understood across systems. For example, a stream
processing program is typically taken to be a dataflow graph of
operators, but systems disagree on whether edges in the graph can
be ordered streams, or whether all data may be out-of-order. The
details of how streams are partitioned between graph operators
is also system-dependent. To further complicate matters, modern
stream processing applications may support a number of complex
features, including user-defined stateful operators [1, 13, 14], com-
munication across partitions [15], querying or interfacing with
external services [16, 17], and iterative computation [8].

Broader context. In contrast to today’s stream processing appli-
cations, database query engines and batch processing applications
often benefit from formal semantics built on relational algebra that
is well-understood and agreed upon, leading to fruitful research
on semantically predictable query languages, optimization, and
distributed evaluation. In distributed systems, formal specifications
can be exploited in order to prove systems correct under faults,
to prove safety through model-checking or to test correctness at
runtime using traces. Formalization in these areas has enabled veri-
fication, testing, optimization, and synthesis.

Opportunities. We identify four correctness dimensions which are
common to all stream processing platforms, regardless of specific
system choices and features, and represent important opportunities
in this space. First, stream processing applications process both
out-of-order and in-order data. Data cannot be treated naively as an

SELECT * FROM ...User Application

Compiler/Optimizer

Distributed 
Implementation

Formal Execution Semantics: 
Annotated DataflowStream

Processing
System

Distributed
Assumptions

Analysis

Ordering
Requirements 

Analysis

Performance
Analysis

Formal Analyses

Figure 1: Envisioned Stream Processing Architecture: System
exposes formal execution semantics and supports pluggable
formal analyses.

unordered relation, because some time-series constructs (window-
ing, streaming aggregation, and interpolation) are implemented
in an order-dependent way, but it is also not solely ordered, be-
cause distribution and network delays often cause out-of-order
arrivals. This raises the need to encode precisely what ordering re-
quirements are made on physical events [8, 18–22]. Second, stream
processing systems perform program transformations to achieve
distribution: the (generally sequential or declarative) user query
is parallelized and distributed across nodes, which requires mak-
ing choices about how streams are partitioned and how operators
are replicated. This raises the need to ensure safe distribution: the
distributed code should be semantically equivalent to the original
program in some sense [20, 21, 23]. Third, we observe that the per-
formance of operators in a stream processing program is actually
critical for correctness, and not just a matter of efficiency. This is
because if a program receives more input items than it can handle,
it will crash and the fault is likely unrecoverable. This raises the
need to infer performance guarantees on operators to ensure pre-
dictable execution, ideally at compile time [24–29]. Finally, due to
distributed deployment, stream processing applications should be
fault-tolerant. This dimension is well-studied by existing work on
ensuring fault tolerance for distributed streaming applications [30–
34].

Outlook. If successul, formalization could shape design and tool
support for the future of stream processing systems. Figure 1 shows
how formal models could fit in a unified architecture for stream
processing applications. The system interface offers well-defined
formal semantics and supports formal analyses (checking whether
certain assumptions are met), which inform the compiler in generat-
ing an efficient and correct implementation. Ordering requirements
are encoded in the formal execution semantics, and can be exploited
by formal analyses and tools. Safe distribution semantics are ex-
ploited by the distributed implementation and compiler/optimizer.
Performance guarantees are provided by a formal analysis of the
user query, and preserved by the compiler/optimizer.



CIDR ’22: Conference on Innovative Data Systems Research, January 09–12, 2022, Santa Cruz, CA Caleb Stanford, Konstantinos Kallas, and Rajeev Alur

COPYRIGHT
This article is published under a Creative Commons Attribution License:

http://creativecommons.org/licenses/by/3.0/

which permits distribution and reproduction in anymedium as well as allowing
derivative works, provided that you attribute the original work to the author(s)
and CIDR 2022. 12th Annual Conference on Innovative Data Systems Research
(CIDR ’22). January 9-12, 2022, Chaminade, USA.

REFERENCES
[1] Apache. Apache storm. http://storm.apache.org/, 2019. [Online; accessed March

31, 2019].
[2] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion

Stoica. Spark: Cluster computing with working sets. In Proceedings of the 2Nd
USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10, pages 10–10,
Berkeley, CA, USA, 2010. USENIX Association.

[3] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and
Ion Stoica. Discretized streams: Fault-tolerant streaming computation at scale. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles,
SOSP ’13, pages 423–438, New York, NY, USA, 2013. ACM.

[4] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. Apache flink: Stream and batch processing in a single
engine. IEEE Data Eng. Bull., 38:28–38, 2015.

[5] Google Cloud. https://cloud.google.com/dataflow, 2021. [Online; accessed August
27, 2021].

[6] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert DeLine, Danyel
Fisher, John C Platt, James F Terwilliger, and John Wernsing. Trill: A high-
performance incremental query processor for diverse analytics. Proceedings of
the VLDB Endowment, 8(4):401–412, 2014.

[7] Frank McSherry. Timely dataflow (rust). https://github.com/TimelyDataflow/
timely-dataflow/, 2020. [Online; accessed September 30, 2020].

[8] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martín Abadi. Naiad: A timely dataflow system. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles, SOSP ’13, pages 439–455,
New York, NY, USA, 2013. ACM.

[9] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael Isard. Dif-
ferential dataflow. In CIDR, 2013.

[10] Muhammad Ali Gulzar, Matteo Interlandi, Seunghyun Yoo, Sai Deep Tetali, Tyson
Condie, Todd Millstein, and Miryung Kim. Bigdebug: Debugging primitives for
interactive big data processing in spark. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), pages 784–795. IEEE, 2016.

[11] Alexandre Vianna, Waldemar Ferreira, and Kiev Gama. An exploratory study
of how specialists deal with testing in data stream processing applications. In
2019 ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM), pages 1–6. IEEE, 2019.

[12] Buğra Gedik, Henrique Andrade, Andy Frenkiel, Wim De Pauw, Michael Pfeifer,
Paul Allen, NormanCohen, and Kun-LungWu. Tools and strategies for debugging
distributed stream processing applications. Software: Practice and Experience,
39(16):1347–1376, 2009.

[13] Apache. Apache flink. https://flink.apache.org/, 2019. [Online; accessed March
31, 2019].

[14] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and Kostas
Tzoumas. State management in apache flink: Consistent stateful distributed
stream processing. Proc. VLDB Endow., 10(12):1718–1729, August 2017.

[15] Apache flink 1.10 documentation: The broadcast state pattern. https://ci.apache.
org/projects/flink/flink-docs-stable/dev/stream/state/broadcast_state.html.

[16] Shadi A. Noghabi, Kartik Paramasivam, Yi Pan, Navina Ramesh, Jon Bringhurst,
Indranil Gupta, and Roy H. Campbell. Samza: Stateful scalable stream processing
at LinkedIn. Proceedings of the VLDB Endowment, 10(12):1634–1645, August 2017.

[17] Lorenzo Affetti, Alessandro Margara, and Gianpaolo Cugola. Flowdb: Integrating
stream processing and consistent state management. In Proceedings of the 11th
ACM International Conference on Distributed and Event-based Systems, pages
134–145, 2017.

[18] Matthias Brun, Sára Decova, Andrea Lattuada, and Dmitriy Traytel. Verified
progress tracking for timely dataflow. In 12th International Conference on Inter-
active Theorem Proving (ITP 2021). Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, 2021.

[19] Rajeev Alur, Konstantinos Mamouras, Caleb Stanford, and Val Tannen. Interfaces
for stream processing systems. In Principles of Modeling, pages 38–60. Springer,
2018.

[20] Konstantinos Mamouras, Caleb Stanford, Rajeev Alur, Zachary G. Ives, and Val
Tannen. Data-trace types for distributed stream processing systems. pages
670–685, 2019.

[21] Rajeev Alur, Phillip Hilliard, Zachary G Ives, Konstantinos Kallas, Konstantinos
Mamouras, Filip Niksic, Caleb Stanford, Val Tannen, and Anton Xue. Synchro-
nization schemas. In Invited contribution to Principles of Database Systems (PODS,
invited contribution), pages 1–18, 2021.

[22] Konstantinos Kallas, Filip Niksic, Caleb Stanford, and Rajeev Alur. Diffstream:
Differential output testing for stream processing programs. Proceedings of the
ACM on Programming Languages, (OOPSLA), 2020.

[23] Scott Schneider, Martin Hirzel, Buğra Gedik, and Kun-Lung Wu. Safe data
parallelism for general streaming. IEEE transactions on computers, 64(2):504–517,
2013.

[24] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The
synchronous data flow programming language lustre. Proceedings of the IEEE,
79(9):1305–1320, 1991.

[25] Edward A Lee and David G Messerschmitt. Synchronous data flow. Proceedings
of the IEEE, 75(9):1235–1245, 1987.

[26] ShanmugavelayuthamMuthukrishnan. Data streams: Algorithms and applications.
Now Publishers Inc, 2005.

[27] Konstantinos Mamouras, Mukund Raghothaman, Rajeev Alur, Zachary G Ives,
and Sanjeev Khanna. Streamqre: Modular specification and efficient evaluation of
quantitative queries over streaming data. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 693–708,
2017.

[28] Rajeev Alur, Dana Fisman, and Mukund Raghothaman. Regular programming
for quantitative properties of data streams. In Proceedings of the 25th European
Symposium on Programming (ESOP ’16), pages 15–40, 2016.

[29] Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford. Modular quantitative
monitoring. Proceedings of the ACM on Programming Languages, 3(POPL):1–31,
2019.

[30] Pedro F Silvestre, Marios Fragkoulis, Diomidis Spinellis, and Asterios Katsifodi-
mos. Clonos: Consistent causal recovery for highly-available streaming dataflows.
In Proceedings of the 2021 International Conference on Management of Data, pages
1637–1650, 2021.

[31] Michael Armbrust, Tathagata Das, Joseph Torres, Burak Yavuz, Shixiong Zhu,
Reynold Xin, Ali Ghodsi, Ion Stoica, and Matei Zaharia. Structured streaming: A
declarative api for real-time applications in apache spark. In Proceedings of the
2018 International Conference on Management of Data, pages 601–613, 2018.

[32] Magdalena Balazinska, Hari Balakrishnan, Samuel Madden, and Michael Stone-
braker. Fault-tolerance in the borealis distributed stream processing system. In
Proceedings of the 2005 ACM SIGMOD international conference on Management of
data, pages 13–24, 2005.

[33] Bonaventura Del Monte, Steffen Zeuch, Tilmann Rabl, and Volker Markl. Rhino:
Efficient management of very large distributed state for stream processing en-
gines. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, pages 2471–2486, 2020.

[34] Mehul A Shah, Joseph M Hellerstein, and Eric Brewer. Highly available, fault-
tolerant, parallel dataflows. In Proceedings of the 2004 ACM SIGMOD international
conference on Management of data, pages 827–838, 2004.

http://creativecommons.org/licenses/by/3.0/
http://storm.apache.org/
https://cloud.google.com/dataflow
https://github.com/TimelyDataflow/timely-dataflow/
https://github.com/TimelyDataflow/timely-dataflow/
https://flink.apache.org/
https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/state/broadcast_state.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/state/broadcast_state.html

	References

