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ABSTRACT
The world of data objects and systems is complex and heteroge-
neous, making collaboration across tools, teams, and institutions
difficult. Important goals like effective data science, responsible
data governance, and well-informed data consumption all require
participation from multiple parties who share conceptual data mod-
els despite being unfamiliar with, or organizationally distant from
each other. In order to be productive together, data collaborators
need a shared conceptual model that includes traditional schemas
and system models, such as pipelines and procedures. This shared
model does not have to be entirely correct, but to enable effective
collaboration, it should be tool-, team-, and institution-independent.
We describe a working demonstration system that aims to build this
shared conceptual model. This system borrows ideas from knowl-
edge graphs and other massive collaborative efforts to curate data
artifacts beyond the reach of any one person or institution.

1 INTRODUCTION
The world of data systems is complex and heterogeneous, and
getting more so. Organizations have moved far past the time of con-
solidating information in a single relational database; instead, data
management work takes place across a dizzying array of databases,
servers, laptops, data lakes, bulk processing systems, cloud storage,
cloud-hosted applications, web services, user-facing apps, poly-
stores, graph databases, and machine learning services.

This heterogeneity poses a huge problem for collaborative work
that requires shared conceptual models of data and computation
procedures.

The lack of shared models:
• Makes data science less productive, as scientists cannot
easily rely on standard data definitions and operations.

• Makes data governance frustrating, as organizations can-
not automatically enforce rules that apply to all of their
employees’ data activities.

• Makes data consumption tedious, as individuals can never
know exactly the assumptions that went into a particular
report or visualization.

We need a single shared model to abstract away the moun-
tains of practical details making modern data systems possible
at the systems level but nearly unmanageable at the semantic level.
Perhaps such a model could incorporate not just traditional rela-
tional schemas, but also descriptions of shared datasets, functions,
pipelines, and even provenance relationships between data objects,
even across tools and institutions.

*These authors contributed equally to this submission.

With such a model:

• Data scientists could rapidly converge on shared datasets,
schemas, function implementations, data quality tests, and
other primitives. They could quickly examine details of up-
stream inputs and downstream data consumers.

• Data governance systems could rely on the existence of
correct provenance for any data object, regardless of where
it is found. This could enable straightforward enforcement
of General Data Protection Regulation (GDPR) usage restric-
tions, the GDPR right to be forgotten, the California Data
Protection Act, and corporate sharing rules.

• Data consumers could investigate the unambiguous details
of how any data output was generated, regardless of where
the object or the user sits. This would allow for a decision-
maker or news consumer to carefully and responsibly use
aggregated results.

But how can we possibly agree upon and construct such a model?

Current solutions — Unfortunately, conventional solutions for
creating shared semantic models have not been successful in to-
day’s heterogeneous environment. Traditional relational databases
clearly only capture a small fraction of all data activity. XML-driven
schema standards have failed to become popular and practical out-
side a relatively small number of uncontroversial and static domains
that enjoy very wide consensus, such as addresses. Data catalog
systems, such as Alation, Collibra, or data.world have become pop-
ular in recent years and are perhaps the most successful. However,
users commonly report that: (1) data catalog systems only capture a
fraction of data activity, (2) the manual curation workload required
by these systems places an expensive limit on how quickly the cat-
alog can grow, and (3) even high-quality catalogs do not generate
large usage outside legally-mandated activities.

Moreover, even these catalog systems fail to capture lineage or
provenance information. This is a growing area of research interest,
but deployed systems are rare.

Collaborative data construction — Building such a comprehen-
sive shared model may sound nearly impossible, but we have real-
world examples of collaborative systems that have yielded high-
quality and inexpensive data artifacts: PageRank-driven search
engines like Google Search, social content curation systems like
Reddit, Facebook, Pinterest, and Urban Dictionary, and — most
notably for us — crowdsourced knowledge graphs like Wikidata.

These examples do not rely entirely or even primarily on tradi-
tional database ideas of good manual schema design or data inte-
gration quality. Rather, they combine three basic design elements:



(1) Broad collection of raw information (such as web pages
with hyperlinks, reactions and comments on online forums,
or unexamined fact triples) by independent users.

(2) Social ranking and aggregation methods that exploit use
phenomena to forge some form of consensus over these
objects (such as a single PageRank score for every web page,
or a ranking of popular news articles, or a set of deduplicated
knowledge graph properties). Crucially, this software can
often succeed even with imperfect semantic insight into the
objects.

(3) Presentation tools that customize the socially-aggregated
results and make them useful for individuals (such as term-
weighted text search, or topic filters on a social media feed,
or a voice agent that finds and renders user-requested facts).
By channeling use toward highly-ranked items, these tools
drive further consensus.

Put another way, existing social systems have succeeded at build-
ing datasets that are comprehensive but

Our demonstration — Building a comprehensive shared model
of the data world will be a difficult and lengthy effort that involves
large numbers of people; it is not even close to being done. How-
ever, we have built a demonstration system that aims to enable
the construction of a very simple version of this shared model. It
embodies the three above design elements.

In this paper we first discuss a few collaborative data systems
that have been used to create similar artifacts. We then describe the
demonstration system: its architecture and data model, a detailed
user walkthrough, and ideas on how to make its deployment and
sustained growth a practical effort. Finally, we conclude with some
proposed research directions that would make this system more
realistic and useful.

2 DESIGN INSPIRATION: COLLABORATIVE
DATA CONSTRUCTION

In this section we briefly describe howWikidata, a knowledge graph
project, provides a compelling example of how online collaboration
can be used to create high-quality data artifacts at a reasonable cost.
We also briefly discuss two other systems: PageRank-driven search
and social content curation.

2.1 Wikidata
Wikidata [19] is a knowledge graph (KG) that provides the struc-
tured data elements of most Wikipedia pages, often shown on the
right-hand side of the page. Other knowledge graph examples in-
clude DBpedia [1], the Google Knowledge Graph [15]), UniProt [18],
MusicBrainz [14], GeoNames [8], and many others [3, 7, 17]. Knowl-
edge graphs have had slightly different definitions over the years.
We think of a knowledge graph as a data resource which contains:

• Unique entities that correspond to real-world objects.1 For
example, entity Q76 represents Barack Obama in Wikidata.
Different KGs make different curatorial decisions about what
entities should be contained. For example, there is a Joe

1Some academic knowledge networks follow a slightly different approach, such as
creating a node for every distinct noun phrase in a text, even if they refer to identical
real-world objects, as in VerbKB ([21]). However, our definition here is consistent with
the major deployed knowledge graphs.

Figure 1: Growth in Wikidata size from 2014 to 2020

Biden entity in Wikidata, but not in the MusicBrainz graph
of recorded music. 2 These can be thought of as the nodes in
the knowledge graph.

• Unique properties that describe a directed relationship be-
tween two entities or an entity and a literal data value. For
example, Wikidata property P19 describes the place of birth
relationship, which describes an entity (usually a person) that
is linked to another entity (usually a location). In contrast,
Wikidata’s property P569 (date of birth) usually describes
a relationship between a single entity and a date. These
properties can be thought of as potential edge labels in the
knowledge graph.

• By combining entities, properties, and data values, the knowl-
edge graph can hold a large number of facts about real-world
objects. For example, Wikidata states that (Q76, P26, Q13133)
is true. That is, Barack Obama (Q76) has spouse (P26) of
Michelle Obama (Q13133). These triples can be thought of as
concrete node-edge-node patterns in the knowledge graph.

Although Wikidata is graph-structured, it is not substantially fo-
cused on capturing graph-oriented data, such as social networks or
air routes. A significant portion of its data would be an easy fit for
the relational model.

Growth and costs — Wikidata has enjoyed jaw-dropping growth.
Figure 1 shows the growth in the number of fact triples in Wikidata,
across multiple different fact types. The cost of building this quickly-
growing dataset is not easy to quantify. One possible metric is the
number of edits that have gone into the system during this time.
Figure 2 shows the number of edits, stratified by users and user-
deployed bots, that have created the growth in Figure 1. It is difficult
to say whether this number is "cheap" or "expensive," but at least we
can say that there is no super-linear growth in administration costs.
Wikidata has effectively recruited increasing amounts of editor
effort to produce increasing amounts of data.

Social curation — "Schema"-like collections of properties exist for
some kinds of nodes (for example, Humans (entity Q5) generally

2Barack Obama appears in both, having recorded several audiobooks.
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Figure 2: Wikidata edits from 2014 to 2020

generally have a date of birth (P569), occupation (P106), and coun-
try of citizenship (P27)), but populating such facts for a given entity
is not required or computationally enforced as with a standard
relational database. Yet Wikidata is typically able to obtain good
data quality. Permissive admission means that simple new facts do
not receive much scrutiny before being added. Editor time is in-
stead mainly spent evaluating facts that employ novel properties.
Aggressive autocomplete software continually recommends the data
entry user replace a partially-entered entity name with a popular
object already in its dataset, and does the same for properties. Ca-
sual editors can thereby add data without mistakenly introducing
unneeded and duplicative entities or properties.

2.2 Other Systems
We can now compare Wikidata’s methods to other well-known
examples of collaborative data construction.

PageRank, beyond being a signal for search engines, can be viewed
as a collective effort to construct a global ranking of all known web
pages. This ranking would be impossible for any one human to
construct; it reflects a vast number of points of view, yet is generally
viewed as a high-quality and useful artifact.

PageRank "contributors" add links to the system by publishing
links on their own web pages that can be crawled and deduplicated.
The PageRank algorithm then aggregates these link-votes into a
consensus ranking. By using PageRank as an ingredient in a public
search engine, users are further encouraged to view and share
popular sites, driving further consensus in future PageRank outputs.

Social Content Curation systems like Reddit, Facebook, YouTube,
and TikTok similarly aggregate user activity to construct high-
quality rankings (of URL-addressable pieces of content). Contrib-
utors add a link to a shared repository. The social content system
deduplicates the objects, then uses both explicit and implicit per-
URL votes — revealed by users’ reading, responding, and sharing
behavior — to build a ranking over the objects. Again, by using
the ranking to guide users’ behavior toward popular objects, the
system drives additional consensus on the "best" content objects.

Figure 3: A KNPS database that describes federal court cases.

2.3 Design Discussion
It is easy to wonder whether these systems are actually delivering
high-quality artifacts. Wikidata seems to be very accurate at the
human-inspectable fact level, but the best measure of quality would
require evaluating a query workload. Unfortunately, the most pop-
ular Wikidata-powered workloads — voice agents and structured
web search — are not easy to evaluate outside a few tech giants
that have access to query logs. PageRank’s consensus has arguably
led to a small number of sites capturing almost all user attention.
Social content systems’ consensus rankings are popular but may
be more inflammatory than actually high-quality.

We argue that in today’s heterogeneous environments, a
broad-but-flawed consensus picture of the world of data ob-
jects would yield dramatic steps forward for our collabora-
tive semantic use cases, as it has for Wikidata, PageRank, and the
other systems described. Data scientists could implicitly standard-
ize their work around a relatively small number of shared datasets,
thereby avoiding a huge amount of data prep work. Data gover-
nance administrators could reason that most company data fits a
handful of broadly-accepted schemas, and thus write enforcement
rules that are relevant to most company data. Data consumers could
examine reports and find they were created with a small handful
of widely-shared and debugged methods, and thereby not worry
that their conclusions were driven by bugs in statistical code.

One deep challenge with this approach, for which we today
only have a weak answer: traditional data models, such as rela-
tional schemas, generally need to be entirely correct, so how can
an always-imperfect model ever hope to be useful? For now, we
will aim to build a shared model that is good enough for humans
to consult, but probably not good enough for most software to con-
sume directly. An interesting direction for future research would be
a novel type of shared data model that permits use by query tools
even when the model is flawed.

3 DEMONSTRATION SYSTEM
We can now describe our concrete demonstration system. We first
describe some system basics and its data model, then illustrate it
with a user walkthrough, and finally describe some deployment
practices to make the large consensus model a reality.



Figure 4: An analytical result derived from the judicial data-
base, represented forever under a unique KNPS identifier.

3.1 System Basics
Just as the Wikidata knowledge graph models general-interest ob-
jects, and as MusicBrainz models the world of recorded music, the
Knowledge Network Programming System (KNPS) aims to build
a model of the data systems objects: files, databases, functions,
schemas, images, pipelines, users, and so on. Edges in this graph
represent relationships between objects: perhaps a User created
a File, or a Database ran-filter to create a second Database. Fact
triples can be added into the system by both social and automated
means. For example, a user might explicitly upload a File; also, a
filesystem crawler might automatically upload a File description.
As with current KGs, the system does not impose sharp limits on
what kinds of nodes or properties can be admitted; rather, it aims
to build a fact set that is as correct and complete as possible.

KNPS differs from typical knowledge graphs in one critical way:
users and automated processes can execute Function objects in
the graph. Doing so will create new objects that are themselves
stored in the graph. Current entity types in KNPS include CSVs,
images, JSON files, PDFs, functions, and relational schemas. Like a
traditional knowledge graph, adding new types is straightforward.

Note that KNPS’s graph does not have the same intended se-
mantics as a cloud database or a shared filesystem. Rather than
being an always-reliable source of factual truth, it is expected that
KNPS’s graph will always be somewhat incomplete and incorrect.
However, much like Wikidata’s imperfect picture of the world, or
a web crawl’s imperfect picture of online content, KNPS aims to
be close enough to correct to enable user progress (in this case on
collaborative semantic projects). As mentioned above, we do not
have a proposal for a data model that can be flawed and yet still
directly usable by software. For now, our demonstration’s notion
of "user progress" always comprises direct user consumption of the
shared graph we aim to build.

3.2 Walkthrough
We now present a short narrative of using KNPS.

Step 1. User Andrew from Northwestern has created an entry that
describes a database about the US court system in 2016. The web-
page that describes this entry is shown in Figure 3. The upper-left

corner of the page shows metadata that is stored for any KNPS
object: its unique identifier, the creator, creator’s institution, cre-
ation date, title, and so on. In this case, the user has uploaded the
database’s entire contents, but doing so is not required (and in
some cases may not be possible). There is no conceptual limit to
the number of objects that can be created; if successful, the system
should be able to handle on the order of hundreds of billions.

Sharing this database with a colleague is easy: the user simply
forwards the URL. Like web pages under PageRank, we expect
that some small number of KNPS objects will become popular and
widely-used, but most will remain obscure.

The middle of Figure 3 shows the raw data content: the names of
cases, whether they are criminal or civil, their duration, and so on.

Step 2. User Jiayun from Michigan has created a new entry, seen
in Figure 4. This is an analytical result derived from the database in
Figure 3. It shows the average duration of cases in federal districts in
New York state. As above, it has a unique identifier that is intended
to last forever. Creating this data object involved running a SQL
query against object X27; because this query was run by KNPS, it
was easy to automatically add the relevant provenance-style graph
properties linking X27 and X36.

This aggregate query is interesting, but is a bit dry.

Step 3. User Mike from MIT has created the visualization — KNPS
object X39 — seen in Figure 5. It is a chloropleth visualization of
the result from object X36. This view of the object shows both the
image and its provenance. This provenance graph was computed by
following incoming provenance-related edges in the KNPS knowl-
edge graph. Every node represents an object in the KNPS graph;
the edges are a subset of the available graph properties.

Even this simple visualization required a range of inputs to build:
• At the upper-left, the "Case Duration for New York Courts
by District" node is object X36.

• At the upper-right, "US Judicial Districts by County" is a
dataset that maps from the names of judicial districts to
county names. This was combined with the above object via
the "Join CSV" stored function (itself a KNPS node). KNPS
ran this function inside a hosted Singularity container.

• The "FIPS Codes for US Counties" node represents a dataset
that maps from county labels to the numerical FIPS identifica-
tion system. This was combined with the above intermediate
result with the "Add FIPS" stored function (again, another
KNPS node).

• Near the lower-right, "GeoJSON US Country FIPS data"
maps from numerical FIPS identifiers to geographic polygons.
When combinedwith the preceding data via the "Chloropleth
Map" function, it yielded object X39.

Constructing this map required four datasets (the original judi-
cial data, plus three on the way to the visualization) and involved at
least three people from three different institutions. Of course, this
could have been performed by standard tools available today, with
files shared via email attachments. But since it was done via KNPS:

• A data scientist can examine the upstream provenance to
see how the visualization was generated. The scientist can
then reuse portions of this work — either the code or the
auxiliary datasets — in the future.
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Figure 5: Visualization of the analytical result, with captured provenance

• A governance system can ensure that all of the visualiza-
tion’s inputs were datasets the organization is legally entitled
to use.

• An informed data consumer can verify that the results
reflect queries on high-quality datasets.

In contrast, in a traditional workflow, any metadata would have
stopped at each institutional boundary. Even if the metadata had
somehow been preserved and communicated to every user involved,
a lack of a common vocabulary of data objects and functions would
slow collaborative progress. The shared conceptual model is what
makes effective collaboration possible.

We have also tested the system on a range of workflows, includ-
ing an end-to-end implementation of the CORD-19 information
extraction pipeline, which transforms raw scientific papers in PDF
format into a bibliographic knowledge base of published coron-
avirus research [20].

3.3 Deployment Plans
Our demonstration system shows the value of using the KNPS
graph. However, our narrative above shows a set of collaborating
users who intentionally upload data and code to the system. For
users willing (and able) to do so, a KNPS-contained collaboration
environment will be useful. However, we realize that for various
reasons, many users cannot be expected to perform the uploads
needed to take advantage of KNPS’s strict provenance features.
Possibly, only the most motivated users will explicitly tell KNPS
about their data objects. This will be disappointing: the system’s
value lies in its universality.

As a result, KNPS also allows for automated data upload and
curation, emulating social content systems by allowing automatic
broad data collection. For example, client software can automati-
cally scan laptops, databases, or Amazon S3 buckets. A single node
in KNPS can be potentially discovered by observing changes on a
concrete local filesystem. A sharing event between two users can be
potentially discovered by observing one user’s bytes appear iden-
tically in another user’s Downloads directory. Provenance events
can be potentially recovered by watching local process lists or logs.

This model of collection is far messier than explicit user uploads,
but likelier to obtain high recall. It will yield a large number of
low-quality objects and may yield spurious edges between them.
Like Google’s crawl-and-PageRank system, KNPS will be permis-
sive during the "crawling" data collection period, then engage in
a substantial amount of post-collection cleanup, such as object
deduplication. Finally, the graph can be used in the same ranking-
consensus process described above.

We are building this collection system now.While we can demon-
strate it, we do not yet know how effectively it will gather KNPS
data. Because it lacks details that would be available with explicit
user attention — for example, the exact semantics of functions —
the resulting system may need to be more "semantically humble"
than the walkthrough above suggests. This represents what we
think is a core design tradeoff between expressiveness and concrete
observed data quality.



4 RESEARCH DIRECTIONS
There are at least two lines of research that would enormously
improve the value of KNPS. First, as mentioned in the section imme-
diately above, automatic provenance capture would make the KNPS
dataset larger and more useful. The core idea here is to use zero-
labor commodity instrumentation methods, like watching process
lists and web service logs, to infer higher-abstraction operations
that are easier for humans to understand. Ideally, this "named opera-
tion recognition" task succeeds even when the operation comprises
multiple independent binaries across machines.

A second longer-term project would be to investigate a shared
data model that serve as the basis for query processing and opti-
mization, while still containing the errors that we believe are an
inevitable part of the social curation approach. For example, queries
written against the KNPS consensus model should be able to run to
some form of imperfect completion when a target dataset does not
perfectly match the consensus. This direction is best explored after
we understand the distribution of KNPS errors in practice.

5 RELATEDWORK
Our system has some similarities to recent curation systems built to
address problems in industrial machine learning deployment [11][4].
These go beyond standard packages of ML training algorithms to
include data management, data transformation, versioning, and
other features that make the end-to-end data experience easier.
Unlike those systems, but like the Dataverse project [5], our system
is intended for general-purpose and cross-institutional use. Unlike
all of the above systems, we aim to emulate the design of the social
collaboration systems described in Section 2

There has been a substantial amount of research in data prove-
nance — or, relatedly, data lineage — in a database or reproducibility
setting ([2, 6, 9, 10, 12, 13, 16]). Unfortunately, there is not yet a
widely-adopted system in which provenance plays a major role.
Explanations for why these systems are not widely adopted are
potentially instructive. Existing systems require either substantial
amounts of human effort to use or require adoption of a new tool;
in either approach, a large amount of user activity goes uncaptured.
In contrast, search and other social curation systems capture as
much imperfect information as possible, then fix it up after the
fact with a combination of ML- and socially-driven measures. Our
demonstration system follows this second design approach.

6 CONCLUSIONS
We have described a system for building a shared conceptual model
of heterogeneous and complex data systems. We believe this shared
model is useful for a range of collaborative semantic applications: ef-
fective data science, responsible data governance, and informed data
consumption. We used existing collaborative systems, especially
Wikidata, as design inspiration for our demonstration system.
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