SSDs Striking Back:
The Storage Jungle and Its Implications on Persistent Indexes

Kaisong Huang
Simon Fraser University

kha85@sfu.ca

Tianzheng Wang
Simon Fraser University
tzwang@sfu.ca

ABSTRACT

The recent exciting development of persistent memory (PM) has
led to many new proposals that directly operate and persist indexes
on the memory bus, potentially removing the need for the storage
stack. However, next-generation SSDs are quickly catching up with
performance that overlaps with PM, effectively turning the storage
hierarchy into a storage jungle. It is unclear how future persistent
indexes (and data structures in general) should be designed, and
more importantly, how their performance/cost would change given
PM’s unconventional installation requirements compared to SSDs.

This paper takes a first step to revisit the overall system cost and
performance characteristics of the storage jungle, in the context of
persistent indexes. We do so by experimentally evaluating PM and
SSD indexes under real-world hardware constraints. We find that
although PM has its own set of advantages, traditional DRAM-SSD
hierarchies continue to be more cost-effective, and there is much to
be further unleashed. Through careful analysis, we distill a series
of observations, implications, and outlook on future index designs
to navigate through the storage jungle.

1 INTRODUCTION

For decades, the storage hierarchy consisted of layers with distinct
performance characteristics and costs: a higher level (in particular,
memory) is assumed to be strictly faster, less capacious, volatile,
and more expensive than a lower-level layer (in particular, SSDs
and HDDs). Balancing performance and cost, such hierarchy has
led to the continued success of caching stores [21] that use volatile
memory (DRAM) as a caching layer atop persistent storage (SSDs
and HDDs), which many systems are based upon. This good ol’
storage hierarchy, however, is undergoing disruptive changes with
two trends led by persistent memory (PM) and ultra-fast SSDs.
Trend 1: Memory Meets Persistence. Scalable PM media such
as 3D XPoint [11], PCM [34] and STT-RAM [10] attempt to ap-
proach DRAM speeds while providing byte-addressability, persis-
tence, and SSD-level high capacity, yet at a lower cost than DRAM’s.
An actual PM product, as represented by Intel Optane DCPMM
(based on 3D XPoint), however, exhibits a significant performance
gap between DRAM[16]. For example, a server fully populated

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2022. 12th Annual Conference on
Innovative Data Systems Research (CIDR °22). January 9-12, 2022, Chaminade, USA.

Darien Imai
Simon Fraser University
darieni@sfu.ca

Dong Xie
The Pennsylvania State University
dongx@psu.edu

with the 100-series Optane DCPMM can offer up to 12TB of ca-
pacity, up to ~7GB/s (random) to 40GB/s (sequential) bandwidth
for reads, and ~4GB/s to 10GB/s peak bandwidth for writes [16].
Therefore, they present a significant improvement of performance
compared to traditional SATA SSDs and offer much lower and more
stable latency (~300ns). The recently released 200-series DCPMM
further promise ~25% higher bandwidth [14]. Proposals from the
“PM camp” advocate single-level stores that directly operate and
persist data on PM, enabling low-latency durable commits for ap-
plications that potentially need it; SSDs and HDDs are relegated to
archival and backup purposes, or may even be omitted completely.
A representative body of work is PM-tailored indexes [2, 20, 22, 28].

Trend 2: Storage Approaches (Persistent) Memory. Mean-
while, new generations of SSDs continue to achieve unprecedented
high bandwidth and low latency from the adoption of new mate-
rials such as 3D XPoint, hardware design such as 3D NAND, and
faster interfaces such as NVMe over PCle Gen4. For example, the
Optane P4800X/P5800X SSDs—using the same material as the Op-
tane DCPMM’s but in NVMe interfaces—offer up to 2.6-7.4GB/s of
bandwidth and < 6us latency [15]. The Samsung 980 PRO based on
NAND flash can offer up to ~5-7GB/s bandwidth on a PCle Gen4
x4 link [30]. Motivated by recent advances in SSDs, better caching
stores [17, 23] have also been proposed to approach in-memory per-
formance. Driven by faster storage, I/O interfaces have also evolved
to be much more lightweight with new programming models such
as SPDK [32] and io_uring [7], further reducing overhead caused
by the storage stack at the software level.

The Hierarchy is Becoming a Jungle. PM breaks the bound-
ary between volatile and non-volatile storage with persistence on
the memory bus. Modern SSDs’ high bandwidth directly rivals PM,
breaking the strict hierarchy from the performance perspective [36].
SSDs still exhibit higher latency than PM, and thus, would not pro-
vide the same low-latency durable commit using PM-based indexes.
However, many applications (including a lot of OLTP use cases)
are throughput-oriented and involve many layers (e.g., networking
in a DBMS). As the latency gap between SSD and PM continues to
shrink, PM’s low-latency commit may not tremendously benefit
them. This naturally leads to a simple, motivating question: Could a
well-tuned SSD-based data structure (e.g., index) match or outperform
a well-tuned PM-tailored data structure under certain workloads?

Conventional wisdom about storage system cost is also being
challenged as PM and SSD assume different programming models:
the former is synchronous with CPU load and store instructions,

and the latter is asynchronous with DMA. PM-tailored data struc-
tures must dedicate more CPU cores (for “I/O”) to saturate the
system. Conversely, SSD-based data structures may overlap com-
putation with I/O, leaving more cores for “real” work; it has been
shown that using SPDK, a single core is enough to saturate multiple
SSDs [32]. In a PM-based system, CPU cycles can become a scarce
resource that have to be timeshared between computation and data
movement. In contrast to SSD-based systems, the CPU cost can be
non-trivial as PM requires relatively high-end CPU support. This
leads to another question: How does the “real” cost of a PM-based
system stack up and compare to that of an SSD-based system?
Contributions. These recent advances and questions signal the
need to revisit the performance/cost of persistent data structures.
In this paper, we take persistent B-trees and hash tables for an
initial inquiry. Our goals are to (1) understand the relative merits
of index designs on PM and SSD, (2) reason about the cost of PM-
and SSD-based systems, and (3) highlight the implications of the
storage jungle on future persistent indexes. To reach these goals, for
the first time, we experimentally compare PM-tailored indexes [2,
22, 28] against SSD-based indexes that use a DRAM buffer pool
atop a modern SSD. We consider several representative hardware
configurations and analyze their costs under index workloads. We
highlight several findings here and expand on details later:

e CPU cost is non-trivial and subverts the cost-effectiveness of
a PM-based system. Although polling has started to become
necessary for SSDs, it requires much fewer threads.

o A traditional DRAM-SSD hierarchy continues to be increasingly
cost-effective; DRAM’s higher-than-PM price is offset by SSD’s
even lower per-byte cost and demand on CPU cycles.

e PM prices need to drop for true cost-effectiveness. For memory-
resident workloads (e.g., many OLTP workloads), caching stores
are more cost-effective than PM, mainly due to PM’s population
rules that overprovision DRAM and CPU.

Our focus is performance/purchasing cost (i.e., total cost of ac-
quisition/TCA without considering operational costs). We use a
server that is actually equipped with the devices under discussion.
Competitive prices were obtained online as of this writing (Au-
gust/September 2021) [6, 24-26]. Code and instructions for our
experiments are available at https://github.com/sfu-dis/ssd-vs-pm.

2 THE MODERN STORAGE JUNGLE

As we briefly described in Section 1, the storage hierarchy is becom-
ing a jungle that features devices with overlapping performance
characteristics. Here we give more details on modern PM and SSDs
being introduced to the storage hierarchy.

2.1 Persistent Memory and Optane DCPMM

“PM” can refer to a wide range of devices built with different mate-
rials [10, 11, 31, 34]. Their common vision is to overcome DRAM’s
limitations in capacity and energy consumption. As a side effect,
however, they are persistent on the memory bus. Currently, “PM” is
practically synonymous with Intel Optane DC Persistent Memory
Module (DCPMM) as it is the only PM that scales to a high capacity
(128/256/512GB per DIMM). NVDIMMs [1] based on DRAM backed
by flash and supercapacitors/batteries have long been available, but
are limited by DRAM’s capacity. Thus, we target DCPMM.

Compared to DRAM or SSDs, adopting DCPMM is far from “plug-
and-play” PM exhibits lower random/write bandwidth than sequen-
tial/read bandwidth. PM programming inherits memory’s synchro-
nous nature by using load and store instructions rather than stor-
age primitives leveraging interrupts or polling with DMA. These
can incur more CPU stalls and require new programming paradigms.
There are also unconventional installation requirements [12]:

e DRAM must be present to “enable” PM on the memory bus (i.e.,
a system cannot run without DRAM);

o DRAM DIMMs and DCPMMs must be plugged into memory slots
following certain population and interleaving rules;

e Relatively high-end processors (e.g., 2nd/3rd-generation Xeon
Scalable processors) are required.

Optane DCPMMs can operate in Memory, App Direct, or Dual
modes. Memory mode leverages the underlying material’s scalabil-
ity to extend volatile memory capacity; the system’s DRAM is used
as a cache managed by the CPU/memory controller transparent to
software, and data is erased across power cycles. App Direct offers
persistence and allows software to judiciously place data in DRAM
and PM. The Dual mode allows partitioning DCPMM to be in both
Memory and App Direct modes. All the modes can be used with
or without hardware interleaving which can improve bandwidth
under high concurrency. Since we aim to explore DCPMM’s impact
on persistent indexes, we focus on the App Direct mode.

Many recent studies [19, 38] have noted DCPMM'’s performance
characteristics, but did not significantly consider its cost. We con-
sider both and analyze the TCA for PM-based systems in Section 3.

2.2 Next-Generation Fast SSDs

Modern, fast SSDs are typically built using NAND flash memory and
are attached to the PCIe bus using an NVMe interface. Flash exhibits
different properties to disks or PM: it can be programmed by page,
but modifications must be done in blocks which consist of multiple
pages. Such properties, however, are hidden from software using a
flash translation layer (FTL) which is part of the SSD and presents
to software the block interface like that of HDDs. Flash SSDs are
significantly faster than HDDs and often exhibit very high internal
parallelism, so software must issue enough requests to saturate the
drive (measured by queue depth). Flash SSDs also exhibit a high
level of read/write asymmetry with reads and sequential accesses
being faster in general. Internally, the FTL manages multiple flash
chips and optimizes performance and lifetime. With the recent
advances in 3D NAND, QLC, and PCIe Gen4, SSDs have started to
achieve even higher density and performance with a lower price,
blurring the boundary between PM and SSDs.

In addition to flash, 3D XPoint can also be used to build SSDs
(e.g., Intel Optane DC P4800X/P5800X). They use the same material
as Optane DCPMM'’s, but interface with NVMe over PCle without
providing byte-addressability. Like flash SSDs, a block interface
is presented to software. In contrast to flash SSDs and DCPMM,
Optane DC SSDs exhibit much less asymmetry with almost the same
read/write and sequential/random access speeds [36]. In this paper,
we conduct experiments and analyze the cost per performance
using the 100-series DCPMM and Optane DC P4800X SSD; both
use the same generation of 3D XPoint.

https://github.com/sfu-dis/ssd-vs-pm

Table 1: Cost (USD) of five server configurations with different numbers of DCPMMs and SSDs, where PMn represents a configuration
with n DCPMMs, and P4800Xm represents a configuration with m P4800X drives. Per GB (without CPU) highlights the additional cost of
DRAM, compared to Per GB (storage only) which only considers the storage media (DCPMM or P4800X). The other per GB numbers take
into consideration the amount of CPU cycles that may be required to saturate the storage component. P4800X1 and P4800X2 require only a
single thread to saturate the drive(s) and exhibit the lowest costs (Per GB with 1 thread). DCPMM configurations usually require more
threads which drive up the per GB cost (Per GB with 1/5/10 threads) by up to over 4x (PM1 with ten threads vs. P4800X2 with one thread).

Component | PM1 PM4 PM6 | P480OX1 P4800X2
CPU (1xIntel Xeon Gold 6242R, 20-core, 40-hyperthread) | $2,517 $2,517 $2,517 $2,517 $2,517
DDR4 DRAM (6x32GB) $1,157.94 $1,157.94 $1,157.94 | $1,157.94 $1,157.94
Optane DCPMM (nx128GB) $546.75 $2,187.00 $3,280.50 | N/A N/A
Optane SSD P4800X (mx375GB) N/A N/A N/A $999 $1,998
Total $4,221.69 $5,861.94 $6,955.44 | $4,673.94 $5,672.94
Per GB (storage-only) $4.27 $4.27 $4.27 $2.66 $2.66
Per GB without CPU $13.32 $6.53 $5.78 $5.75 $4.21
Per GB with full CPU $32.98 $11.45 $9.06 $12.46 $7.56
Per GB with 1 thread $13.81 $6.66 $5.86 $5.92 $4.29
Per GB with 5 threads $15.78 $7.15 $6.19 N/A N/A

Per GB with 10 threads $18.23 $7.76 $6.60 N/A N/A

With recent development in NVMe, new storage interfaces and
abstractions (e.g., Open-Channle [4, 29], ZNS [3] and FTL directives)
are emerging to overcome the limitations of the block POSIX I/O
interface for SSDs. They present new opportunities to further opti-
mizing the storage stack [18]. For simplicity we use the traditional
POSIX I/O interfaces for experiments on SSDs.

2.3 From a Hierarchy to a Jungle

As we briefly mentioned in Section 1, the clear delineation of layers
has faded in terms of both performance and cost. As of this writing,
a single 128GB Optane DCPMM ($546, or ~$4.27 per GB) is more
expensive in unit price than a 400GB Intel Optane P5800X SSD
($1,200, or $3 per GB), while offering lower read and write through-
put (6.6GB/s vs. 7.2GB/s and 2.3GB/s vs. 6.1GB/s). The disparity
grows with density: a 256GB/512GB DCPMM is ~3.8X/~11.2X the
price of a 128GB DCPMM [11]. Although Optane SSDs exhibit
higher latency (3ps vs. 300ns), the gap is often too small to make a
significant difference in end-to-end performance for many applica-
tions [9, 37]. This means users could pay less to achieve the same
or higher performance using SSDs. It is even true for flash SSDs:
for example, Samsung 980 PRO offers up to 7GB/s read and 5GB/s
write bandwidth with a much lower price than the P5800X. It can
achieve up to 1M IOPS for certain random I/O workloads, which is
close to what P5800X can offer.

With all these facts, the different storage media are effectively
forming a jungle instead of a hierarchy. Hence, to achieve a lower
cost for sustaining a given workload, more careful design choices
have to be made based on various workload and QoS requirements.

Our analysis so far focused on the cost and performance of indi-
vidual storage media. We next take whole-system configurations
to analyze their total acquisition cost and performance.

3 HOW MUCH DOES IT COST, REALLY?

Now we consider the acquisition cost of PM- and SSD-based storage
systems; the next section further considers performance.

3.1 Hardware Configurations

When considering the cost of a storage system, we need to take
into account three factors: memory (DRAM), CPU and the actual
storage devices [21]. For fair comparison, we use a single server
and vary the storage (SSD/PM) components using common and
recommended setups. The server is equipped with a 20-core/40-
thread Intel Xeon Gold 6242R CPU. It supports NVMe over PCle
Gen3 and 100-series DCPMMs. Each of the CPU’s six memory
channels is populated with one 32GB DRAM DIMM for a total of
192GB, leaving one slot per channel for PM. As recommended [12],
we populate all channels with DRAM for maximum bandwidth.
Both DRAM and DCPMM frequencies are fixed to 2666 MT/s for
all the configurations.!

PM-based Systems. We analyze three vendor-recommended?
PM setups [12] listed in Table 1, denoted as PMn where n is the num-
ber of DCPMMs. PM1 and PM4 respectively use one and four DCP-
MMs, and PM6 uses six DCPMMs, representing a fully populated
system. Except for PM1, only symmetric population of 100-series
DCPMMs across sockets are supported [12], i.e., the DRAM/D-
CPMM population should be the same across all sockets for multi-
socket machines. One also cannot mix capacities or generations
of DCPMMs in a single server. For applications that prefer to use
more than one CPU, users then may be forced to overprovision
DRAM and DCPMM to use PM as the main home of data. In con-
trast, SSD-based systems do not have such requirements. For the
purpose of our comparison, we use one CPU as over-provisioning
significantly drives up the cost of PM-based systems.

SSD-based Systems. P4800X1/P4800X2 in Table 1 represents
a classic DRAM-SSD hierarchy that uses one/two 375GB Optane

1The CPU and DRAM support up to 2933 and 3200 MT/s respectively, but have to be
clocked down to 2666 MT/s for 100-series DCPMM. We expect a pure DRAM-SSD
system without any DCPMM to perform better than what we report here.
2 Although alternatives exist, in practice and based on our experience working with
vendors, most users opt for these recommended setups which are fully vendor-tested
and supported. So we focus on vendor-recommended setups in this paper.

P4800X (PCIe Gen3) SSD(s) without any PM. Unlike DCPMM, SSD-
based systems do not impose strict memory population rules. Differ-
ing capacities or generations of SSDs which potentially use different
interfaces can be installed in the same system, and various storage
schemes such as RAID can be used to achieve higher availability,
performance and reliability. Capacity-wise, P4800X2 (750GB) and
PM6 (768GB) would be fair comparisons. Performance-wise, a fair
comparison to P4800X1 would be PM1 which consists of a single
DCPMM without any interleaving, whereas PM4 and PM6 leverage
interleaving to gain performance advantages (RAID 0 SSD setups
would then be fair comparison). Nonetheless, we compare all the
listed setups to analylze their relative merits for completeness and
explore the cost/capacity trends.

3.2 Cost/Capacity Analysis
With the configurations we evaluate five metrics listed in Table 1:

o Total: purchase price of all the storage-related components of the
server (CPU, DRAM and DCPMM/SSD);

o Per GB (storage): the per GB price of the storage component
(DCPMM or Optane SSD);

e Per GB w/o CPU: same as Per GB w/ CPU but with CPU cost
excluded from Total, i.e., leaving DRAM and storage costs only;

e Per GB w Full CPU: Total divided by storage capacity;

e Per GB w/ T thread(s): same as Per GB w/ Full CPU but calculated
using the cost of T threads (prorated using the CPU’s price). For
SSD setups we only consider T = 1 because a single thread can
already saturate the SSDs [32], while for PM it requires 5-10
threads [38] (details later).

Now we explain the cost and findings using the above metrics.

Finding 1: PM is more expensive by just being “memory.”
PM systems’ Total ranges from ~$4200 to ~$7000 which is a linear
function of the number of DCPMMs used. Note that these PM
configurations exhibit different total storage capacities: PM1 has
128GB, PM4 has 512GB and PM6 has 768GB, where as P4800X costs
$4673.94 with a total capacity of 375GB. The Total of 375GB P4800X
is in fact comparable to that of 128GB PM1 (adding another DCPMM
would make it even closer). This is attributed to the raw storage
device cost: although using the same underlying storage material
(3D XPoint), being on the memory bus makes the 128GB Optane
DCPMM $1.61 more expensive per GB than Optane SSD as shown
by the Per GB (storage-only) row in Table 1. Moreover, we
note that DCPMM prices do not grow linearly by its capacity as
Section 2.3 mentioned. In contrast, the price for Optane SSD scales
almost perfectly linearly [13]; the gap further grows significantly
with 256/512GB DCPMM.

Finding 2: Necessary non-storage components (CPU and
DRAM) can dominate the cost of PM-based systems. Compar-
ing Per GB (storage) and Per GB w/o CPU shows the impact of
DRAM.: for all configurations it adds non-trivial additional costs.
Among them, PM6 exhibits the lowest cost as it best amortizes the
cost of all DRAM DIMMs with six DCPMMs. Note that P4800X1
and P4800X2 are placed at an unnecessarily disadvantaged position:
in reality, the server does not have to be fully populated with six
DRAM DIMMs to properly operate—although rarely done, using one
DRAM DIMM would suffice. Despite the disadvantage, P4800X1
and P4800X2 still exhibit lower costs than any PM setup.

The impact of CPU cost is more pronounced compared to DRAM’s.
Ideally, we should consider the actual number of cores used to ac-
cess PM and SSD as under pure read/write microbenchmarks using
4-5 threads is enough to saturate random write bandwidth, while
read can usually scale up to about 10 threads [38]. However, typi-
cally PM data structures need to use all or most of the cores to reach
peak performance because of complex read/write mixes [19]. We
thus compare the unit prices in the following two cases: (1) Taking
the whole CPU into account, unsurprisingly, Per GB w/ CPU grows
from PM6’s ~$9/GB to PM1’s ~$33/GB, and P4800X1/P4800X2 costs
$12.46/$7.56 per GB. The trend roughly follows that of DRAM’s
impact, as PM6 best amortizes the CPU’s cost. (2) The Per GB w/
T thread(s) numbers show examples under budget using one, five
and ten cores. We choose these settings because a single thread can
already saturate SSDs [32], and the PM configurations saturate at
~5-10 threads depending on access pattern, so we give a range here.
Again, PM1 exhibits the highest unit cost of ~$13-18$%/GB, compared
to PM6’s ~$6/GB, and P4800X1’s $5.92/GB. PM1 also performs the
slowest as interleaving cannot be used with one DCPMM. For some
workloads, however, we suspect the capacity provided by PM6 to be
excessive. Comparing PM6 and P4800X2, the latter’s cost remains a
constant of $4.29/GB (assuming a RAID 0 setup which resembles
PM6’s interleaved access), while PM6’s cost grows linearly with the
number of threads employed.

Finding 3: Capacity can be a determining factor in choos-
ing between PM and SSD. With 4-6 DCPMMs, the unit costs of
PM4 and PM6 are very similar to that of P4800X. However, a caveat
is that PM-based systems have a hard upper bound on capacity: the
largest DCPMM is 512GB, and with six channels a server usually
can be equipped with up to 12TB of DCPMM in a quad-socket
system. Yet by using multiple SSDs, a server’s total capacity can
exceed well beyond 12TB with better price/capacity scalability. Re-
cent work has shown the potential of using DCPMM as a drop-in
replacement for SSDs with promising results [5], but SSDs may still
be the necessary choice over DCPMM for applications that need
high storage capacity.

Summary. From the cost/capacity perspective, we summarize
two key observations: (1) A fully populated setup usually achieves
the best cost/capacity for PM-based systems, sometimes even better
than SSD’s; this coincides with the fact that a fully populated system
also offers the best performance thanks to interleaving. (2) Although
Optane DCPMM'’s raw cost is only 1.6X the cost of Optane SSD, its
gross cost including CPU and DRAM can be over 4-5X the cost of
Optane SSD; this is largely a result of strict memory population
rules, whereas SSDs do not have similar restrictions. As we briefly
touched upon earlier, these memory population rules also impact
performance of PM-based systems, which we explore next.

4 PUTTING COSTS IN THE INDEX CONTEXT

Using the configurations from Section 3, we compare the through-
put and performance per dollar trends of PM and SSD based indexes.

4.1 Experimental Setup

We performed experiments using Ubuntu 20.04 LTS with Linux
kernel 5.8.0-59.66, libpmem 1.8, and fio 3.26. All index implemen-
tations and benchmarking drivers were compiled using GCC 11.2

with the highest optimization level.> The CPU frequency governor
was set to performance and PCle ASPM was disabled in BIOS to
avoid unstable performance caused by power management.

Raw Bandwidth. Before testing indexes, we calibrate our expec-
tations by testing raw read/write bandwidth of different configura-
tions using the popular fio tool. We test four access patterns (4KB
sequential/random read/write) over a 500MB file. For PM, we use
fio’s libpmem backend which uses DAX/mmap to bypass the file
system and expose byte-addressability. For SSD we use the SYNC
and io_uring backends which represent the traditional 0_SYNC
and new asynchronous I/O, respectively. Although prior work has
done similar experiments [16], we vary PM population setups and
compare PM with SSD performance under different I/O backends
to highlight the impact of I/O programming models.

Persistent Indexes. We test three PM-tailored tree and hash
table designs under the PMn configurations. We use FPTree* [28] and
BzTree [2] to respectively represent PM trees that leverage DRAM
to store inner nodes and those that only use PM. For PM-based
hash tables, we use Dash [22], a state-of-the-art design tailored for
DCPMM. Specifically, we use its extendible hashing variant with
an reclamation epoch period of 1024 accesses.

For all indexes we use the settings recommended by their original
papers or more recent evaluations [19]. FPTree uses 128-record
inner nodes and 64-record leaf nodes. For BzTree, we use a leaf
node size of 1KB, which was found to have higher throughput than
using 4KB nodes. FPTree and Dash use a pre-allocated 4GB PM
pool for read tests and a 32GB PM pool for write tests. BzTree used
a 32GB PM pool for both read and write tests.

We implemented a simple SSD B+Tree and a hash table that ac-
cess data through a buffer pool atop P4800X1. The SSD-based hash
table is static and uses closed-addressing; we reserve enough space
for insert workloads. For simplicity, we support concurrency with
thread-partitioned key space; for fairness we use the same strategy
for PM indexes. All I/Os are done using the synchronous POSIX
pread/pwrite with O_DIRECT to avoid OS caching. Note that our
SSD-based index implementations are in fact not well-tuned for
modern SSDs, nor follow state-of-the-art design principles [17, 33].
New I/O libraries such as SPDK have the potential of achieving
much higher performance than our implementations [32]; for exam-
ple, PA-Tree [33] can saturate an NVMe SSD with a single thread.
Thus, using synchronous I/O puts our SSD-based indexes at a dis-
advantage compared to PM-based indexes. As we will see, however,
even sub-optimal implementations can give very competitive per-
formance/cost compared to very well-tuned PM-based indexes.

Index Workloads. We run the same set of workloads on all
indexes by preloading the index with 100 million records (8-byte
keys and 8-byte values), and then executing point lookup or in-
sert operations. When performing lookups, the keys are drawn
from a uniform or a skewed (0.99 skew factor) zipfian distribution;
skew factors 0.2-0.6 showed similar trends to the results under the
uniform distributions, so we omit them here.

3Code and instructions available at https://github.com/sfu-dis/ssd-vs-pm.

4FPTree is not the latest PM tree, but is one of the top performers [19]. We did not
succeed in running all tests with the latest LB+-Tree [20] due to key overflow and
isolation issues that impact performance (https://github.com/schencoding/Ibtree). We
hope to explore further but do not expect our conclusions to change fundamentally.

—V— P4800X-SYNC ~[O0— PM1 —%— PM6

/\— P4800X-IU @— PM4 ~<{- P5800X
__25¢ 15 . . :
< q 5| ¥]
EZO 12 %
< 15 414 9 4
£ 4 e
510 g { 6 1
el
2 sk~ § 3 ﬁ]
2 0 x 0 76

1 5 10 15 20 5 10 15 20
of threads # of threads

(a) Sequential 4KB read (b) Sequential 4KB write

w
=]
=
=)

P

Bandwidth (GB/s)
B oR N
o N
O N BN O ®
U‘Y
I:E A |
A SIS
SAA

% 3

i

K =
=
5 10 15

of threads
(c) Random 4KB read

M=)

5 10
of threads
(d) Random 4KB write

N
o

Figure 1: Raw sequential/random read/write bandwidth of six con-
figurations. SSD’s asynchronous programming interface shows
advantage over PM’s synchronous programming paradigm by re-
quiring fewer threads to saturate, leaving more cycles for running
useful application logic.

4.2 Raw Storage Performance

In terms of raw bandwidth, at first glance PM setups outperform
P4800X1 in most cases (Figure 1), showing PM’s advantage of being
on the memory bus. However, as Section 3.1 described, PM4 and PM6
are in fact not fair comparisons to P4800X1. Rather, P4800X1 should
be compared to PM1, which however not only costs the most per
GB (Section 3), but also scales poorly in all cases, whereas P4800X1
using io_uring (P4800X-IU) exhibits sustained, stable performance
regardless of access patterns or the number of threads thanks to the
asynchronous programming model. This corroborates with our ear-
lier description and prior work that P4800X needs very few threads
to be saturated. Since newer SSDs (e.g., Optane P5800X and Sam-
sung 980 PRO) typically utilize PCle Gen4 which is not supported
by our server, we plot the advertised bandwidth (dashed lines) in
Figure 1 for reference. P5800X is expected to outperform PM4 un-
der most write workloads and can match PM6 at high concurrency
where PM6 does not scale well; notably, P5800X is priced similarly to
P4800X. These results verify the advantage of SSD’s asynchronous
programming model over PM’s synchronous programming model.
We expect future SSDs to maintain such advantage.

4.3 Index Performance/Cost

We base performance/cost calculations on the Total row in Table 1
but only consider the actual CPU cycles used under each workload.
This approach models the cost to access an index (out of other tasks
that use the remaining CPU cycles) in an on-premise deployments
where a server is purchased for providing a service.” To obtain the

SEquation 1 uses the whole storage component’s cost; an alternative is to count only
the storage space actually used, similar to what cloud vendors offer. We obtained
similar trends under both methods, and so omit the results here.

https://github.com/sfu-dis/ssd-vs-pm
https://github.com/schencoding/lbtree

performance/cost ratio R under a particular workload and index,
we divide the measured throughput P by the storage system cost,
including storage device cost $S, DRAM cost $D, and CPU cost $E:

_ P ~ P W
C$S+$D+SE $S+$D+ (W xU) * ($C * 1)

In Equation 1, $E is deduced from the number of worker threads
W, the average CPU utilization U (out of 100%, representing the
on-CPU time for data movement) during the run, the CPU’s price
$C and the number of total hardware threads T. Here, U is needed
because for P4800X1 the system is often I/O bound without fully
using the CPU; in many real applications such off-CPU time can
overlap with computation.® It is 100% for PM indexes because of
PM’s synchronous access nature, and ranged from ~10 to 100%
(when all the data is buffered) for P4800X1 as SSD I/O is blocking in
nature. Thus, U X W yields the “effective” number of threads needed
by a workload. Then, with the entire CPU’s cost $C, $C/T gives the
per-thread cost. Next, we calculate performance/cost ratios based
on the performance numbers obtained from our experiments.

Tree Indexes. For SSD-based B+trees we vary the buffer pool
size between 80-100% of data size (denoted as B+Tree-x%M where
x represents the percentage). B+trees can have a good memory
hit ratio typically above 70%, since most of the inner nodes can be
cached. In our case, 80% is a sweetspot, below which the throughput
is bound by SSD bandwidth. Figure 2 shows the results; the gray ar-
eas indicate results obtained when hyperthreads are used. As shown
by Figures 2(a-b), FPTree under PM4 and PM6 approaches the perfor-
mance of the pure in-memory SSD-based B+Tree, because FPTree
stores all inner nodes in DRAM (its performance collapses at 40
threads due to high HTM abort rates). BzTree performs much worse
as it does not use any DRAM to store tree nodes. In Figures 2(d-e),
caching stores (P4800X1) exhibit the best performance/cost ratio
for lookup operations for memory-resident lookup workloads.

Once the workload is not memory-resident, at 90% cache ratio,
the SSD-based B+Tree performs similarly to FPTree under PM1 for
lookups under uniform distribution. When data access is skewed,
it outperforms PM1. Notably, in most cases B+Tree-80%M gives the
best performance/cost ratio although the SSD is fully saturated; it
still performs better than BzTree with lower performance/cost ratio
in Figure 2(e). Although we have not conducted experiments with
the latest Optane P5800X SSD, based on these results, we expect
that a smaller buffer pool is sufficient to get the same performance.

In Figure 2(f), FPTree’s insert performance is much better with
multiple DCPMMs and higher concurrency, thanks to its increased
bandwidth from interleaving and lower latency. For inserts, a larger
buffer pool does not necessarily improve performance. But in all
cases, B+Tree-80%M gives much higher performance/cost ratios
than the fully-PM BzTree, signaling the importance of using DRAM
in PM indexes; Also, for FPTree, PM4 and PM6 give similar perfor-
mance/cost, as PM4 already provides enough bandwidth.

Hash Tables. Figures 3(a-b) show that Dash scales the best for
lookups. In contrast, the SSD-based hash table can hardly keep
up with Dash for partial-memory workloads. However, inserts in
Figure 3(c) exhibit a pattern that is quite different from that in Fig-
ure 2(c), with in-memory Hashtable-100%M gradually matching

®Database systems are among the classic examples of such applications, e.g., MySQL
InnoDB uses Linux’s asynchronous IO subsystem to schedule storage accesses [27].

—V— B+Tree-100%M
A— B+Tree-90%M
—8— B+Tree-80%M

D>— BzTree-PM6
—4p— BzTree-PM4
{— BzTree-PM1

—@— FPTree-PM6
—%— FPTree-PM4
—<— FPTree-PM1

24 6
5
18
» L4
S 12 4 &3
S (@]
D> =2
1
0 6 6) S
1 10 20 30 40 1 10 20 30 40
of threads # of threads
(a) Uniform lookup (d) Uniform lookup
32 8
24 6
2 a4 3
C§) 16 g 4
81 4 2 B
72 S 0
1 10 20 30 40 1 10 20 30 40
of threads # of threads
(b) Zipfian lookup (e) Zipfian lookup
6 1.2
5
4 0.9
S 3 206
3o
=) s
1 0.3
0 0 :
1 10 20 30 40 1 10 20 30 40

of threads
(c) Uniform insert

of threads
(f) Uniform insert

Figure 2: Throughput (million operations per second) (a—c) and
performance/cost ratios (d-f) of range indexes.

and outperforming Dash. In terms of performance/cost ratios, Fig-
ures 3(d-e) again showed that memory-resident workloads exhibit
the best cost-effectiveness, but for partial memory cases PM setups
are more cost-effective. For inserts, however, P4800X1 showed sim-
ilar and with hyperthreads even up to 2Xx better performance/cost
ratio than PM6. Overall, these results show that PM-based hash
tables should continue to optimize for insert performance to justify
their costs, whereas SSD-based hash tables should further improve
on probing performance.

Summary. We make five observations on performance per dol-
lar: (1) A single P4800X SSD exhibits similar cost per performance
to one DCPMM. (2) Interleaving is necessary for PM to perform well
at high concurrency; this in turn requires the server be equipped
with enough (more) CPU cores to support application logic. (3)
Among the PM setups, PM4 can be more cost-effective than PM6. It
may not be always the best choice to fully populate a PM-based
system, and the remaining DIMM slots could be used to populate
more DRAM for better performance. (4) PM-based indexes should
utilize the necessary amounts of DRAM to increase performance
and to amortize cost; this coincides with findings reported by prior

—V— Hashtable-100%M —$#— Hashtable-80%M —%— Dash-PM4

A— Hashtable-90%M —@— Dash-PM6 —<— Dash-PM1
56 T T T 127
42+
%) v o8
S 28 &
o
2 S 4
14}] y
0! | 0 A A A
1 10 20 30 40 1 10 20 30 40
of threads # of threads

(a) Uniform lookup (d) Uniform lookup

807 T T T 157
60
(%) ‘Q 10 4
o 4 A
O 40 1 %
= 4 s 5
20
O N L 1 O 1 L 1
1 10 20 30 40 1 10 20 30 40
of threads # of threads
(b) Zipfian lookup (e) Zipfian lookup
167 T T T 4 T r r
12 1,3
'd ~
g ® S
4 E 1 A vi

01 10 20 30 40 O1 1b 20 30 40
of threads # of threads
(c) Uniform insert (f) Uniform insert

Figure 3: Throughput (million operations per second) (a—c) and
performance/cost ratios (d—f) of hash tables.

work [19]. (5) For memory-resident workloads, an SSD-based sys-
tem can be fast at a low cost; for partial-memory workloads, it
exhibits great potential with new asynchronous I/O and improving
raw performance.

5 RELATED WORK

Our work is closely related to recent work on the performance/-
cost of data systems, persistent data tructures and caching systems.
Recent work has highlighted the potential of NVMe SSD arrays [9]
and systems such as LeanStore [17] and Umbra [23] have demon-
strated the feasibility of building caching systems that approach
in-memory speed. PA-Tree [33] leverages modern asynchronous
SPDK libraries to fully leverage modern NVMe SSDs with very
low CPU resources. Lomet [21] discussed the cost/performance of
DRAMS-SSD systems and reasoned about the merits of in-memory
vs. storage-centric designs. Programmable SSDs have also been
shown to reduce cost/performance [8]. Meanwhile, PM-tailored
data structures [20, 22, 28] use various techniques to overcome PM’s
slower-than-DRAM speed. Many designs store part of the index in
DRAM for performance at the cost of instant recovery. In light of the
storage jungle, Wu et al. explored the performance characteristics

of Optane SSD [35] and introduced non-hierarchical caching [36]
that utilizes Optane SSDs, DCPMMs, DRAM, and NAND flash SSDs.
Our work highlights the performance/cost of the storage jungle in
the context of persistent indexes. Exploring how performance/cost
evolves in end-to-end systems is interesting future work.

6 IMPLICATIONS AND OUTLOOK

Despite the exciting development of PM, it is not a panacea, as
modern SSDs are directly rivaling PM in both performance and cost
aspects—even when our SSD-based indexes are neither the best
ones known nor fully optimized.

In addition to the detailed observations made at the end of Sec-
tions 3 and 4, we distill several high-level implications and give
outlook on future index/system designs in the storage jungle:

Don’t forget about SSDs yet! The DRAM-SSD hierarchy is still
very cost-effective and should be considered first before using PM.
This is especially true for memory-resident workloads where the
benefits of adding DRAM far outweighs its cost. However, in case
the application does require PM-level latency, PM may be a better
(and likely the only) choice.

The PM stack can be equally or more “expensive” than
the storage stack. The latter is often blanketly blamed as having
high software overhead, but PM’s synchronous/memory nature
and rigid population rules require higher TCA with more cycles of
high-end CPUs for data movement. This also implies that in future
PM systems it is desirable to employ more CPU cores to satisfy
the need of running application logic and moving data around. In
contrast, the storage stack is increasingly lightweight and less CPU
intensive. As well, programming PM requires new skills with a
steep learning curve, adding more implicit costs beyond TCA when
compared to SSDs.

Co-design of hardware configuration and data structure is
(more) necessary for PM systems. Otherwise, overprovisioning
can considerably drive up TCA. For example, FPTree does not re-
quire a fully populated server to achieve peak performance and be
cost-effective, but another data structure may require a very differ-
ent configuration. Such co-design may limit the system’s ability to
evolve for different workloads, more so than SSD-based systems.

Outlook. Although both PM and SSDs are fast evolving, we
believe that for PM to be truly cost-effective, it is necessary for
its price to further drop. Since caching stores remain very cost-
effective compared to pure-PM systems, an important direction
is to explore how the cost-effectiveness equation changes when
PM is used as an extension to DRAM (e.g., in Optane DCPMM’s
Memory mode). In addition, new SSDs are bringing much more
potential for building fast persistent data structures and systems
with the aforementioned performance characteristics and new ab-
stractions such as user-space I/O, ZNS [3] and directives. From a
practitioner’s perspective, designing indexing structures that fully
leverage the potential of modern SSDs is another promising direc-
tion. Our main focus has been simple index microbenchmarks. It
would be interesting to explore the performance and cost of running
more complex workloads (e.g., TPC-C, TPC-H) in an end-to-end
system that leverage next-generation SSDs and/or PM. Finally, as
we noted earlier, there are multiple candidate materials that can
build PM, with some (e.g., STT-RAM [10]) even having the potential

of approaching SRAM performance. It remains to be seen whether
they can truly scale to high capacity with a low cost, which, again,
would require a revisit of the storage jungle.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive com-
ments. We are tremendously grateful to Ryan Stutsman for his
valuable discussions and comments on an earlier draft of this paper.
Ge Shi, George He and Baotong Lu shared their valuable insights
on PM-based indexes and PM programming. This work is partially
supported by an NSERC Discovery Grant, Canada Foundation for
Innovation John R. Evans Leaders Fund and the B.C. Knowledge
Development Fund.

REFERENCES

[1] AgigaTech. 2017. Non-Volatile RAM. Retrieved August 17, 2021 from http:
//www.agigatech.com/nvram.php.

[2] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake Larson. 2018.
BzTree: A High-Performance Latch-Free Range Index for Non-Volatile Memory.
PVLDB 11, 5 (2018), 553-565.

[3] Matias Bjerling. 2019. From Open-Channel SSDs to Zoned Namespaces. Linux
Storage and Filesystems Conference (Feb. 2019).

[4] Matias Bjerling, Javier Gonzalez, and Philippe Bonnet. 2017. LightNVM: The
Linux Open-Channel SSD Subsystem. In Proceedings of the 15th USENIX Confer-
ence on File and Storage Technologies (FAST’17). 359-373.

[5] Maximilian Bother, Otto Kiflig, Lawrence Benson, and Tilmann Rabl. 2021. Drop
It In Like It’s Hot: An Analysis of Persistent Memory as a Drop-in Replace-
ment for NVMe SSDs. In Proceedings of the 17th International Workshop on Data
Management on New Hardware (DaMoN 2021). Article 7, 8 pages.

[6] CDW. 2021. Intel Optane DC Persistent - DDR-T - 128 GB - DIMM 288-pin -
4 Pack. Retrieved August 17, 2021 from https://www.cdw.com/product/intel-
optane-dc-persistent-ddr-t-128-gb-dimm-288-pin-4-pack/5749247.

[7] Jonathan Corbet. 2019. Ringing in a New Asynchronous I/O APL. Retrieved
August 17, 2021 from https://Ilwn.net/Articles/776703.

[8] Jaeyoung Do, Ivan Luiz Picoli, David Lomet, and Philippe Bonnet. 2021. Better
Database Cost/Performance via Batched I/O on Programmable SSD. The VLDB
Journal 30, 3 (May 2021), 1-22.

[9] Gabriel Haas, Michael Haubenschild, and Viktor Leis. 2020. Exploiting Directly-
Attached NVMe Arrays in DBMS. In 10th Conference on Innovative Data Systems
Research, CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020, Online
Proceedings.

[10] M.Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane, H. Yamada,
M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, and H. Kano. 2005. A Novel
Nonvolatile Memory with Spin Torque Transfer Magnetization Switching: Spin-
RAM. In IEEE International Electron Devices Meeting, 2005. IEDM Technical Digest.
(IEEE IEDM Technical Digest).
Intel Corporation. 2019. Optane DCPMM 100 Series Product Brief. Retrieved
August 17, 2021 from https://www.intel.com/content/dam/www/public/us/en/
documents/product-briefs/optane-dc-persistent-memory-brief.pdf.
[12] Intel Corporation. 2020. Intel Optane Persistent Memory Start Up Guide.
Retrieved August 17, 2021 from https://www.intel.com/content/dam/
support/us/en/documents/memory-and-storage/data-center-persistent-
mem/Intel_Optane_Persistent_Memory_Start_Up_Guide.pdf.
Intel Corporation. 2021. Intel Optane DC SSD Series. Retrieved August 17,
2021 from https://www.intel.com/content/www/us/en/products/details/memory-
storage/data-center-ssds/optane-dc-ssd-series.html.
Intel Corporation. 2021. Optane DCPMM 200 Series Product Brief. Retrieved
August 17, 2021 from https://www.intel.com/content/dam/www/public/us/en/
documents/product-briefs/optane-persistent-memory-200-series-brief.pdf.
[15] Intel Corporation. 2021. Optane SSD P5800X Series Product Brief. Retrieved
August 17, 2021 from https://www.intel.com/content/dam/www/public/us/en/
documents/product-briefs/a1169660-optane-ssd-p5800x-product-brief.pdf.

—_
o

(13

[14

[16] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir Saman

Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen
Zhao, and Steven Swanson. 2019. Basic Performance Measurements of the
Intel Optane DC Persistent Memory Module. CoRR abs/1903.05714 (2019).
arXiv:1903.05714

Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann. 2018.
LeanStore: In-Memory Data Management beyond Main Memory. In 2018 IEEE
34th International Conference on Data Engineering (ICDE) (IEEE ICDE). 185-196.
Alberto Lerner and Philippe Bonnet. 2021. Not Your Grandpa’s SSD: The Era of

Co-Designed Storage Devices. In Proceedings of the 2021 International Conference
on Management of Data (Virtual Event, China) (SSIGMOD/PODS ’21). 2852-2858.

Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and Thomas
Willhalm. 2019. Evaluating Persistent Memory Range Indexes. PVLDB 13, 4 (Dec.
2019), 574-587.

Jihang Liu, Shimin Chen, and Lujun Wang. 2020. LB+Trees: Optimizing Persistent
Index Performance on 3DXPoint Memory. PVLDB 13, 7 (March 2020), 1078-1090.
David Lomet. 2018. Cost/Performance in Modern Data Stores: How Data Caching
Systems Succeed. In Proceedings of the 14th International Workshop on Data
Management on New Hardware (DaMoN °18). Article 9, 10 pages.

Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. 2020. Dash: Scalable
Hashing on Persistent Memory. PVLDB 13, 8 (April 2020), 1147-1161.

Thomas Neumann and Michael J Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance. In 10th Conference on Innovative Data Systems
Research, CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020, Online
Proceedings.

Newegg. 2021. Intel Xeon Gold 6242R. Retrieved August 17, 2021 from https:
//www.newegg.com/p/0ZK-02J0-007D3.

Newegg. 2021. Optane DC P4800X SSD. Retrieved August 17, 2021 from
https://www.newegg.com/p/2U3-0001-00032.

Newegg. 2021. Samsung 32GB Memory. Retrieved August 17, 2021 from
https://www.newegg.com/p/9SIAFYREWP4976.

Oracle. 2021. Using Asynchronous I/O on Linux. Retrieved November 21, 2021
from https://dev.mysql.com/doc/refman/5.7/en/innodb-linux-native-aio.html.
Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang
Lehner. 2016. FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-tree
for Storage Class Memory. In Proceedings of the 2016 International Conference on
Management of Data (San Francisco, California, USA) (SIGMOD 16). 371-386.
Ivan Luiz Picoli, Niclas Hedam, Philippe Bonnet, and Pinar T6ziin. 2020. Open-
Channel SSD (What is it Good For). In 10th Conference on Innovative Data Systems
Research, CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020, Online
Proceedings.

Samsung. 2021. Samsung 980 PRO SSD. Retrieved August 17, 2021 from https:
//www.samsung.com/semiconductor/minisite/ssd/product/consumer/980pro.
Dmitri B Strukov, Gregory S Snider, Duncan R Stewart, and R Stanley Williams.
2008. The Missing Memristor Found. Nature 453, 7191 (2008), 80-83.

Ben Walker and Jim Harris. 2019. 10.39M Storage I/O Per Second From One
Thread. Retrieved August 17, 2021 from https://spdk.io/news/2019/05/06/nvme.
Li Wang, Zining Zhang, Bingsheng He, and Zhenjie Zhang. 2020. PA-Tree:
Polled-Mode Asynchronous B+ Tree for NVMe. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). IEEE, 553-564.

H. S P Wong, S. Raoux, SangBum Kim, Jiale Liang, John P. Reifenberg, B. Rajen-
dran, Mehdi Asheghi, and Kenneth E. Goodson. 2010. Phase Change Memory.
Proc. IEEE 98, 12 (2010), 2201-2227.

Kan Wu, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2019. Towards an
Unwritten Contract of Intel Optane SSD. HotStorage (2019).

Kan Wu, Zhihan Guo, Guanzhou Hu, Kaiwei Tu, Ramnatthan Alagappan, Rathijit
Sen, Kwanghyun Park, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
2021. The Storage Hierarchy is Not a Hierarchy: Optimizing Caching on Modern
Storage Devices with Orthus. In 19th USENIX Conference on File and Storage
Technologies (FAST 21) (USENIX FAST). 307-323.

Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh, Tameesh Suri, Manu Awasthi,
Zvika Guz, Anahita Shayesteh, and Vijay Balakrishnan. 2015. Performance
Analysis of NVMe SSDs and Their Implication on Real World Databases. In
Proceedings of the 8th ACM International Systems and Storage Conference (SYSTOR).
Article 6, 11 pages.

Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steven Swan-
son. 2020. An Empirical Guide to the Behavior and Use of Scalable Persistent
Memory. In 18th USENIX Conference on File and Storage Technologies (FAST 20)
(USENIX FAST). 169-182.

http://www.agigatech.com/nvram.php
http://www.agigatech.com/nvram.php
https://www.cdw.com/product/intel-optane-dc-persistent-ddr-t-128-gb-dimm-288-pin-4-pack/5749247
https://www.cdw.com/product/intel-optane-dc-persistent-ddr-t-128-gb-dimm-288-pin-4-pack/5749247
https://lwn.net/Articles/776703
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel_Optane_Persistent_Memory_Start_Up_Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel_Optane_Persistent_Memory_Start_Up_Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel_Optane_Persistent_Memory_Start_Up_Guide.pdf
https://www.intel.com/content/www/us/en/products/details/memory-storage/data-center-ssds/optane-dc-ssd-series.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/data-center-ssds/optane-dc-ssd-series.html
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-persistent-memory-200-series-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-persistent-memory-200-series-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/a1169660-optane-ssd-p5800x-product-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/a1169660-optane-ssd-p5800x-product-brief.pdf
https://arxiv.org/abs/1903.05714
https://www.newegg.com/p/0ZK-02J0-007D3
https://www.newegg.com/p/0ZK-02J0-007D3
https://www.newegg.com/p/2U3-0001-00032
https://www.newegg.com/p/9SIAFYREWP4976
https://dev.mysql.com/doc/refman/5.7/en/innodb-linux-native-aio.html
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/980pro
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/980pro
https://spdk.io/news/2019/05/06/nvme

	Abstract
	1 Introduction
	2 The Modern Storage Jungle
	2.1 Persistent Memory and Optane DCPMM
	2.2 Next-Generation Fast SSDs
	2.3 From a Hierarchy to a Jungle

	3 How Much Does It Cost, Really?
	3.1 Hardware Configurations
	3.2 Cost/Capacity Analysis

	4 Putting Costs in the Index Context
	4.1 Experimental Setup
	4.2 Raw Storage Performance
	4.3 Index Performance/Cost

	5 Related Work
	6 Implications and Outlook
	Acknowledgments
	References

