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ABSTRACT
State-of-the-art query engines pursue a pipeline-based query execu-

tion model. Using such a model, a pipeline computes a query plan

fragment up to a pipeline breaker resulting in an intermediate re-

sult, which will be consumed by subsequent pipelines. Interestingly,

the ordering of execution of such pipelines poses an opportunity for

memory savings. Within this paper, we tackle the challenge to com-

pute an optimal schedule of the individual pipelines with respect to

minimizing the memory consumption needed for a particular query

execution plan. We therefore will precisely state the problem and

show the potential of an optimal pipeline execution ordering. We

will then provide a formal model to describe the search space and

propose four different algorithms to identify optimal/near-optimal

schedules. The paper also presents insights into our implementation

within a prototypical query execution engine and reports results

relying on the Join Order Benchmark scenarios. Specifically, the

experimental evaluation focuses on the identified memory savings

and the stability of the query runtime behavior. Furthermore, the

evaluation reports on the small overhead of the proposed search al-

gorithms during the planning time, thus emphasizing the practical

applicability of our approach.
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1 INTRODUCTION
The optimization of memory consumption during query processing

plays a significant role due to ever growing demands of data size

[2], query workload and query complexity in cloud scenarios. This

observation holds especially for main-memory database systems

aiming to optimally make use of existing hardware resources. Fur-

thermore, this especially holds for main memory, as it is a driving

factor of hardware costs [1], to increase memory utilization. In such

modern cloud systems, we are confronted with large numbers of

complex OLAP queries, referencing numerous tables [14]. Those

queries are typically executed using pipelines as the state-of-the-art

execution model to achieve scalability and throughput [9, 15].
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Figure 1: Comparison of memory consumption of pipeline
breakers over time between two different pipeline execution
orders illustrating potential memory savings.

Within such an execution model, pipelines [4, 8] are logical

units of executions and thus independent of each other during

execution. For scheduling, a pipeline may require several other

pipelines to be processed first. A pipeline performs a mix of unary

operators, might probe into the output structures of other pipelines

and eventually builds another intermediate acting as a pipeline

breaker. Since intermediates have different sizes and the number

of existing intermediates is varying during the execution of the

individual pipelines, the memory utilization will change over time.

Moreover, the order of execution of individual pipelines, i.e. the

time of producing, storing, and consuming the intermediate by

subsequently executed pipelines has a significant impact on the

memory profile (the timely utilization of main memory resources

as a graph) of a query.

Figure 1 illustrates the potential memory savings of the example

query execution plan in Figure 2 joining five tables R, S, T, U, and

V. The upper diagrams in Figures 1(a) and (b) contain the lifetimes

of the breakers of the pipelines, which themselves contain the
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Figure 2: Example QEP of joining five tables with annotated cardinalities, extended by according pipeline view with pipeline
breakers and their sizes, from which a precedence relationship of pipelines and further an AoN-Tree can be derived.

intermediates at the end of each pipelines. Those breaker lifetimes

add up and result in the memory profile in the lower part of said

two figures. In Figure 2, the intermediate result cardinalities of the

individual pipeline fragments are annotated at the query execution

plan edges. To evaluate the memory usage of the query execution

plan over time, we need the memory sizes and the lifetimes of

the pipeline breakers. For the example in Figure 2(b) and (d), we

assume that the memory sizes of the pipeline breakers are equal

to the cardinality of the intermediate result in the pipeline breaker.

The lifetime of a pipeline breaker depends on the execution time,

i.e., the execution cost, of other pipelines. Because the example is a

pure join query, we abstract the execution cost of a pipeline to be

the number of hash join probes executed by the pipeline.

From the precedence relationship of pipelines in Figure 2(c),

we can derive at least two different pipeline execution schedules

resulting in creation and consumption of intermediates at differ-

ent points during query execution. The two execution orders in

Figure 1, (V,U,T,S,R) and (V,T,S,U,R) thus result in different mem-

ory profiles. In the plot at the bottom of Figure 1, the green area

shows the savings, and the red area the losses of the execution

order (V,U,T,S,R) compared to (V,T,S,U,R): executing pipeline (S)

with the large intermediate as late as possible seems favorable to

keep this intermediate in memory as short as possible. Comparing

the two different memory profiles of these execution orders shows

a potential memory utilization reduction of 6.3%, illustrating the

potential impact of pipeline execution orderings.

Contributions
We introduce a lightweight optimization step after query optimiza-

tion but before plan execution, which can be easily integrated into

existing DBMS. Our contributions build on query execution plans as

the output of a query optimizer, annotated with estimated cost and

cardinalities. Based on these foundations, the paper encompasses

the following contributions:

• This paper introduces Pipelines Execution Orders (PEOs) as a
conceptional model for our scheduling optimizations. (Sec-

tion 2)

• We show the potential of optimizing the schedule of query

execution pipelines with respect to memory consumption

during the lifetime of a query. (Subsection 5.2)

• The paper discusses different optimization goals (memory

integral; peak consumption; memory robustness) and make

the case for thememory integral as ameasure for thememory

consumption of a given join tree. (Subsection 3.1)

• We introduce a formal framework to efficiently derive an

optimal schedule. (Subsection 3.2)

• To identify query execution pipeline schedules, we describe

and evaluate different algorithms (Exhaustive Search, Branch

Pruning Search, Theta Skip Search, and Longest Path Heuris-

tic). (Subsection 3 and Section 4)

• We provide insights of an integration into an existing proto-

typical database engine applying the pipeline-based execu-

tion model and investigate the additional planning overhead.

(Subsection 5.5)

• We experimentally show that the schedule may only have

an impact on the memory utilization over time. (Subsection

5.4)

As of now, we rely on the observation of [9] that one pipeline-at-

a-time achieves the best throughput, and thus keep a system busy by

processing only a single pipeline at any time; the memory optimized

scheduling of multiple concurrent pipelines is subject to future

research and goes beyond the mission of this CIDR-publication.

Structure
This paper continues with the introduction of PEOs as conceptional

model for our scheduling optimizations in Section 2 and presents

different scheduling algorithms in the Sections 3 and 4. Section 5

will then provide insights into the implementation and findings of

the experimental evaluation. The paper closes with a brief review

of related work (Section 6) and a summary (Section 7).

2 PIPELINE EXECUTION ORDER
Our underlying conceptual model interprets a query execution plan

as a set of pipelines and a set of pipeline dependencies, as il-
lustrated in Figure 2. A pipeline is a sequence of physical operators,
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Figure 3: Example of memory consumption charts: Resource (Gantt) chart showing the consumed memory of each pipeline
over time, and corresponding memory profile, showing the sum of used memory resources over time.

in which fragments of intermediate results are passed from one op-

erator to the next. We refer to hash joins as our standard example of

a physical operator. The build-side of a hash join then corresponds

to the end of a pipeline, called a pipeline breaker. A pipeline with

potentially multiple operators may then also depend on the inter-

mediate results in the pipeline breakers of other pipelines. In the

example of a join query using hash joins, one pipeline may contain

the probe-sides of different hash joins, probing into the correspond-

ing build-sides, i.e., pipeline breakers of other pipelines. Once a

pipeline has finished and produced a new intermediate or the final

result, all referenced intermediates, e.g., hash tables against which

the current pipeline has probed, can be released. In other words:

once a pipeline breaker is built, it has to stay in memory until it

has been consumed, e.g., probed.

To illustrate the optimization space we utilize, Figure 3(a) shows

an example Gantt-chart [5] containing the different phases in the

lifetime of three pipeline breakers 𝑏𝑖 , 𝑏𝑖+1, and 𝑏𝑖+2 of the corre-
sponding pipelines 𝑝𝑖 , 𝑝𝑖+1 and 𝑝𝑖+2. From the Gantt-chart on the

upper part of Figure 3, we can derive the memory profile or mem-

ory integral in 3(b). The y-axis in Figure 3 describes the consumed

memory size of the pipeline breakers, and the x-axis the lifespan

of the pipeline breakers, which can be separated into four phases:

(1) The constructing phase, which is dominated by the execution of

the preceding pipeline, and fills the breaker with tuples. The entire

hash table is assumed to be allocated at an instant and before exe-

cution. (2) The waiting phase, where the breaker is not touched and
waits to be consumed. (3) The consumption phase, where another

pipeline reads the intermediate result from the pipeline breaker,

e.g., through probing. (4) The deallocating phase, which frees the

memory of the pipeline breaker.

The example in Figure 3 further shows the interdependencies

between the phases of the three different pipelines. The pipeline

breakers 𝑏𝑖 and 𝑏𝑖+1 are supposed to be consumed by the pipeline

𝑝𝑖+2. For a correct execution, it does not matter whether 𝑏𝑖 or 𝑏𝑖+1
is executed first. This degree of freedom creates the optimization

space in this example. Figure 3 illustrates the worse decision, i.e.,

executing 𝑝𝑖 first: The intermediate result in 𝑏𝑖 is larger compared

to 𝑏𝑖+1, and the larger result in 𝑏𝑖 has to stay in memory for the

construction time of 𝑏𝑖+1, which is considerably longer compared

to the construction time of 𝑏𝑖 .

Definition 1 (Pipeline Execution Order). A Pipeline Exe-
cution Order (PEO) 𝑂 is a sequence of 𝑛 pipelines (𝑝1, . . . , 𝑝𝑖 , . . . ,
𝑝 𝑗 , . . . , 𝑝𝑛) given in a query execution plan where pipeline 𝑝𝑖 < 𝑝 𝑗 ,
if the computation of pipeline 𝑝 𝑗 requires the output of pipeline 𝑝𝑖 .
For all dependencies 𝑝𝑖 < 𝑝 𝑗 in 𝑂 there must be no sub-sequence
(..., 𝑝 𝑗 , ..., 𝑝𝑖 , ...), such that the PEO fulfills all dependencies.

We refer to the term precedence relationships [5, 6] for the de-
pendencies 𝑝𝑖 < 𝑝 𝑗 (see Figure 2). The notation 𝑝𝑖 < 𝑝 𝑗 (read

𝑝 𝑗 depends on 𝑝𝑖 ) is used for interdependent tasks in scheduling

theory literature [5, 6] and we use it similarly to describe legal

orderings of pipelines. The precedence relationships of individual

pipelines can be derived from the QEP according to the selected

physical operators. Alternatively, the dependencies can be explicitly

provided by the query optimizer.

In our experiments in Subsection 5.4, we found that different

PEOs result in the same query execution time, because all pipelines

of a QEP have to be executed. Solely the memory consumption can

be different. Typically, query execution engines choose one QEP

that is correct according to the definition, but not necessarily a QEP

that has optimal memory consumption.

3 OPTIMAL SCHEDULING ALGORITHMS
In order to find an optimal PEO with respect to memory consump-

tion, we enumerate PEOs, assign cost to each PEO, and consider

the cheapest PEO as optimal. Next, we discuss optimization goals,
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from which we derive our memory cost model for PEOs. Further,

we describe the PEO search space and present two enumeration

algorithms, which traverse the Activity-on-Node Tree (AoN-Tree)

and guarantee to find the optimal PEO according to estimated cost.

3.1 Optimization Goals
Optimizing the PEO with respect to memory consumption can have

different objectives. We identified the following optimization goals:

• MinimizingMemory Integral: Thememory integral quan-

tifies the space below the memory profile, which describes

the memory utilization over the query execution time. For

a given PEO, the memory integral is computed by accumu-

lating the product of pipeline breaker lifetime and pipeline

breaker size over all pipeline breakers in the query execu-

tion plan. The lifetime of a pipeline breaker starts at the

beginning of the corresponding pipeline and ends once the

intermediate in the pipeline breaker was consumed, i.e., at

the end of its consuming pipeline. Thus, the lifetime of the

pipeline breaker also depends on the execution time of sib-

ling pipelines that have to be executed before the consuming

pipeline can start.

• Minimizing Peak Consumption: Next to minimizing the

memory integral, minimizing the peak consumption aims at

generating a PEO with the lowest peak memory consump-

tion during the lifetime of a query. While this strategy might

be extremely beneficial for multi-query scenarios with ex-

treme memory pressure, we position this strategy as a tie

breaker for PEOs with the same memory integral. During

our experimental evaluations, we observed an implicit re-

duction of the average memory consumption in PEOs with

a lower overall memory integral.

• Robust Memory Consumption: Minimizing the variance

of the memory consumption throughout the lifetime of a

query is the third optimization goal and aims for a more

constant, i.e. more stable memory consumption behavior.

This strategy is particularly interesting from a system per-

spective, ideally looking at all actively running queries in a

system. Because this is beyond the scope of the optimization

of a single query and thus beyond the scope of this paper,

we do not further elaborate on this aspect.

Throughout our experiments in Section 5, we identified the

strongest benefits when minimizing the memory integral. Con-

sequently, we continue with a memory integral cost model for

PEOs.

3.2 Cost Model
Next, we describe the building blocks of a memory-integral-based

cost model for PEOs. In addition to the PEO, another input of our

cost model is the corresponding QEP with estimated intermediate

result cardinalities and estimated costs of all sub-trees in the query

execution plan.

To formalize our cost function, we rely on the notation shown in

Figure 5: A QEP has sub-tress 𝑠𝑖 with estimated execution cost 𝑐𝑖 .

The result of a sub-tree 𝑠𝑖 has the cardinality 𝑓𝑖 , the row size𝑤𝑖 , and

is written into the pipeline breaker 𝑏𝑖 . Pipeline breaker 𝑏𝑖 marks

the end of pipeline 𝑝𝑖 . In contrast to the execution cost 𝑐𝑖 of the

Var. Definition [Unit]/(Type)

𝑠𝑖 Sub-Tree no unit

𝑝𝑖 Pipeline of 𝑠𝑖 no unit

𝑐𝑖 Generic Cost Model Cost [step]

for sub-tree 𝑠𝑖
𝑒𝑖 Execution Cost of 𝑝𝑖 [step]

𝑏𝑖 Pipeline Breaker of 𝑝𝑖 no unit

𝑚𝑖 Memory Cost of 𝑏𝑖 [B]

𝑓𝑖 Cardinality of 𝑏𝑖 no unit

𝑤𝑖 Tuple Size of 𝑏𝑖 [B]

𝜎𝑖 Writing Costs of 𝑏𝑖 [step]

𝑙𝑖 Lifetime of 𝑏𝑖 [step]

𝑀𝐼 Memory Integral [step*B]

𝑂 PEO (tuple of pipelines)

𝑃 Set of all pipelines (set)

𝐷 Dependency Matrix (matrix)

Figure 4: This table lists all variables used in Section 3.2
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Figure 5: Illustration of pipelines with annotated notation,
showing a QEP subtree 𝑠𝑖 having execution cost 𝑐𝑖 , a pipeline
𝑝𝑖 having execution cost 𝑒𝑖 , and the corresponding pipeline
breaker𝑏𝑖 , storing a result with cardinality 𝑓𝑖 , row size𝑤𝑖 , an
overall memory size𝑚𝑖 , and writing cost 𝜎𝑖 .

entire sub-tree 𝑠𝑖 , the cost of executing just pipeline 𝑝𝑖 is execution

cost 𝑒𝑖 . Because the estimated execution cost 𝑐𝑖 of sub-tree 𝑠𝑖 does

not contain the cost of writing the result of sub-tree 𝑠𝑖 into pipeline

breaker 𝑏𝑖 , we have to consider this effort as execution cost 𝜎𝑖 .

Finally, 𝑙𝑖 is the lifetime of a pipeline breaker 𝑏𝑖 . The sub-trees 𝑠𝑖 ,

their estimated cardinalities 𝑓𝑖 , row size 𝑤𝑖 , and execution costs

𝑐𝑖 and 𝜎𝑖 , are input parameters of our cost model and have to be

calculated in the initial query optimization.

3.2.1 Memory Size of a Pipeline Breaker. We approximate the mem-

ory size𝑚𝑖 (unit [B]) of a pipeline breaker 𝑏𝑖 by the product of its

corresponding cardinality 𝑓𝑖 and row size𝑤𝑖 so that:𝑚𝑖 = 𝑤𝑖 · 𝑓𝑖 .
In the example of hash joins, this approximation is based on the

assumption that pipeline breakers consist of densely-packed hash

tables to be oblivious to the hash table implementation. We further

define the vector of pipeline breaker memory sizes ®𝑚 for a given

PEO 𝑂 = (𝑝0, . . . , 𝑝𝑖 , . . . , 𝑝𝑛) as ®𝑚 = (𝑚1, . . . ,𝑚𝑖 , . . . ,𝑚𝑛).

3.2.2 Pipeline Execution Time. To approximate the lifetime of a

single pipeline breaker, we first have to approximate the execu-

tion times of single pipelines. We argue that the execution time
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of a pipeline can be approximated by the execution cost 𝑒𝑖 of the

pipeline, which we propose to derive as follows: Take the estimated

execution cost 𝑐𝑖 of the corresponding sub-tree 𝑠𝑖 and subtract the

estimated execution cost 𝑐 𝑗 of all sub-trees 𝑠 𝑗 of 𝑠𝑖 , where 𝑠 𝑗 are

only sub-trees whose pipeline breaker 𝑏 𝑗 is consumed by pipeline

𝑝𝑖 . To further approximate the pipeline execution time 𝜎𝑖 is added

to 𝑒𝑖 in order to account for the cost of writing the result of sub-tree

𝑠𝑖 and pipeline 𝑝𝑖 into pipeline breaker 𝑏𝑖 .

𝑒𝑖 = 𝑐𝑖 −
∑

𝑝 𝑗<𝑝𝑖

𝑐 𝑗 + 𝜎𝑖 (1)

For our running example, we use the 𝐶𝑜𝑢𝑡 cost function [7],

which just adds up the output cardinalities of all operators, includ-

ing base table scans. Because the basic 𝐶𝑜𝑢𝑡 cost function does not

split the cost of a hash join in build and probe cost, we set the cost

𝜎𝑖 of writing into the pipeline breaker, e.g., the hash table, to 0,

since 𝐶𝑜𝑢𝑡 already includes the cardinality of the result.

Equation 1, however, does not specify which costs obtained

from the cost function 𝑐 𝑗 to subtract from 𝑐𝑖 . Next we will define

a dependency matrix to correctly calculate the pipeline execution

costs for all pipelines.

Recall that a PEO 𝑂 is defined as a sequence of pipelines 𝑂 =

(𝑝𝑘 , . . . , 𝑝𝑖 , . . . , 𝑝 𝑗 ) based on the set of pipelines 𝑃 = {𝑝1, ..., 𝑝𝑛}.
In order to be able to reflect the precedence relationship we use

the matrix 𝐷 : 𝑃 × 𝑃 → {0, 1}, called the dependency matrix. The

matrix is filled with 1s where the corresponding pipeline of each

row is depending on the pipeline breaker of the pipeline indicated

by the column:

𝐷 =

©«

𝑝1 ... 𝑝 𝑗 ... 𝑝𝑛

𝑝1 0 ... 1 ... 0

... ... ... ... ... ...

𝑝𝑖 0 ... 0 ... 0

... ... ... ... ... ...

𝑝𝑛 0 .. 0 ... 0

ª®®®®®¬
or more formally:

𝐷𝑖, 𝑗 =

{
1 if 𝑝𝑖 depends on 𝑝 𝑗

0 else

We denote ®𝑐 = (𝑐𝑘 , . . . , 𝑐𝑖 , . . . , 𝑐 𝑗 ) as the vector containing the

execution costs 𝑐𝑖 of a subtree 𝑠𝑖 according to pipeline 𝑝𝑖 , in the

order of pipelines in the PEO 𝑂 . Also, we define a vector
®𝑓 =

(𝑓𝑘 , . . . , 𝑓𝑖 , . . . , 𝑓𝑗 ) of corresponding result cardinalities in each pipe-
line breaker, and vector ®𝜎 = (𝜎𝑘 , . . . , 𝜎𝑖 , . . . , 𝜎 𝑗 ) to account the cost

of writing into the pipeline breakers. Eventually, we can derive the

equation for the vector ®𝑒 of execution costs 𝑒𝑖 for each pipeline 𝑝𝑖 :

®𝑒 = ((𝐸 − 𝐷) · ®𝑐⊤)⊤ + ®𝜎, (2)

where 𝐸 is the unity matrix in the n-th dimension. Operation "·"
is the standard matrix multiplication and "⊤" denotes the transpo-
sition of a matrix. Subtracting 𝐷 from 𝐸, gives us a matrix where

each line specifies which cost should be added and subtracted to

calculate the execution cost of a single pipeline. Multiplying the

matrix 𝐸 − 𝐷 with the transposed execution cost vector ®𝑐 , gives
us a vector of execution cost per pipeline to which we add ®𝜎 to

eventually obtain the final pipeline execution cost vector ®𝑒 .

Example. We consider the example of Figure 2. Let us derive the

dependency matrix 𝐷 for the PEO (V,T,S,U,R) with the precedence

relationship V < U, U < R, T < S, and S < R. The annotated pipeline

execution cost 𝑒𝑖 in the AoN-Tree in Figure 2 can be written as:

®𝑒 = (10, 20, 150, 30, 90). To keep the example simple, we set ®𝜎 = 0,

without loss of generality. Consequently, the dependency matrix 𝐷

is:

𝐷 =

©«

𝑉 𝑇 𝑆 𝑈 𝑅

𝑉 0 0 0 0 0

𝑇 0 0 0 0 0

𝑆 0 1 0 0 0

𝑈 1 0 0 0 0

𝑅 0 0 1 1 0

ª®®®®®¬
Recall that the order of pipelines in both dimensions of the D-

matrix corresponds to the order on pipelines given by the PEO.

The second cell in the third row of 𝐷 has a "1", since S depends on

T, the first cell in the fourth row of 𝐷 has the entry "1", since U

depends on V, and the third and fourth cell in the fifth row of 𝐷

contain "1"s, since R depends on S and U. We derive the vector ®𝑐 of
sub-tree execution cost 𝑐𝑖 from the 𝐶𝑜𝑢𝑡 costs calculated from the

intermediate result cardinalities, annotated in the QEP in Figure 2:

®𝐶𝑜𝑢𝑡 = (10, 20, 170, 40, 300)
Inserting ®𝐶𝑜𝑢𝑡 into Equation 2 eventually yields to the transposed

result vector. Recall that we defined ®𝜎 = 0 in this example:

®𝑒 =

©«
1 0 0 0 0

0 1 0 0 0

0 −1 1 0 0

−1 0 0 1 0

0 0 −1 −1 1

ª®®®®®¬
·

©«
10

20

170

40

300

ª®®®®®¬
=

©«
10

20

150

30

90

ª®®®®®¬
3.2.3 Lifetime of Pipeline Breakers. The lifetime of a pipeline break-

er 𝑏𝑖 consists of the execution time 𝑒𝑖 of its respective pipeline 𝑝𝑖 ,

and the execution times of other pipelines until the pipeline breaker

𝑏𝑖 is consumed. For the example PEO (V, T, S, U, R) in Figure 1, the

lifetime of pipeline breaker of pipeline V is the sum of the exe-

cution times of the pipelines V, T, S, and U. Sequences like V, T,

S, U, which define the lifetime of a pipeline breaker, are always

sub-sequences of the original PEO. Further, the precedence rela-

tionship V < U, which describes that V is consumed by U, specifies

the span of the subsequence of the original PEO. Given a PEO

𝑂 = (𝑝1, . . . , 𝑝𝑖 , . . . , 𝑝 𝑗 , . . . , 𝑝𝑘 , . . . , 𝑝𝑛), the corresponding pipeline

execution cost vector ®𝑒 = (𝑒1, . . . , 𝑒 𝑗 , . . . , 𝑒𝑛), and the precedence

relationship 𝑝𝑖 < 𝑝𝑘 , we can calculate the lifetime 𝑙𝑖 of the pipeline

breaker 𝑏𝑖 of pipeline 𝑝𝑖 by:

𝑙𝑖 =

𝑘∑
𝑗=𝑖

𝑒 𝑗 (3)

Based on Equation 3, we define the pipeline lifetime vector
®𝑙 for

a PEO 𝑂 = (𝑝1, . . . , 𝑝𝑖 , . . . , 𝑝𝑛) as ®𝑙 = (𝑙1, . . . , 𝑙𝑖 , . . . , 𝑙𝑛).

3.2.4 Memory Integral Metric. Based on the presented building

blocks, we can define our memory integral metric. We multiply the

vector of pipeline breaker memory costs ®𝑚 with the transposed
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Figure 6: A pipeline execution plan with two deep trees.

vector of pipeline breaker lifetimes
®𝑙 , such that the memory integral

is computed by:

𝑀𝐼 = ®𝑚 · ®𝑙⊤ (4)

Consequently, the memory integral is the sum over all pipeline

breakers 𝑏𝑖 multiplying their memory size𝑚𝑖 with their lifetime 𝑙𝑖 .

The memory consumption of the pipeline breakers is 0 before they

are created,𝑚𝑖 as soon as the respective pipeline starts operating

until 𝑏𝑖 is destructed, and 0 afterwards again.

3.3 PEO Search Space
After presenting the cost model, we shift the focus towards the PEO

search space. We use Activity-on-Node Trees, as illustrated on the

right-hand-side of Figure 2, to systematically derive one or more

PEOs. AoN-Trees are similar to Activity-on-Node Graphs [6].

Definition 2 (Activity-on-Node Tree). AnActivity-on-Node
Tree (AoN-Tree) is a directed acyclic graph of nodes reflecting indi-
vidual pipelines. A node 𝑃𝑖 does have the children 𝑃𝑘 , . . . , 𝑃𝑛 , if the
pipeline 𝑝𝑖 consumes the pipelines 𝑝𝑘 , . . . , 𝑝𝑛 . Each node 𝑃𝑖 holds the
estimated lifetime cost 𝑙𝑖 of the pipeline 𝑝𝑖 , and the estimated memory
size𝑚𝑖 of the result in the pipeline breaker 𝑏𝑖 .

The size of the search space of PEOs depends on the structure of

the AoN-Tree. We can summarize the following patterns:

• Right-deep structures: If individual pipelines are depen-
dent on exactly a single intermediate, there is exactly a single

PEO possible; any search for alternatives can thus be aban-

doned. For example, only considering the plan fragment

denoted as "RDS" in Figure 6, (1) depends on (2), (2) depends

on (3), and (3) depends on (4); thus, the logical dependencies

prescribe the physical execution of the pipelines.

• Left-deep structures: If there is a plan consisting of 𝑛 pipe-

lines that exhibits left-deep structures for probe sides, i.e.,

there is a single continuous pipeline from one table to the

result, with multiple build sides to be probed against, the

total number of PEOs is (𝑛 − 1)!. If all build-side pipelines
have a length of 1, the best execution order is determined by

successively choosing the pipelines by their smallest pipeline

breakers. As soon as the constraint on the pipeline length

is relaxed, the tree needs to be exhaustively searched for

the best order. For example, if pipeline (9) would not be

existent, the plan fragment denoted as "LDS" in Figure 6

would provide a corresponding scenario: pipeline (6) would

probe against (8) and (7) resulting in two alternative PEOs:

(8, 7, 6) and (7, 8, 6).

• Bushy structures: In general, we consider bushy execution

plans, which fall between the two extremes of left and right

deep structures. It is worth mentioning that the problem of

identifying a memory optimal PEO is non-linear in nature,

i.e. the size of an intermediate at the root of an execution

fragment is not enough to decide on the optimal ordering

of the consuming pipeline, thus requiring proper search

algorithms.

3.4 Exhaustive Search Algorithm
"Exhaustive Search" (ES) is the reference algorithm which we

created for finding the optimal PEO according to estimated car-

dinalities and cost. The algorithm implements an optimization to

calculate the memory cost, i.e., the memory integral, on the fly

while traversing the AoN-Tree in a deepest-first-search fashion

through recursion. We further explain the calculation of the mem-

ory peak value. Each node in the AoN-Tree represents a pipeline,

having a lifetime and a memory size of the corresponding pipeline

breaker. Initially, we invoke our recursive algorithm with the nodes

that are directly reachable from the start node in the AoN-Tree as

heap of active nodes. From the heap of active nodes, the algorithm

continuously takes a node, removes the node from the copied active
nodes heap, adds the node’s memory size to the current memory

peak, and calculates the new memory integral using the lifetime

of the node. Whenever another node becomes directly reachable

in the AoN-Tree, we append the node to our active nodes. The

processed node is appended to the heap of visited nodes and we

enter a recursion step using the new active nodes. If all nodes of

the tree have been processed, the recursion returns the PEO, its

memory integral, and memory peak value in an array of PEOs. For

the evaluation we skipped collecting all PEOs and instead logged

the currently best and worst PEO discovered during the search.

Algorithm 1 defines the recursive procedure. Each node has a suc-

cessor node next, a count of unvisited previous nodes prevCount,
an array of previous nodes prevs, memory size memorySize and

execution costs lifetime. The start node has an array of successor

nodes nextNodes. The recursion starts with the start node’s next

nodes as the active nodes (activeNodes) and logs the start node in
the array of visited nodes (visitedNodes). In Line 4 of Algorithm

1, we start the iteration of all nodes among our active nodes. We

remove the chosen node from the latter and calculate the memory

peak as well as the current memory integral. If the chosen node

has previous nodes, we remove the memory sizes of those from the

memory peak in Line 9 and 10, since the memory of the pipeline

breakers belonging to those nodes is freed. Lines 16 to 24 contain

the mechanism to determine whether all previous nodes of a spe-

cific successor node have been visited with Line 17 appending the

successor to the active nodes. Line 24 then again increments the

prevCount for the currently visited node. The function as a whole

returns an array of PEOs. In Line 21 and 23 each iteration adds the

returned PEOs from each recursion. Those collected PEOs are then
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Algorithm 1 Finds all possible PEOs for a given AoN-Tree.

The algorithm is recursive and needs to be initiated using

ES(Start.nextNodes, [Start], 0, 0), where Start is the start node of

the AoN-Graph. It returns an array of all possible PEOs.

1: function ES(activeNodes, visitedNodes, memPeak, MI)

2: peos = []

3: // This line can accommodate the Theta Skip Step

4: for n in activeNodes do
5: newNodes = activeNodes.copy()

6: newNodes.remove(n)

7: nextPeak = memPeak + n.memorySize

8: nextMI = MI + nextPeak * n.lifetime

9: for i in n.prevs do
10: nextPeak -= i.memorySize

11: end for
12: if n.isEnd() then
13: return [PEO(visitedNodes + [n], nextMI, nextPeak)]

14: end if
15: // This line can accommodate the Branch Pruning Step

16: n.next.prevCount =- 1

17: if n.next.prevCount == 0 then
18: newNodes.append(n.next)

19: end if
20: newVisitedNodes = visitedNodes + [n]

21: rec = ES(newNodes, newVisitedNodes, nextPeak,

22: nextMI)

23: peos += rec

24: node.next.prevCount =+ 1

25: end for
26: return traversals

27: end function

returned to the caller in Line 26. In the end, the initial call receives

all possible PEO, which can then be filtered for the PEO with the

smallest memory integral.

3.5 Branch Pruning Search Algorithm

Algorithm 2 These lines can be inserted in Algorithm 1 to obtain

the Branch Pruning Algorithm. The heuristic memory integral is

obtained from the Longest Path Heuristic, for instance.

heuristicMI = heuristic.getMemoryIntegral()

if nextMemIntegral > heuristicMI then
return []

end if

Based on the exhaustive search algorithm, our "Branch Prun-
ing Search" (BPS) returns an empty array of PEOs as soon as the

current memory integral steps over a threshold, i.e., a memory inte-

gral calculated by a heuristic from Section 4.2, thus indicating that

inside the recursion no better PEO had been found. If the array of

PEOs is empty, it will return the PEO produced by the heuristic. In

the evaluation, we use branch pruning with the memory integral

produced by the PEO of the longest path heuristic as a baseline. The

branch pruning step can be accommodated in Line 15 of Algorithm

1.

4 HEURISTIC SCHEDULING ALGORITHMS
The algorithms presented up until this point guarantee to find the

optimal PEO with respect to estimated cost. In this section, we

explore two further algortihms, which do not guarantee to find

the optimal PEO with respect to estimated cost, but near-optimal

PEOs. First, we introduce the Theta Skip Search algorithm, which

is a tradeoff between a smaller number of enumerated PEOs, and

potentially higher estimated memory cost of the selected PEO. The

second algorithm is the Longest Path Heuristic, which found PEOs

with near-optimal memory cost in our experimental evaluation.

4.1 Theta Skip Search Algorithm

Algorithm 3 These lines can be inserted in Algorithm 1 to obtain

the Theta Skip Search algorithm. Note that the recursion also needs

to accommodate these lines.

1: currentSmallest = 0

2: threshold = 1 kB // or other size

3: smallestNode = Null

4: for n in activeNodes do
5: if n.memorySize < threshold then
6: currentSmallest = n.memorySize

7: smallestNode = n

8: end if
9: end for
10: if smallestNode != Null then
11: memPeak += smallestNode.memorySize

12: MI += memPeak * smallestNode.lifetime

13: for n in smallestNode.prevNodes do
14: memPeak -= n.memorySize

15: end for
16: smallestNode.next.prevCount -= 1

17: if smallestNode.next.prevCount == 0 then
18: activeNodes.append(node.next)

19: end if
20: rec = ES(activeNodes\{smallestNode},

21: visitedNode + smallestNode, memPeak, MI)

22: smallestNode.next.prevCount += 1

23: return rec

24: end if

In some QEPs, we may encounter many pipeline breakers with a

small memory size. Even if executing them eagerly might cause the

PEO to become suboptimal, the difference to a similar better PEO

might be negligible, while we save a possible recursion step for

each skipped node. Thus, the "Theta Skip Search" (TSS) algorithm
always chooses nodes with small memory sizes below a threshold

(for example 1KByte) and if many of such are found, chooses the

smallest one directly. We also equipped this algorithm with the

branch-pruning step. Algorithm 3 shows the necessary pseudo

code, which needs to be integrated in Line 3 of Algorithm 1. Lines 3

to 9 search for the node with the smallest memory footprint which

also lies below the memory size threshold. Then it proceeds to
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Figure 7: The AoN-Tree corresponding to Figure 6. For each
node,𝑚 denotes the memory size of each breaker node, and
𝑒 denotes the execution cost.

calculate the memory peak and the memory integral accordingly.

It updates the prevCount as usual and then enters the recursion.

This algorithm is the only considered algorithm which is neither

producing only one PEO nor optimal but practically feasible, since

it reduces the branching complexity.

4.2 Longest Path Heuristic
Figure 6 provides a more complex scenario with 9 base tables and 8

hash tables. The right side (with an arrow) represents the build side

and thus the result of the input pipeline. The left side represents

the probe side and thus the dependency on a specific intermediate.

The corresponding AoN-Tree is shown in Figure 7. Pipeline (1)

originating out of table R and probing into the hash tables built by

(2) and (3) is the root node of the AoN-Tree with (2) and (3) as its

child nodes. For the ease of understanding the algorithms presented

in Subsection 3 and Section 4, the tree also contains "Start" and

"End" nodes, which serve as starting/end points of the algorithms,

and do not incur any memory or execution costs.

The heuristic "Longest Path Heuristic" (LPH) is based on the

observation that deepest first execution of interdependent pipelines

will yield near-optimal PEOs. For example, Figure 6 shows that

while interleaving pipeline executions of different subtrees will

yield the optimal result, the execution of one subtree after another

in order of their length from the starting node to the result node

is "close" to the optimal PEO. The corresponding algorithm works

as follows: for each node within the subtree, we assign a priority

to the node which corresponds to the longest node-path to which

a node belongs. In Figure 7, take the path from (9) to (End): the

path length is 6, since we have 6 nodes along the way. Each node

on this path is assigned with the priority 6. On the path from (8)

to (End), each node should be assigned with 5. In this case, only

(8) will be assigned with priority 5, since the other nodes already

have a longer path they belong to. The PEO-constructing algorithm

will then keep a heap of available nodes for traversal, and always

choose the one with the highest priority.

The priority assignment is shown in Algorithm 4. The number

of hops from one of the starter’s nodes to the end node (that is, how

many nodes have to be passed along a path) shall be equivalent to

the priority by which the path and all its nodes should be executed.

Since a single node may belong to multiple paths, its priority must

1

2

5

34

68

79

EndStart

5 5 5

6 6

5 6

6 6

i .. Priority

6 7

7 7

.. Reassigned
Priority

i

7 7

Figure 8: We assign distinct priorities to the nodes of Figure
7 according to the hop-length from the nodes outgoing from
the start node to the end node for each node along the path.

Algorithm 4Assign priorities to all nodes according to the number

of hops from the start node’s next nodes to the end node. Higher

priorities on the path override lower priorities.

1: function assignPrioritiesForLPH(startNode, endNode)

2: firstNodes = startNode.nextNodes

3: List<Node,int> nodeToPriority

4: for node in firstNodes do
5: length = getPathLength(node, endNode)

6: nodeToPriority.insert(node, length)

7: end for
8: sortByPriority(nodeToPriority)

9: offsetCounter = 0

10: runningPriority = 0

11: for nodeAndPriority in nodeToPriority do
12: if runningPriority == nodeAndPriority.priority then
13: offsetCounter++

14: else
15: runningPriority = nodeAndPriority.priority

16: end if
17: nodeAndPriority.priority += offsetCounter

18: end for
19: for np in nodeToPriority do
20: currentNode = np.node

21: while currentNode != endNode do
22: np.node.priority = np.priority

23: currentNode = currentNode.next

24: end while
25: end for
26: end function

be dominated by the priority of the most "important" path it is

associatedwith. In the algorithmwe facilitate this by first examining

the distance from the starter node’s next nodes to the end nodes

in Lines 3 - 7, and label the starter’s next nodes (and only those)

accordingly. We then sort the nodes from lowest to highest priority

in Line 8 to be able to override node priorities from lowest to

highest without checks during node labeling. To avoid having same

priorities on paths with the same hop-distance from start to end, we

need to introduce a running offset, which will be used to make same-

distance paths have a distinct priority. This avoids "upgrading"

lower priority paths to match priorities of longer distance paths.



Memory Efficient Scheduling of Query Pipeline Execution CIDR ’22, January 9-12, 2022, Santa Cruz Chaminade, CA

For all the labelled nodes (Line 11), we first check if the running

priority matches the next node’s priority, and if so, we increment

the offset counter; if not, we set the current running priority to the

priority of the next node. Line 17 then re-assigns the priority label

for the current node by the running offset. We do not increment

by "1", since this would result in duplicate priorities. We finally set

the priorities of all nodes in Lines 19 till 25 from lowest to highest.

This algorithm still has a non-deterministic element, which is the

sorting in Line 8. Nodes with same length then might or might not

be upgraded effectively.

Algorithm 5 Returns a PEO according to assigned priorities in

descending order.

1: function getPEOForPriorities(startNode, endNode)

2: possibleNodes = start.nextNodes // array of nodes

3: nodeOrder = [startNode]

4: startNode.startTime = 0

5: currentTime = 0

6: while possibleNodes != [endNode] do
7: highestPriority = 0

8: nextNode = null

9: for n in possibleNodes do
10: if n.priority > highestPriority then
11: highestPriority = n.priority

12: nextNode = n

13: end if
14: end for
15: nextNode.startTime = currentTime

16: currentTime += nextNode.lifetime

17: for prevNode in nextNodes.prevs do
18: prevNode.endTime = currentTime

19: end for
20: nodeOrder.append(nextNode)

21: nextNode.next.prevCount -= 1

22: if nextNode.next.prevCount == 0 then
23: possibleNodes.append(nextNode.next)

24: end if
25: possibleNodes.remove(nextNode)

26: end while
27: endNode.endTime = currentTime

28: nodeOrder.append(endNode)

29: MI = 0

30: for n in nodeOrder do
31: MI += (n.endTime - n.startTime) * n.memorySize

32: end for
33: return PEO(nodeOrder, MI)

34: end function

Algorithm 5 lists the mechanism of the priority execution. Given

the start node startNode and the end node endNode of the AoN-
Tree, where each node in the tree has an assigned priority, and
the start and end times are initialized to 0. The first possible nodes

are obtained from the start node in Line 2. Iteratively, the algorithm

chooses the node with the highest available priority in Lines 9 to

14. It then calculates the start and end time stamps of the node,

and annotates the nodes using those in Lines 15 and 18. In Lines

21 to 24 it determines which nodes can be appended to the current

possibleNodes, and adds them in that case. In Lines 29 to 32, the

memory integral MI is calculated using the start and end times, and

returns the obtained order of nodes as the PEO.

5 EXPERIMENTAL EVALUATION
Asmentionedwithin themotivation, the experimental investigation

aims at three aspects of the problem of memory-efficient ordering

of query execution pipelines. First, we confirm the motivation of

the work by showing the predicted memory integral improvements

with respect to different PEOs of individual queries. Second, we

show that there is a correlation between the predicted memory

integral and the measured memory integral in execution. Third,

we aim at confirming the hypothesis that different PEOs (with

potentially different memory profiles) show the same runtime per-

formance, i.e., there is no performance degradation when executing

more memory-efficient PEOs. Fourth, we demonstrate the efficiency

of the algorithms and provide numbers to quantify the minimal

overhead during planning time according to the different types of

algorithms.

5.1 Experimental Setting
We implemented all algorithms within the database engine proto-

type used by previous work [17, 18], which implements pipelined

query execution
1
. The PEO search algorithm implementations are

single-threaded. The entire system is compiled with GCC 7.5.0 us-

ing option -O3. We measured the memory utilized by a pipeline

breaker by multiplying the number of rows by the size of the tuples

contained within the pipeline breaker in bytes. Execution time is

measured by recording the time before and after the execution of a

pipeline. The cardinalities for optimization of the PEO were taken

after execution of the respective query. The query was re-executed

for ten iterations.

For the evaluation we chose to evaluate all queries of the Join

Order Benchmark [10] and removed all non-join query operators,

because we (a) focus on pipeline breakers induced by hash joins and

(b) the prototype only supports joins but not all other necessary

operators. Due to the removal of such operators, we were only

able to execute queries 1-14, 20, 26, 27, 32, 33. As the cost model

for enumeration and prediction we chose 𝐶𝑜𝑢𝑡 as the basic cost

function that we use to compute Equation 2, with ®𝜎 = 0 since we

add no writing costs. We also disregard final breakers as consumers

of memory, since they only add a constant to the memory integral

that does not depend on the PEO.

The experiments were executed on a 2-socket NUMA system us-

ing two 20-core Intel Xeon Platinum 8260 CPUs clocked at 2.40GHz.

The system was equipped with 160GByte of RAM. The operating

system was equipped with a Linux 5.11.11 kernel. We executed each

query at least once before starting with the actual measurements. To

minimize external effects (like caching), we sequentially executed

the set of queries clustered by the individual search algorithms.

5.2 Minimizing Memory Integrals
Let us first examine the predicted improvements comparing the

PEOs for the different algorithms we introduced. For queries 6,

1
Finalist in the 2018 ACM SIGMOD Programming Contest
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Figure 10: Gantt diagrams showing the memory integral ar-
eas over time for query 9 of the JOB. In purple, the pipeline
originating from the base table "aka_name" is indicated.

8, and 9 of the Join Order Benchmark we were able to observe a

difference between the best and worst possible memory integral.

Figure 9 shows the resulting memory integral (MI) improvements,

where the worst PEO serves as the relative baseline. We also intro-

duce two skewed data sets: for the first one, "SF2", we scaled the

"aka_name" table to 2.075 million tuples, where we do not introduce

any join partners to any join, and for "SF4" to 4.15 million tuples

the same accordingly. We did this to demonstrate that for highly

skewed data sets, the improvements might be more substantial. As

Figure 9 shows, we were able to observe improvements of 3.1% for

query 6 with the worst PEO as the baseline, where the non-optimal

algorithms also found the best possible PEO. For the other con-

sidered queries 8 and 9, this was not the case for neither data set.

For the unscaled data set, query 8 yielded an MI improvement of

2.8%, where the optimal PEO was less than 0.001% better than the

PEO found by the heuristic. The results are similar for the other

query-data-set combinations. For query 9 and the SF4 data set, we

were able to observe improvements in MI of 11.1%.
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Figure 11: Each dot in this graph represents a PEO and their
respective predicted as well as their measured memory inte-
gral.

5.3 Correlation between Predicted and
Measured Memory Integral

To examine the correlation between the predicted memory inte-

gral and the measured memory integral, we measured the pipeline

execution times of the individual pipelines for 20 iterations. After

doing so, we took the average of all pipeline execution times and

calculated the memory integrals for each possible PEO for a given

query using the averages. This is plausible, since pipeline execution

times do not depend on the PEO and thus should stay constant.

In Figure 11 the predicted and measured memory integrals are

plotted of all 840 PEOs for query 9 of the Join Order Benchmark

with the "aka_name" column scaled to 4.15 million tuples and the

"company_name" scaled to 240 thousand tuples. Each dot repre-

sents a PEO with the predicted and the measured memory integral.

The graph indicates that there is a linear correlation between the

predicted and the measured memory integral.
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Algo Query 06 08 09 20 26 33

ES 63µs 357µs 1881µs 342µs 11ms 302ms

LPH 49µs 71µs 81µs 152µs 194µs 348µs

TSS 63µs 366µs 1560µs 217µs 449µs 148ms

BPS 59µs 196µs 679µs 245µs 5065µs 67ms

Figure 12: Optimization times for the indicated queries
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Figure 13: The execution times of different queries includ-
ing optimization time is shown with different pipeline exe-
cution orders provided by the indicated algorithms. The av-
erage execution time of any run for one query is taken as a
baseline.

5.4 Performance Stability
For observing the performance stability, we evaluated the optimiza-

tion times of query 6, 8, 9, 20, 26, and 33 for all search algorithms.

The table in Figure 12 shows the respective optimization times. Ex-

cept for query 6 and 8, the exhaustive algorithm incurs the largest

optimization times, and for query 33 exhibiting 302ms of optimiza-

tion time due to 60480 total enumerations of PEOs, while the actual

execution of the query is only 11.057s. This is an outlier in terms of

optimization time relative to overall execution costs, while also not

providing significant memory integral improvements. TSS as our

only non-optimal non-heuristic only outperforms BPS for queries

20 and 26, which might be caused by the early skipping of nodes

with small memory costs. In the other cases, BPS was also faster,

and for query 33 it outperformed TSS by 81ms. Except for query

8 and 9 the LPH found close-to or optimal PEOs, while always

outperforming the other algorithms in terms of runtime, and for

query 33 only incurring optimization times of just 348µs.

5.5 Overhead for identifying PEOs
We now demonstrate the absence of an impact of the optimization

on query execution in terms of a) negligible optimization costs

and b) absence of impact of the executed PEO on overall query

execution times. The execution times for the strategies provided

by each algorithm are plotted in Figure 13. With query 33 being an

extreme outlier, the optimization had an impact of less than 0.006%

of the overall execution time in the worst case. Furthermore, the

data empirically shows that the choice of ordering of pipelines has

no impact on the execution speed, being masked by other effects.

6 RELATEDWORK
While pipeline-based query execution reflects the state-of-the-art

in modern database engines, the impact of orderings with respect

to memory consumption for intermediates holding the materialized

pipeline breakers is not yet investigated in depth. Nevertheless, this

research work is tapping into the rich bouquet of work in the con-

text of query optimization. For example, [15] is mainly concerned

with the question of “how can we organize query processing such

that the data can be kept in CPU registers as long as possible?”

The order of pipelines is not of interest. Scheduling of individual

work units (e.g., Morsels [9]) in the context of multi-core systems

is also discussed, e.g., [11, 16]; compared to execution pipelines,

morsels are significantly more fine granular and thus the optimiza-

tion aims to exploit existing hardware capabilities but not to reduce

the overall memory consumption. Finally, the work also touches

upon query optimization beyond performance. Related in the wider

sense is the research field for robust query optimization [13, 17, 20],

which again may subsume our goal of optimizing pipeline execu-

tion orders without compromising performance as one of multiple

facets. Performance simulations and query optimization or query

runtime estimation [12, 19] is also related but may be considered

orthogonal, since our reordering approach does not influence the

overall query execution time. From an algorithmic perspective, the

problem of ordering pipelines with dependencies is also addressed

in the context of operations research; [5, 6] provides an in-depth

overview of a magnitude of optimization algorithms, which also

served as a blueprint to devise search algorithms outlines in Sub-

section 3.3 and Section 4. The authors of Chain [3] take a similar

approach to our work by examining memory consumption for in-

coming streams of tuples and keeping it below the available main

memory bounds of the system. In their model, they also handle

operators via pipelines, but those pipelines do not handle tuples

in a tuple-at-a-time fashion, but instead write processed tuples

into intermediates after each operator. Thus, they identify different

algorithmic strategies to process incoming streams of tuples in a

memory efficient way across several operator stages, and propose

a new algorithm, called Chain, which is optimal according to the

goal of always keeping the memory consumption as low as possible

at a given time.

7 CONCLUSION
In this paper, we are motivating the case of scheduling the execution

of query pipelines in order to optimize for memory consumption.

Using an illustrative example, we showcased the potential of a

"good" ordering of execution pipelines in query execution graphs.

We discussed different optimization goals, provided a framework

to formally describe the search space, and devised four different

algorithms to identify PEOs for a given query. Our proposed heuris-

tics incorporated into the exhaustive algorithm provide early non-

candidate pruning, thus presenting themselves as promising algo-

rithmic approaches. Within the experimental section, we provided

insights into our findings based on an implementation of the al-

gorithms in the context of a pipelined execution engine using the

Join-Order-Benchmark. We reported detailed facts on a sample of

queries with respect to potential savings of the memory integral,

showed the stability of the performance even for memory-efficient
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PEOs, and quantified the overhead of the search algorithms (which

proved to be negligible even for large and complex queries).

Optimizing for memory consumption is not only beneficial for

increasing the overall memory utilization in cloud settings, it is

also helpful to avoid/delay out-of-memory situations and increase

the concurrency of existing systems. Since we consider it extremely

relevant to give more weight to non-performance aspects in query

optimization and query execution, we hope to have contributed to

this line of research and opened up a research playground for many

other related aspects on this topic.

ACKNOWLEDGEMENT
This work was partly funded by the German Research Foundation

(DFG) via a Reinhart Koselleck-Project (LE-1416/28-1).

REFERENCES
[1] [n.d.]. Cost/Performance in Modern Data Stores: How Data Caching Systems

Succeed. https://www.microsoft.com/en-us/research/uploads/prod/2018/

07/CostPerformance-in-Modern-Data-Stores-How-Data-Cashing-Systems-

Succeed-slides.pdf. Accessed: 2021-12-14.

[2] [n.d.]. Public cloud services annual growth rate worldwide from 2020 to 2022, by

segment. https://www.statista.com/statistics/258718/market-growth-forecast-

of-public-it-cloud-services-worldwide/. Accessed: 2021-12-14.

[3] Brian Babcock, Shivnath Babu, Rajeev Motwani, and Mayur Datar. [n.d.]. Chain:

Operator Scheduling for Memory Minimization in Data Stream Systems. In

Proceedings of the 2003 ACM SIGMOD International Conference on Management
of Data (San Diego, California). ACM, New York, NY, USA, 253–264. https:

//doi.org/10.1145/872757.872789

[4] Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-

Pipelining Query Execution. In CIDR.
[5] Peter Brucker. 2007. Scheduling algorithms (5th ed.). Springer Publishing Com-

pany, Incorporated.

[6] Peter Brucker and Sigrid Knust. 2011. Complex Scheduling (2nd ed.). Springer

Publishing Company, Incorporated.

[7] Sophie Cluet and Guido Moerkotte. 1995. On the Complexity of Generating

Optimal Left-Deep Processing Trees with Cross Products. 54–67.

[8] G. Graefe. 1994. Volcano — An Extensible and Parallel Query Evaluation System.

IEEE Trans. on Knowl. and Data Eng. 6, 1 (feb 1994), 120–135. https://doi.org/10.

1109/69.273032

[9] Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-

driven parallelism: a NUMA-aware query evaluation framework for the many-

core age. In International Conference on Management of Data, SIGMOD 2014,
Snowbird, UT, USA, June 22-27, 2014, Curtis E. Dyreson, Feifei Li, and M. Tamer

Özsu (Eds.). ACM, 743–754. https://doi.org/10.1145/2588555.2610507

[10] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz,

Alfons Kemper, and Thomas Neumann. 2018. Query optimization through the

looking glass, and what we found running the Join Order Benchmark. VLDB J.
27, 5 (2018), 643–668. https://doi.org/10.1007/s00778-017-0480-7

[11] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and

Christos Kozyrakis. 2015. Heracles: improving resource efficiency at scale. In

Proceedings of the 42nd Annual International Symposium on Computer Architecture,
Portland, OR, USA, June 13-17, 2015, Deborah T. Marr and David H. Albonesi

(Eds.). ACM, 450–462. https://doi.org/10.1145/2749469.2749475

[12] Ryan C. Marcus and Olga Papaemmanouil. 2019. Plan-Structured Deep Neural

Network Models for Query Performance Prediction. Proc. VLDB Endow. 12, 11
(2019), 1733–1746. https://doi.org/10.14778/3342263.3342646

[13] Volker Markl, Vijayshankar Raman, David E. Simmen, Guy M. Lohman, and

Hamid Pirahesh. 2004. Robust Query Processing through Progressive Op-

timization. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, Paris, France, June 13-18, 2004. ACM, 659–670. https:

//doi.org/10.1145/1007568.1007642

[14] Norman May, Alexander Böhm, and Wolfgang Lehner. 2017. SAP HANA – The

Evolution of an In-Memory DBMS from Pure OLAP Processing Towards Mixed

Workloads. In Datenbanksysteme für Business, Technologie und Web (BTW 2017),
Bernhard Mitschang, Daniela Nicklas, Frank Leymann, Harald Schöning, Melanie

Herschel, Jens Teubner, Theo Härder, Oliver Kopp, and Matthias Wieland (Eds.).

Gesellschaft für Informatik, Bonn, 545–546.

[15] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern

Hardware. Proc. VLDB Endow. 4, 9 (2011), 539–550. https://doi.org/10.14778/

2002938.2002940

[16] Aunn Raza, Periklis Chrysogelos, Angelos-Christos G. Anadiotis, and Anasta-

sia Ailamaki. [n.d.]. Adaptive HTAP through Elastic Resource Scheduling. In

Proceedings of the 2020 International Conference on Management of Data, SIG-
MOD Conference 2020, online conference [Portland, OR, USA]. ACM, 2043–2054.

https://doi.org/10.1145/3318464.3389783

[17] Florian Wolf, Michael Brendle, Norman May, Paul R. Willems, Kai-Uwe Sat-

tler, and Michael Grossniklaus. 2018. Robustness Metrics for Relational Query

Execution Plans. Proc. VLDB Endow. 11, 11 (July 2018), 1360–1372. https:

//doi.org/10.14778/3236187.3236191

[18] Florian Wolf, Norman May, Paul R. Willems, and Kai-Uwe Sattler. 2018. On

the Calculation of Optimality Ranges for Relational Query Execution Plans. In

Proceedings of the 2018 International Conference on Management of Data (Houston,
TX, USA) (SIGMOD ’18). Association for Computing Machinery, New York, NY,

USA, 663–675. https://doi.org/10.1145/3183713.3183742

[19] Wentao Wu, Yun Chi, Hakan Hacigümüs, and Jeffrey F. Naughton. 2013. Towards

Predicting Query Execution Time for Concurrent and Dynamic Database Work-

loads. Proc. VLDB Endow. 6, 10 (2013), 925–936. https://doi.org/10.14778/2536206.

2536219

[20] Shaoyi Yin, Abdelkader Hameurlain, and Franck Morvan. 2015. Robust Query

Optimization Methods With Respect to Estimation Errors: A Survey. SIGMOD
Rec. 44, 3 (2015), 25–36. https://doi.org/10.1145/2854006.2854012

https://www.microsoft.com/en-us/research/uploads/prod/2018/07/CostPerformance-in-Modern-Data-Stores-How-Data-Cashing-Systems-Succeed-slides.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2018/07/CostPerformance-in-Modern-Data-Stores-How-Data-Cashing-Systems-Succeed-slides.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2018/07/CostPerformance-in-Modern-Data-Stores-How-Data-Cashing-Systems-Succeed-slides.pdf
https://www.statista.com/statistics/258718/market-growth-forecast-of-public-it-cloud-services-worldwide/
https://www.statista.com/statistics/258718/market-growth-forecast-of-public-it-cloud-services-worldwide/
https://doi.org/10.1145/872757.872789
https://doi.org/10.1145/872757.872789
https://doi.org/10.1109/69.273032
https://doi.org/10.1109/69.273032
https://doi.org/10.1145/2588555.2610507
https://doi.org/10.1007/s00778-017-0480-7
https://doi.org/10.1145/2749469.2749475
https://doi.org/10.14778/3342263.3342646
https://doi.org/10.1145/1007568.1007642
https://doi.org/10.1145/1007568.1007642
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.1145/3318464.3389783
https://doi.org/10.14778/3236187.3236191
https://doi.org/10.14778/3236187.3236191
https://doi.org/10.1145/3183713.3183742
https://doi.org/10.14778/2536206.2536219
https://doi.org/10.14778/2536206.2536219
https://doi.org/10.1145/2854006.2854012

	Abstract
	1 Introduction
	2 Pipeline Execution Order
	3 Optimal Scheduling Algorithms
	3.1 Optimization Goals
	3.2 Cost Model
	3.3 PEO Search Space
	3.4 Exhaustive Search Algorithm
	3.5 Branch Pruning Search Algorithm

	4 Heuristic Scheduling Algorithms
	4.1 Theta Skip Search Algorithm
	4.2 Longest Path Heuristic

	5 Experimental Evaluation
	5.1 Experimental Setting
	5.2 Minimizing Memory Integrals
	5.3 Correlation between Predicted and Measured Memory Integral
	5.4 Performance Stability
	5.5 Overhead for identifying PEOs

	6 Related Work
	7 Conclusion
	References

