Append is Near: Log-based Data Management on ZNS SSDs

Devashish R. Purandare
devashish@ucsc.edu
University of California, Santa Cruz
Santa Cruz, CA, USA

Heiner Litz
hlitz@ucsc.edu
University of California, Santa Cruz
Santa Cruz, CA, USA

ABSTRACT

Log-based data management systems use storage as if it were an
append-only medium, transforming random writes into sequential
writes, which delivers significant benefits when logs are persisted
on hard disks. Although solid-state drives (SSDs) offer improved
random write capabilities, sequential writes continue to be advan-
tageous due to locality and space efficiency. However, the inherent
properties of flash-based SSDs induce major disadvantages when
used with a random write block interface, causing write amplifica-
tion, uneven wear, log stacking, and garbage collection overheads.
To eliminate these disadvantages, Zoned Namespace (ZNS) SSDs
have recently been introduced. They offer increased capacity, re-
duced write amplification, and open up data placement and garbage
collection to the host through zones, which have sequential-write
semantics and must be explicitly reset.

We explain how the new ZNS Zone Append primitive, which sup-
ports pushing fine-grained data placement onto the device, along
with our proposal for “Group Append”, which enables sub-block
sized appends, could benefit log-structured data management sys-
tems. We explore advantages of ZNS SSDs with Zone Append,
Group Append, and computational storage in four log-based data
management areas: (i) log-based file systems, (ii) LSM trees such
as RocksDB, (iii) database systems, and (iv) event logs/shared logs.
Furthermore, we propose research directions for each of these data
management systems using ZNS SSDs.

1 INTRODUCTION

Data management systems have used the same block storage in-
terface for decades, while assuming that the underlying storage
devices have similar characteristics. Recently, both interfaces and
storage device characteristics have changed, becoming more capa-
ble and computationally intelligent by leveraging smart controllers,
accelerators, and disaggregation[38, 64]. As shown by Lerner [42],
there exists a co-design continuum across applications, storage
systems, programmable devices, and workloads. In particular, ZNS
SSDs offer a fertile ground for innovation, unlocking the potential
of SSDs, and offering advantages over hard disks, and traditional
SSDs.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2022. 12th Annual Conference on
Innovative Data Systems Research (CIDR ’22). January 9-12, 2022, Chaminade, USA..

Peter Wilcox
pcwilcox@ucsc.edu
University of California, Santa Cruz
Santa Cruz, CA, USA

Shel Finkelstein
shel@ucsc.edu
University of California, Santa Cruz
Santa Cruz, CA, USA

The conventional block interface maps a range of Logical Block
Addresses (LBAs) onto a fixed address space and allows random
reads and writes. ZNS SSDs [62] partition the storage device into a
set of equally-sized zones supporting append-only writes. While
this represents a limitation over traditional block-based SSDs, it
offers greater control to the host over internal SSD operations such
as data placement and erase. For a ZNS SSD, reads are the same as
for a conventional SSDs; both sequential and random reads are sup-
ported. Data becomes immutable whenever appended to the tail of a
zone, and entire zones can be made immutable either by an explicit
finish command or automatically when they fill up. ZNS requires
the host to perform resets at zone granularity, eliminating on-device
garbage collection and device-side media over-provisioning.

The general advantages of ZNS SSDs have been described at
length in literature [18, 57]. We focus on advantages that are of
particular relevance for systems architecture:

e Data Placement: ZNS SSDs provide greater control over
data placement. For example, the device can align the media
boundaries to zones and eliminate the mismatch between
write size and block size of the random-write block interface
when using flash-based SSDs.

e Data Immutability: Immutability of zones greatly simpli-
fies [14, 33, 43, 44] operations such as version management,
replication, and reorganization.

e Hardware Alignment: ZNS SSDs allow the host to align
data with fixed hardware boundaries. This approach elim-
inates write amplification caused by performing garbage
collection at multiple levels in the storage stack [65].

¢ Optimizing Log Operations: Host applications can use the
Zone Append primitive to simplify the bookkeeping typically
needed to support log-structured [54] applications.

With ZNS SSDs, we have an opportunity to align log-based sys-
tems with the log-based interface exposed by the hardware. Elim-
ination of random writes and host-controlled garbage collection
create new challenges and opportunities for data and metadata man-
agement. The ZNS append-only interface may not be appropriate
for all aspects of data management. Additionally, ZNS SSDs have a
resource limit on the number of zones that can be “active” (available
for writes or appends), and managing these resource constraints
is an additional responsibility of the host. We will discuss ways to
address these challenges later in the paper.

Writing data to a log may be gated by the cost of determining
where the log ends (the log tail), since new appends must be written
to the tail of the log. Implementations may have a single writer, or

a single source of truth about the current tail, or a single means
of assigning tail locations for append as in Hyder [16]. Even when
that singleton is not a bottleneck (again as in Hyder), a true append
operation is simpler and potentially more efficient for some applica-
tions. Group Commit [32] improves throughput both by reducing
the number of log forces (possibly increasing latency slightly) and
decreasing wasted space in log blocks (due to partially-filled log
blocks). ZNS introduces a new primitive, Zone Append, which im-
plements these capabilities. We propose extending this capability
further in §2.

Contributions and Paper Overview: Our paper explores how
data management systems can advantageously exploit ZNS opera-
tions, and proposes evolutionary and revolutionary approaches for
such exploitation. Through §4-7 we talk about how commonly used
log-based data management systems, including file systems, LSM
trees, databases, and event/shared logs can evolve to benefit from
append-only zoned storage. We conclude with some recommenda-
tions for general research directions and a conclusion that we agree
with [42] that data management systems need to change signifi-
cantly to leverage ZNS Storage and that collaborative research and
experimentation are necessary to determine successful directions
for change. We motivate the need for Group Append, a primitive
similar to Zone Append which can work at byte-granularity.

2 ZONE APPEND AND GROUP APPEND

2.1 Zone Append

The ZNS Zone Append command enables multiple loggers to write
to the tail of the log without knowing the exact location of the
tail. The host indicates which zone to append to, offloading the
placement and the ordering to the controller, which responds with
the assigned LBA once the write has been completed. Zone Append
delegates finer-grained data placement to the controller, and helps
reduce contention on the write pointer. Zone Append is an optional
feature in the ZNS specification, but our discussion focuses on
advantages of this approach. There is an alternative in Zone Random
Write Area (ZRWA) which we briefly discuss in §8.6.

2.2 Group Append

We propose a finer-grained alternative to Zone Append called
“Group Append” which allows appends of data that is smaller (or
possibly larger) than a block, offloading data buffering to the con-
troller. In practice, an append-bytes library call can be used to write
to an append-only buffer that’s on the SSD controller where “log
zones” are located. When the append-only buffer outgrows the
block size, the controller can append it to the tail of the log. Con-
ventional writes could also be used, but would introduce the same
challenges that we’ve previously described for a single writer, since
(unlike for Zone Append) the LBA is an input to the write com-
mand. Alternatively, the tail of the log could be maintained in the
controller, as proposed in Hyder [52]. Although approaches similar
to Group Append can be implemented on conventional SSDs, they
would not achieve all the benefits that ZNS SSDs provide, as blocks
will be interleaved across the SSD log structure than discrete zones.

Data loss can be avoided by ensuring the persistence of the
controller memory buffer. The append-bytes library call we propose

Devashish R. Purandare, Peter Wilcox, Heiner Litz, and Shel Finkelstein

returns the starting LBA and byte offset where the host data will
be appended within the specified zone. The controller receives
and responds to a series of append-bytes requests; it can compute
and return the correct LBA and byte offset for each request in the
series without waiting for the buffer to fill up. When blocks are full,
the controller appends them to the tail of the current log zone. An
append that fails will be retried until it either is successful or results
in a write error. Group Append avoids space amplification due to
partially full blocks without increasing write latency because the
controller is able to respond quickly to each append-bytes request.

3 RELATED WORK

Stavrinos et al. [57] pointed out the possibilities with ZNS SSDs
and their potential to replace block-based SSDs. We present spe-
cific design decisions required across log-based systems to achieve
this goal. Bjerling et al. [18] demonstrated the benefits of ZNS on
log-based filesystems and RocksDB. We explore further changes
required to the internal operations within these systems, like com-
paction and checkpoints, to utilize ZNS to its full potential. Lerner
et al. [42] explore SSD and software co-design.

Our recommendations, such as Group Append, present how such
co-design can benefit both the SSD and the data management sys-
tems. Maheshwari [47] proposes enabling variable-sized sub-block
writes called “rocks”, which would allow ZNS SSDs to perform
writes as small as 16B in a special namespace. While Group Ap-
pend would work with this approach, it does not need a special
namespace and could be achieved with a single command on top
of the current NVMe framework. Group Append would allow an
application to issue sub-block appends to the tail, and the controller
will group them into a block. Since the zone with these appends is
dedicated to a specific log, the base LBA or zone number will be
sufficient for a lookup.

Key-Value SSDs (KV-SSDs) [55, 63] adapt the internal layout
of SSDs to an LSM Tree interface, allowing key-value operations
from the host, and offloading operations such as compaction to
the device. While these special-purpose devices avoid the log-on-
log issue and offer better throughput and lower latency, they are
use-case specific. Modern data stores like RocksDB involve several
operations beyond K-V operations such as write-ahead logging,
replication, indexes, and metadata management, which do not use
a Key-Value interface and hence are not supported by a KV-SSD.

Open-Channel SSDs (OC-SSDs) [30, 45, 51] are precursors to
ZNS SSDs, which provide host-side FTLs greater control over flash
internals. On OC-SSDs the host is responsible for low-level op-
erations such as maintaining a map of blocks, wear-leveling and
buffering. Systems such as LightNVM [19] perform operations in
a sequential-write only “Chunk” interface which is similar to the
zone interface on ZNS SSDs. ZNS offers a more generalized and
less complex approach to this abstraction, handling SSD internal
operations like wear-leveling, block metadata and buffering on the
device, along with finer granularity placement within a zone. The
host gets access to the zone abstraction, as well as the ability to do
garbage collection without maintaining a host-side FTL.

Multi-Stream SSDs [36, 37] (MS-SSDs) offer abstractions for data
to be split into multiple streams, based on the lifetime of the data,

Append is Near: Log-based Data Management on ZNS SSDs

DT
SSDIYPe || Taditional SSD Open Channel SSD | ZNS SSD
Work by
Data Placement
Garbage Collection | Data Placement (Coarse)
Host Block Interface Wear Leveling Garbage Collection
FTL Operations
Data Placement. Data Placement (Fine)
Garbage Collection .
. Wear Leveling
. Wear Leveling Buffers .
Device . . FTL Operations
FTL Operations Error Correction
Buffers
Buffers .
. Error Correction
Error Correction

Table 1: Comparison of different types of SSDs with the traditional SSD interface.

which the device stores in separate physical blocks. Our recommen-
dations for data management with multiple zones is similar to this
approach, with certain important distinctions. MS-SSDs allow ran-
dom writes within streams, and commit streams at the block level,
as opposed to zones that are sequential-write only and a granularity
of hundreds of megabytes. In MS-SSDs the controller is responsible
for garbage collection which occurs at erase block level, while in
ZNS SSDs GC is the responsibility of the host and performed at
the zone level, which can be hundreds of megabytes as opposed to
erase blocks which are a few megabytes in size.

These devices take different approaches to reach similar goals,
where Open Channel SSDs push the FTL and block management to
the host, MS-SSDs and KV-SSDs allow the device greater control
over data layout while adding constraints on the application or the
interface to provide information about the stored data. As seen in
table 1, ZNS SSDs offer a compromise between traditional SSDs,
and Open-Channel SSDs. The host gets greater control over data
placement, data organization, and garbage collection, while the
controller performs finer-grained placement along with low-level
device operations such as wear leveling, error correction, and bad
block management.

Many data management systems and papers have addressed
design and implementation using SSDs. Some of that work directly
relates to the approaches proposed in this paper. But papers written
before ZNS Storage emerged did not (and could not) consider the
benefits of ZNS storage. Hyder [15, 16, 52] enables efficient database
server scale-out, with arbitration required only for log-append to a
network-attached log. Zone Append and Group Append provide
similar capabilities with additional advantages like better space
utilization. Do [26] moved log-structuring and garbage collection
from an open-channel raw flash SSD to the host. They also suggest
the possibility of using NVRAM or DRAM with power backup to
improve latency. Chakraborttii [21] utilizes multiple open blocks as
provided by ZNS and death-time prediction to reduce GC overheads.
SaS: SSD as SQL Database System [50] proposes moving all database
functionality to a computational SSD, experimenting with an initial
SQLite prototype built on OpenSSD. However, SaS does not utilize
ZNS or Group Append; it suggests using of NVM to improve logging
performance.

4 LOG-BASED FILE SYSTEMS

In this section, we analyze the traditional approaches used by log-
based file systems (LFS) and describe why they are a natural fit for
ZNS SSDs.! An LFS stores data using data segments in the main
region of persistent storage, while associated metadata (used to
locate data blocks within each segment) is persisted in reserved
checkpoint regions (CRs).

4.1 Evolution to ZNS SSDs

4.1.1 Hardware Alignment: Log-based file systems are a nat-
ural fit for ZNS SSDs because their characteristics align closely
with the platform’s constraints. The LFS can designate each zone as
either checkpoint region or main region. Data segments are written
atomically, so it is simple to align their size with zone boundaries,
while checkpoints are updated using an append-only log. By align-
ing the size of each region with zone boundaries the LFS can activate
a zone only when writing a new data segment to the drive or when
appending new checkpoint data. This allows the LFS to minimize
the number of active zones required for file system overhead.

4.1.2 Segment Construction with Group Append: A conven-
tional LFS assembles the data segment on the host and then writes
it to the device. We propose instead assembling data segments at
the controller. The host would use Group Append to write data,
enabling writes smaller than one block. The controller would main-
tain a write buffer for each open zone, and incoming data would
be appended to the tail. Once the controller has assembled a data
segment, it can be written to the zone. The write request can be
returned immediately to the host without waiting for the segment
to be written to the zone because the controller can precompute
the eventual assigned LBA. Data loss can be avoided by ensuring
the persistence of the buffer (using NVRAM for example). This
approach allows the host to offload data segment construction to a
storage device capable of performing this task.

4.2 Research Directions

Log-based file systems are a great fit for ZNS SSDs, and we see the
main avenues for research in the following areas:

!For brevity, we focus our discussion on POSIX-based file systems. We describe general
characteristics of an LFS; for specific implementations, see [18, 41, 53].

e Data Layout: The host can co-locate data with similar life-
time into zones, reducing the overall host-side garbage col-
lection overhead. However, if the common data management
unit used by the host application does not align with the size
of the zone on the device, this may introduce additional I/Os.
Recent work proposes informing the host about underlying
storage architecture to better align data with architectural
boundaries [6]. Can we incorporate this approach, using
data segments of smaller than zone size and leveraging the
host context to better facilitate data placement and thereby
reduce the overall garbage collection?

e Disaggregated Metadata: Storing file system metadata on
ZNS SSDs introduce new challenges and complexities. An
alternative approach is to utilize disaggregated storage and
place metadata in conventional namespaces that support ran-
dom writes. Do the performance, reliability, and complexity
tradeoffs render this approach worthwhile?

5 LSM TREES AND ROCKSDB

Log-Structured Merge trees [49] (LSM trees) store data in key-value
pairs in a sequential log-based structure called Sorted String Tables
(SSTables). Looking through the lens of the RUM Conjecture [9],
LSM trees are optimized to minimize update and memory overhead,
at the cost of an increased read overhead. The sequential and im-
mutable nature of SSTables ensures similar lifetimes for adjacent
data. Further, the ability to easily partition an LSM tree in fixed-size
chunks render them a natural fit for ZNS. Variants of LSM trees are
present in several widely adopted data management systems such
as Cassandra [40], RocksDB [2], and BigTable [22]. In this section,
we will focus on the RocksDB implementation of an LSM tree.

RocksDB:. Writes to RocksDB are written to an in-memory struc-
ture called a Memtable and are simultaneously logged to a Write-
Ahead Log (WAL) on persistent storage. Depending on the config-
uration, writes may also be synced to an SSTable at Level 0 (Lo).
When these Memtables fill up, RocksDB flushes them to persis-
tent media. RocksDB maintains SSTables on persistent media in
the form of levels labeled Ly, L1, ... As SSTables at each level fill
up, RocksDB uses a process called Compaction to merge multiple
SSTables and push them to the next level. RocksDB depends on
a storage backend like a filesystem to manage SSTable files, WAL
files, and other metadata.

Systems such as ZenFS [18] and ZoneFS [28] are part of the
ongoing effort to adapt the RocksDB filesystem backend to use
ZNS SSDs. However, adapting the architecture of RocksDB to use
ZNS SSDs will allow us to improve garbage collection, reduce write
amplification caused by logging, and optimize compaction to reduce
data movement and compute.

5.1 Evolution to ZNS SSDs

5.1.1 Updating SSTable layout: SSTables and zones are a natu-
ral fit, as both guarantee sequential write interface, immutability
when filled up, and a similar lifetime for data within. However,
SSTable sizes can vary across levels, and zone sizes can vary across
devices. Aligning SSTables with zone boundaries is essential, as

Devashish R. Purandare, Peter Wilcox, Heiner Litz, and Shel Finkelstein

we avoid the write amplification caused by the Log-on-Log prob-
lem [65]. Mapping zones to SSTables can be challenging in practice
when their sizes differ.

(1) Mapping multiple zones to a single SSTable could allow the
host to distribute these SSTables across devices, and the
fixed-sized immutable chunks of data could simplify replica-
tion. However, distributing appends across multiple zones
becomes a challenge as the ordering of appends is left to the
controller.

(2) Mapping multiple SSTables to a single zone could increase
data movement if the SSTables are compacted at different
times. To ensure space can be freed up with minimal data
movement, the host must ensure that SSTables stored in
a zone have similar data lifetimes and will be compacted
together.

Inter-Zone Dependencies: If the data structures, like SSTables
are larger than the zone size, they will be distributed across multiple
zones. This can cause dependencies across zones, for instance, in the
RocksDB SSTable layout, as shown in Fig. 1, the last zone contains
the metadata, accessing data on other zones may depend on this
metadata. This will increase access latency as many operations will
be reading from the same zone. This could be addressed by picking
a different compaction scheme, or by storing metadata in a known
location, possibly on a different device.

RocksDB SSTable Spanning Multiple Zones

Data Data Data Filter | Index (,?}Qg
Block 1| Block 2 | Block 3 Block | Block | pjooice
Zone 1 Zone 2 Zone 3

Figure 1: Simply distributing a large SSTable across zones
will cause inter-zone dependencies, as access to data as well
as metadata will require reading from the last zone of the
series where all the metadata and filters are located.

The ability to co-locate data with the same lifetime in a con-
tiguous zone is a powerful tool that conventional SSDs cannot
provide. RocksDB can provide Write Hints (RWH) [10] about the
lifetime of data being written. SSTables with similar lifetimes could
be mapped to the same zone, which would minimize data move-
ment upon data compaction, and is implemented within ZenFS.
However, while these hints are supported, techniques to predict
data lifetime and use that effectively are a research topic. Column
families should be stored in separate zones, ensuring they benefit
from the multi-tenancy features of zones.

5.1.2 Updates to Write-Ahead Logging: Write-Ahead Logging
in RocksDB can cause write amplification greater than the write

Append is Near: Log-based Data Management on ZNS SSDs

amplification induced by the LSM tree [1]. Every write to the log
causes two writes, one for writing the data and one for updating
file metadata. With the minimum write granularity being 4KB, this
results in 8KB of writes for every incoming log entry. RocksDB has
two mechanisms to address this. It allows group commits up to
1MB when different threads are writing to the same DB, delaying
fsync, and by recycling log files to reduce metadata updates.

Using the Append primitives, we can offload these group com-
mits to the SSD.

(1) With Zone Append, we can persist changes to the log more
efficiently, issuing a Zone Append for every 4KB? of log
records, significantly reducing the current 1MB granularity
of group commit.

(2) With our proposed Group Append, we can issue a byte-
append for every WAL entry. The controller can group these
into the device’s block size, greatly reducing space and write
amplification.

We plan to explore the impact of these approaches on the space
and write amplification caused by WAL. Since logs can be stored
in designated zones, and these append primitives can issue writes
without knowing the tail, we can eliminate the need for the 4KB
update to the file metadata and use device blocks more efficiently
for data. We plan to explore the overhead of this mechanism in
terms of excess commands on the NVMe queues and additional
responsibilities for the controller.

5.1.3 Updating Compaction: Compaction constrains the shape
of the LSM tree, merging SSTables with other SSTables in the same
level and pushing this data to the next level (tiered compaction) or
merging SSTables from level L, into larger SSTables at level L1
(leveled compaction). Compaction ensures that all data in a single
SSTables has the same lifetime.

(1) For tiered compaction, garbage collection is greatly simpli-
fied by zoned storage; once compacted data has migrated to
the next level, the original zones can be reclaimed for use by
new SSTabless.

(2) For leveled compaction, the merged zone at L, can be reset,
however the revised zones at L,,+1 have to be written anew,
with their old versions reset, since they cannot be updated in-
place. Using leveled compaction could cause massive write
amplification on ZNS SSDs as the larger SSTable will have
to be completely rewritten after a merge. We plan to explore
the layout strategies of larger SSTables and techniques to
partition them on a zoned SSD to avoid rewriting the entire
SSTable after a merge.

To reduce host overhead, the NVMe Copy command [61] offers
the ability for a host to offload copy operations onto the SSD. We
can use the Copy command on a ZNS SSD to copy sections from
multiple zones into a single zone, and with the right design changes,
we could reduce data movement to the host when merging multiple
SSTables. The keys can be sorted and remapped by the host while
the data is appended from multiple SSTables (on multiple zones)
to a new zone. Furthermore, we can completely offload the merge
process of compaction to a dedicated compute unit on the SSD.
As RocksDB priorities change towards reducing computation [27]

ZBlock size can currently be as small as 512 bytes

the ability to offload merge would reduce the amount of host CPU
usage while improving performance.

5.14 Handling Metadata and Bloom Filters: There are many
kinds of metadata that RocksDB deals with; there is filesystem meta-
data of the backing store, metadata in the form of the manifest file
for RocksDB, file metadata about WAL files and SSTable files, and
finally, the metadata within these files. Updates to metadata gener-
ally involve frequent small random writes, which are unsuitable for
ZNS SSDs. There are many ways we could store the metadata; (i)
an SSD could expose both conventional random-write namespaces
and zoned namespaces, where metadata could be routed to the
conventional namespace. (ii) Metadata updates could be converted
into appends to dedicated metadata zones with Group Appends
to improve performance and limit write amplification. In the case
of heterogeneous storage, a non-volatile storage-class memory for
metadata would be a convenient solution.

In RocksDB, every SSTable file contains a Bloom filter (or in some
cases a Ribbon Filter [24]). Combining multiple Bloom filters is not
feasible, so Bloom filter recomputation is required after a merge. If
the Bloom filter can be replaced with a data structure that allows
easy append-friendly merges, the recomputation of a new Bloom
filter could be avoided. Since merges of disjoint SSTables could be
accomplished via discriminated appends, offloading compaction to
computational storage seems feasible.

5.2 Research Directions

LSM trees are well suited for ZNS SSDs, and we see great potential
for research in the following areas:

e Layout of the LSM Tree: Alignment of LSM trees to zones
introduces challenges when their sizes are not the same. We
plan to explore layout strategies and data grouping to reduce
data movement on operations such as compaction.

o Data Lifetime: While RocksDB supports lifetime hints, gen-
erating these hints for a workload is an open research area.
Knowing the lifetime of a SSTable would allow us to map
data with similar lifetimes to the same zone, reducing write
amplification.

e Compaction: Adapting leveled, tiered, and other compaction
techniques to the ZNS interface is essential to use Zone Reset
efficiently. We plan to explore the best strategies for com-
paction.

¢ Indexing, Filters, and Metadata: Since updates to these
structures often involve frequent small random writes, man-
aging them on append-only storage is a challenge. We plan
to explore how the byte-append capabilities introduced by
Group Append could be adopted to work with metadata.

e Data Structures: While adapting LSM Tree structures for
ZNS is useful, updating data structures in LSM, like SSTables
to be more size-sorted, or lifetime-sorted would provide ben-
efits in terms of reducing write amplification, and reducing
GC overhead when used with ZNS SSDs. Such ‘zone-aware’
SSTables could address inter-zone dependencies and replace
the traditional SSTables on ZNS SSDs.

6 DATABASES

Many database management systems achieve ACID properties us-
ing a well-known combination of in-memory data, persisted data,
and a persisted database log [32]. Group Commit is used to com-
bine ("boxcar") logging at the logger so that the number of forces
to the persistent log is reduced, trading (sometimes slower) commit
latency for both improved throughput and fuller log blocks. Trans-
action Commit ordering dependencies (a partial ordering) must
be reflected by Commit record ordering in the log (often a total
ordering). There can be multiple loggers writing to the persistent
log, Write-Ahead Log (WAL) requires that all log records for a trans-
action be persisted before that transaction’s Commit record. There
can also be multiple persistent logs for a database, as long as these
logs are coherent, meaning that they become durable in a coherent
order [23, 35].

6.1 Evolution to ZNS SSDs

For a database running on ZNS SSDs, logging can be handled using
the approach described in §1, pushing grouping down from the
logger (which uses Group Commit) to the controller (which uses
Group Append). Log records in a log could be transmitted from
a single logger thread or from multiple threads, but log sequence
order must be preserved. Since forcing records to the log is relatively
fast and inexpensive with Group Append, loggers could persist log
records more frequently than is typical with Group Commit. That
could increase the load on the controller, but it also would decrease
Write-Ahead Log (WAL) delays. It would also reduce the number of
log blocks written because blocks wouldn’t be written until they are
(nearly) full. However, a committing transaction would still have to
wait until its commit record was acknowledged by the controller.

A log file would consist of a sequence of zones (consisting of
at least two zones). When a zone is full, logging continues in the
next zone in the sequence. A log file is a circular buffer, which
is beheaded when early log records are no longer needed so that
there’s always room for new log records. With ZNS storage, Zone
Erase efficiently clears an unneeded zone at the head of the log.

Checkpoints, which are used for failure recovery, could still be
included in the same log, and recovery will have to find the most
recent checkpoint. There is a (limited) modifiable metadata area
associated with a zone even when using Zone Append, and the
location of the recent checkpoint (an LBA) could be stored there.
Other anchor data (some small number of MB), such as the sequence
of zones comprising the log including the current head and tail
zones of the log, could also be stored in the metadata area. It would
also be simple to store such metadata on a separate conventional
SSD.

6.1.1 Other Database Systems: There are other ways that Zone
Append could be applied to existing or novel database systems.
Each offers replication capabilities at various levels, which we do
not discuss in detail. Within a data center, striping and mirroring
may be offered in hardware, and a controller could replicate by
communicating directly with other controllers.

Hyder [16] was designed for SSDs and works best on raw SSDs,
which eliminates log stacking. Hyder uses an append-only [52]
capability that enables multiple loggers to access the same log effi-
ciently. Zone Append provides that capability directly, simplifying

Devashish R. Purandare, Peter Wilcox, Heiner Litz, and Shel Finkelstein

design. A version of Hyder was also implemented based on the
CORFU/Tango shared log that is discussed in §7.

Silo [58] and other “multicore optimistic epoch group” systems
submit log records from different workers and might benefit from
a Group Append capability.

SQLite [4] (in WAL mode, not journal mode) seems like a great
fit for Zone Append, with changes logged and the original DB
unchanged. SQLite checkpoints would create a new zone version
of the database based on roll forward, whereupon the old zone
version could be erased. The database could be sharded based on
update frequency (if that is predictable or otherwise determinable),
with data placed in each shard based on expected lifetime. Since
SQLite is widely used in mobile phones, embedded systems, and
applications, improving cost and performance for SQLite would be
important, if ZNS Storage is produced for embedded devices [3].

Relational Databases, such as mySQL, can integrate zoned stor-
age utilizing a storage backend such as MyRocks/RocksDB [48],
which translates in-place updates to being log-structured updates.

6.2 Research Directions

e Managing Table Deltas: If differential changes to a table
are appended to an append-only table delta [29] that is man-
aged using Group Append, then there is no need to log those
table changes in the usual database log. (Log management
using non-volatile memory employs a similar principle [8].)
The table delta (which would both be maintained in memory
and persisted) would include the ID of the transaction that
made the change, which might commit or roll back.

The standard DB log would contain Commit records, which
would include the transaction ID and the logical timestamp
of the Commit; it would also contain Rollback records for
transactions that roll back. If a transaction commits, an in-
memory data structure would identify the mapping between
transaction ID and the logical timestamp of the Commit; that
mapping would not have to be maintained forever. Periodic
merging of table and table delta (once that delta becomes
immutable after a new delta is created) could be handled
using disaggregated storage, as in Amazon Aurora [59]. After
merging deltas, data from rolled back transactions would
be eliminated, and data from committed transactions would
contain the logical timestamp of the commit.

Metadata and Utilities: Databases manage a wide range
of metadata. Some of that metadata can be treated as if it
was ordinary data, but configuration data and checkpoint
anchors require special handling. Also, databases have a
range of utilities (e.g., load, backup, indexing, archive). ZNS
commands seem like great fits for some utilities (e.g., device-
side copy for backup), but as usual, there are fuzzy subtleties
when doing backups in a running system.

Replication: We discuss general replication techniques later
in this paper. But there’s one tempting replication technique
that would not work if used simplistically. If log writes are
logically replicated from loggers (or from devices) to other
devices (locally or remotely), then transaction commit or-
der would not necessarily agree across those devices, so
replication coherence of logs would be violated. However,

Append is Near: Log-based Data Management on ZNS SSDs

more sophisticated techniques (based on quorums, Paxos, or
ordered epochs) could be employed successfully.

7 EVENT LOGS AND SHARED LOGS

Event Logs: Event logs track application and system actions. Logs
can be analyzed to understand system performance, trends, and
anomalies. A log can also be treated as a message bus, publishing
events (or summaries of events) to subscribers. But if there are
failures, events immediately prior to the failure may be lost, events
which might help explain the root cause of the failure. If events are
pushed down to the controller using Group Append, then durable
logging is faster, and recent log records are less likely to be lost.

Shared Logs: Shared logs are shared Event Logs; Scalog [25] de-
scribes them as “a sequence of ordered records that can be ac-
cessed and appended to by multiple clients” There are many highly-
scalable distributed Shared Logs which enforce ordering guarantees,
including Kafka [39], CORFU [11], Tango [12], ZLog [56], and Sca-
log [25].

7.1 Evolution to ZNS SSDs

If there is a failure, events that occurred immediately prior to that
failure may not appear in an Event Log. Those missing events might
help explain the root cause of the failure. But if events are pushed
down to the controller quickly using Group Append and Zone
Append, then recent log records are less likely to be lost.

Let’s examine how one Shared Log system, Scalog, would work
with ZNS SSDs. Scalog defines append and appendToShard opera-
tions which map directly to Zone Append. FIFO replication of log
segments corresponds to sending a collection of blocks, perhaps
controller-to-controller, with fast acknowledgment by the receiving
controller. Matching block boundaries, blocks after the last block
previously transmitted can be appended using Zone Append.

7.2 Research Directions

Scalable Shared Logs with elastic scalability are vital to modern data
management. Here are a few of the intriguing Event and Shared
Log Research challenges for ZNS:

e Multiple Writers: For Event Logs, is it better to have a
single writer handling all events, or multiple writers that
can append to the tail of the log?

e Computational Storage: Should events be sent to com-
putational controllers as soon as they are generated, even
before event ordering is determined? Should replication and
ordering for Shared Logs be managed using cooperative com-
munication across computational storage whenever possible,
minimizing host involvement?

e Zone Discrimination: Can/should there be discrimination
(based on data access patterns) of the zones in which events
are stored, either when events are initially stored or when
Shared Logs are reorganized? Could this support efficient
garbage collection of zones that contain less important data,
while still supporting order requirements?

8 GENERAL RESEARCH DIRECTIONS

ZNS SSDs open up co-design possibilities corresponding to the
following directions, which apply to the Data Management areas
discussed in this paper.

8.1 Placement

ZNS SSDs provide greater control over the physical data layout on
the underlying media. This enables the host or the application to
control spatial data layout. Because Group Append is space-efficient,
sharding (and reorganizing) logs at the controller level into multiple
zones (based on expected data life-cycle) might be advantageous, as
long as log semantics are preserved and log operations are efficient.
Data placement could be further tuned with algorithms that learn
access characteristics of data and workloads over time [13].

8.2 Computational and Disaggregated Storage

Group Append can be used by reorganization utilities (e.g., RocksDB
compaction) which perform operations in a Disaggregated com-
putational storage device. Coordination among different compute
units is trivial when the data they share is immutable (like full
zones). Furthermore, Computational Storage [60] could support
operations combining the in-memory buffer, controller buffer, and
persisted data, which would offer promising new opportunities for
application offload. Data-centric operating systems [17] open up
the possibility of allowing compute adjacent to data, which would
enable better integration of computational storage with ZNS.

8.3 Price/Performance

ZNS SSDs that support Group Append can further improve the
overall write amplification for sub-logical block writes, decreasing
the overall writes to the SSD, further enabling QLC and PLC flash-
based SSDs.

Zoned storage offers efficiency advantages for these research
areas (and for other research areas described in individual sections
of this paper), and Group Append and Zone Append reinforce these
advantages. We intend to explore these opportunities using both
actual and simulated hardware implementations, and we hope that
other researchers will pursue similar opportunities.

8.4 Metadata

We have made proposals about metadata management in earlier
sections of this paper. Metadata can sometimes be placed at the
beginning or at the end of the zone holding the data it describes.
But there are other alternatives, including

(1) keeping metadata in dedicated metadata zones would sim-
plify finding and managing metadata,

(2) placing metadata in the small random-write and in-place
update friendly area that is associated with each zone,

(3) keeping it in NVM associated with the controller, and

(4) persisting metadata changes on a device that is not zoned
and also and keeping it in memory. The trade-offs among
these approaches in different circumstances are not simple
and warrant research study.

There also exist multiple ways to maintain the consistency of
metadata and data when using ZNS. The log is a circular sequence

of zones, with timely background truncation (using Zone Erase) of
the head zone of the log, so that a “next zone” is always available.
Anchor data describing the zones comprising the log can be
kept in a well-known location, perhaps on a standard SSD. The
most recent zone can also be stored as anchor data, or it can be
determined based on (circularly) increasing sequence numbers kept
at the beginning of each zone. This requires care, especially since a
log-append might require multiple zones, e.g., for large SSTables.
So a multi-zone append cannot be regarded as complete until its
entire contents have been written to the zone. There are several
ways that an append library can choreograph this; making zone
transitions transparent to the host may be the best approach.

8.5 Replication

Storage devices and systems sometimes fail [20], or degrade the
performance of systems to exhibit unacceptable delays (jitter) [34].
There are many well-known techniques for replicating data (in-
cluding logs) locally and remotely [7], including RAID (with mir-
roring and/or striping), log-shipping quorums, Paxos/Raft, quo-
rum protocols (at various levels), and coherent logical or physical
copying to Backup(s). There are complex tradeoffs among these
approaches across Latency, Consistency, Availability, Partition-
tolerance, etc. [5]. Device-to-device protocols (even to remote de-
vices) may be particularly attractive for logs, but one size won’t
fit all. Replicated logs don’t have to be equal, but they do need
to be equivalent, or (more generally) have a coherent interpreta-
tion. [46]. Performing log appends independently at multiple sites
is tempting, but it’s not coherent unless we can deliver high-level
semantics layered on physically different, not necessarily equiv-
alent logs. Equivalence for some operations is simple; RocksDB
compression can be performed independently at different replicas
at different times, since replicas deliver equivalent key-value store
semantics, regardless of when (or how) compression is performed.
The trade-offs among replication techniques meeting requirements
of specific log-structured systems are complex, warranting detailed
investigation, analysis, and evaluation.

8.6 Zone Random Write Area

Zone Append is an optional feature as a part of the ZNS Specifi-
cation. Alternative ways to address the issue of write pointer con-

tention include a proposal for Zone Random Write Area (ZRWA) [31].

This approach exposes the write buffer for the particular zone and
allows random writes as well as in-place updates to this buffer. This
buffer can then be explicitly committed with a command or can
be committed as it fills up. The main benefit of this approach is
that the host interface does not require any changes as random
writes are allowed. Persistence within the zone is guaranteed by the
device. Group Append can be implemented with a slightly modified
interface, as this approach utilizes higher queue depths, but limits
write granularity to block sizes. Allowing random-write and in-
place updates before commits open up new designs for managing
metadata and frequently updated data.

9 CONCLUSION

When innovative hardware and interfaces to hardware emerge,
software systems should change to leverage those innovations.

Devashish R. Purandare, Peter Wilcox, Heiner Litz, and Shel Finkelstein

Computational storage, disaggregated storage, and zoned storage
with ZNS SSDs are such innovations. We're particularly intrigued
by opportunities for data management systems that exploit ZNS
SSDs, with Group Append pushed down to the controller. Fortu-
nately, this exploitation can sometimes be addressed by evolving the
data management system’s logging component using techniques
detailed in this paper.

This paper identified a broad range of hardware and software
co-design research issues that require experimentation and analy-
sis to resolve. We intend to do such work ourselves, working with
partners, and we also hope that other researchers in industry and
academia will also address these problems, perhaps collaborating
with us on them. Although initial solutions to some of these prob-
lems using ZNS SSDs may be straightforward, symbiotic co-design
(across applications, storage systems, programmable devices, and
workloads) offers rich research opportunities that may transform
many of these data management systems in unexpected ways.

Acknowledgements

This work was supported in part by the National Science Foun-
dation (NSF Grants IIP-1266400, IIP-1841545, CCF-1942754) and
the industry members of Center for Research in Storage Systems
(CRSS) at University of California, Santa Cruz.

We are grateful to our collaborators whose advice, insight, and
feedback helped guide this paper. Matias Bjerling from Western
Digital helped us understand ZNS and improved this paper sig-
nificantly through several rounds of feedback. We had extensive
discussions with Simon Lund, Adam Manzanares, Bala Ganeshan,
and Javier Gonzalez from Samsung about the nature of ZNS, and
received valuable feedback on this work. Siying Dong from Meta
provided us with insights into RocksDB, which helped improve
our discussion on LSM Trees in § 5. We thank Pat Helland from
Salesforce for the feedback we received from him. We are grateful
for the feedback and support we received from our collaborators at
the CRSS, Ethan L. Miller, Darrell D. E. Long, Daniel Bittman, and
Peter Alvaro.

REFERENCES

[1] 2020. RocksDB Wiki: WAL Performance. https://github.com/facebook/rocksdb/
wiki/WAL-Performance

[2] 2021. RocksDB | A persistent key-value store. http://rocksdb.org/

[3] 2021. Well-Known Users Of SQLite. https://www.sqlite.org/famous.html

[4] 2021. Write-Ahead Logging. https://sqlite.org/wal.html

[5] Daniel Abadi. 2012. Consistency Tradeoffs in Modern Distributed Database
System Design: CAP is Only Part of the Story. Computer 45, 2 (2012), 37-42.
https://doi.org/10.1109/MC.2012.33

[6] IanF Adams, Neha Agrawal, and Michael P Mesnier. 2021. Enabling Near-Data

Processing In Distributed Object Storage Systems. 7.

Ailidani Ailijiang, Aleksey Charapko, and Murat Demirbas. 2019. Dissecting

the Performance of Strongly-Consistent Replication Protocols. In Proceedings of

the 2019 International Conference on Management of Data (Amsterdam, Nether-

lands) (SIGMOD °19). Association for Computing Machinery, New York, NY, USA,

1696-1710. https://doi.org/10.1145/3299869.3319893

[8] Joy Arulraj, Matthew Perron, and Andrew Pavlo. 2016. Write-behind Logging.

Proc. VLDB Endow. 10, 4 (nov 2016), 337-348. https://doi.org/10.14778/3025111.

3025116

Manos Athanassoulis, Michael S Kester, Lukas M Maas, Radu Stoica, Stratos Idreos,

Anastasia Ailamaki, and Mark Callaghan. 2016. Designing Access Methods: The

RUM Conjecture.. In EDBT, Vol. 2016. 461-466.

[10] Jen Axboe. 2017. Add support for write life time hints [LWN.net]. https:

//lwn.net/Articles/726477/

Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wobbler,

Michael Wei, and John D. Davis. 2012. CORFU: A Shared Log Design for Flash

7

[9

[11

https://github.com/facebook/rocksdb/wiki/WAL-Performance
https://github.com/facebook/rocksdb/wiki/WAL-Performance
http://rocksdb.org/
https://www.sqlite.org/famous.html
https://sqlite.org/wal.html
https://doi.org/10.1109/MC.2012.33
https://doi.org/10.1145/3299869.3319893
https://doi.org/10.14778/3025111.3025116
https://doi.org/10.14778/3025111.3025116
https://lwn.net/Articles/726477/
https://lwn.net/Articles/726477/

Append is Near: Log-based Data Management on ZNS SSDs

[12

[13

[15]

[16]

[17

(18]

[19

[20]

[21

oo
Rk

[23]

[24

[25]

[26]

[27]

Clusters. In 9th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 12). USENIX Association, San Jose, CA, 1-14. https://www.usenix.
org/conference/nsdil2/technical-sessions/presentation/balakrishnan

Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan Prab-
hakaran, Michael Wei, John D. Davis, Sriram Rao, Tao Zou, and Aviad Zuck.
2013. Tango: distributed data structures over a shared log. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP ’13).
325-340. https://doi.org/10.1145/2517349.2522732

Oceane Bel, Kenneth Chang, Nathan Tallent, Dirk Duellman, Ethan L. Miller,
Faisal Nawab, and Darrell D. E. Long. 2020. Geomancy: Automated Performance
Enhancement through Data Layout Optimization. In Proceeding of the Conference
on Mass Storage Systems and Technologies (MSST °20).

Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick
O’Neil. 1995. A critique of ANSI SQL isolation levels. ACM SIGMOD Record 24, 2
(1995), 1-10.

Philip A. Bernstein, Sudipto Das, Bailu Ding, and Markus Pilman. 2015. Op-
timizing Optimistic Concurrency Control for Tree-Structured, Log-Structured
Databases. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data (Melbourne, Victoria, Australia) (SIGMOD ’15). As-
sociation for Computing Machinery, New York, NY, USA, 1295-1309. https:
//doi.org/10.1145/2723372.2737788

Philip A Bernstein, Colin W Reid, and Sudipto Das. 2011. Hyder-A Transactional
Record Manager for Shared Flash.. In CIDR, Vol. 11. 9-20.

Daniel Bittman, Peter Alvaro, Pankaj Mehra, Darrell D. E. Long, and Ethan L.
Miller. 2020. Twizzler: a Data-Centric OS for Non-Volatile Memory. In 2020
USENIX Annual Technical Conference (USENIX ATC 20).

Matias Bjorling, Abutalib Aghayev, Hans Holmberg, Aravind Ramesh, Damien Le
Moal, Gregory R. Ganger, and George Amvrosiadis. 2021. ZNS: Avoiding the
Block Interface Tax for Flash-based SSDs. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21). USENIX Association, 689-703. https://www.usenix.
org/conference/atc21/presentation/bjorling

Matias Bjerling, Javier Gonzalez, and Philippe Bonnet. 2017. LightNVM: The
Linux Open-Channel SSD Subsystem. In 15th USENIX Conference on File and Stor-
age Technologies (FAST 17). USENIX Association, Santa Clara, CA, 359-374. https:
//www.usenix.org/conference/fast17/technical-sessions/presentation/bjorling
Chandranil Chakraborttii and Heiner Litz. 2020. Improving the accuracy, adapt-
ability, and interpretability of SSD failure prediction models. In Proceedings of
the 11th ACM Symposium on Cloud Computing. 120-133.

Chandranil Chakraborttii and Heiner Litz. 2021. Reducing write amplification in
flash by death-time prediction of logical block addresses. In Proceedings of the
14th ACM International Conference on Systems and Storage. 1-12.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. 2008.
Bigtable: A distributed storage system for structured data. ACM Transactions on
Computer Systems (TOCS) 26, 2 (2008), 1-26.

David J DeWitt, Randy H Katz, Frank Olken, Leonard D Shapiro, Michael R
Stonebraker, and David A. Wood. 1984. Implementation Techniques for Main
Memory Database Systems. In Proceedings of the 1984 ACM SIGMOD Interna-
tional Conference on Management of Data (Boston, Massachusetts) (SIGMOD
’84). Association for Computing Machinery, New York, NY, USA, 1-8. https:
//doi.org/10.1145/602259.602261

Peter C. Dillinger and Stefan Walzer. 2021. Ribbon filter: practically smaller than
Bloom and Xor. arXiv:2103.02515 [cs.DS]

Cong Ding, David Chu, Evan Zhao, Xiang Li, Lorenzo Alvisi, and Robbert Van
Renesse. 2020. Scalog: Seamless Reconfiguration and Total Order in a Scal-
able Shared Log. In 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20). USENIX Association, Santa Clara, CA, 325-338.
https://www.usenix.org/conference/nsdi20/presentation/ding

Jaeyoung Do, Ivan Luiz Picoli, David Lomet, and Philippe Bonnet. 2021. Better
database cost/performance via batched I/O on programmable SSD. The VLDB
Journal (2021), 1-22.

Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael Stumm. 2021. Evolution of
Development Priorities in Key-value Stores Serving Large-scale Applications: The
RocksDB Experience. In 19th USENIX Conference on File and Storage Technologies
(FAST 21). USENIX Association, 33-49. https://www.usenix.org/conference/
fast21/presentation/dong

[28] Jake Edge. 2019. Accessing zoned block devices with zonefs. https://lwn.net/

[29]

[30]

[31]

Articles/794364/

Franz Farber, Norman May, Wolfgang Lehner, Philipp Grof3e, Ingo Miiller, Hannes
Rauhe, and Jonathan Dees. 2012. The SAP HANA Database—An Architecture
Overview. IEEE Data Eng. Bull. 35, 1 (2012), 28-33.

Javier Gonzalez and Matias Bjerling. 2017. Multi-tenant I/O isolation with open-
channel SSDs. In Nonvolatile Memory Workshop (NVMW).

Javier Gonzalez. 2020. Zoned Namespaces: Use Cases, Standard and Linux Ecosys-
tem. In SNIA Storage Developer’s Conference SDC EMEA’ 20.

[32] Jim Gray and Andreas Reuter. 1992. Transaction Processing: Concepts and Tech-

niques (1st ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[33] Pat Helland. 2015. Immutability Changes Everything: We need it, we can afford

it, and the time is now. Queue 13, 9 (2015), 101-125.

John P. John, Ethan Katz-Bassett, Arvind Krishnamurthy, Thomas Anderson, and
Arun Venkataramani. 2008. Consensus Routing: The Internet as a Distributed
System. In 5th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 08). USENIX Association, San Francisco, CA. https://www.usenix.
org/conference/nsdi-08/consensus-routing- internet-distributed- system

Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis, and Anas-
tasia Ailamaki. 2012. Scalability of write-ahead logging on multicore and multi-
socket hardware. The VLDB Journal 21, 2 (2012), 239-263.

Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and Sangyeun Cho. 2014. The
Multi-Streamed Solid-State Drive. In Proceedings of the 6th USENIX Conference on
Hot Topics in Storage and File Systems (Philadelphia, PA) (HotStorage’14). USENIX
Association, USA, 13.

Taejin Kim, Duwon Hong, Sangwook Shane Hahn, Myoungjun Chun, Sungjin
Lee, Jooyoung Hwang, Jongyoul Lee, and Jihong Kim. 2019. Fully Automatic
Stream Management for Multi-Streamed SSDs Using Program Contexts. In 17th
USENIX Conference on File and Storage Technologies (FAST 19). USENIX As-
sociation, Boston, MA, 295-308. https://www.usenix.org/conference/fast19/
presentation/kim-taejin

Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2017. Reflex: Remote
flash=local flash. ACM SIGARCH Computer Architecture News 45, 1 (2017), 345—
359.

Jay Kreps, Neha Narkhede, Jun Rao, and others. 2011. Kafka: A distributed
messaging system for log processing. In Proceedings of the NetDB, Vol. 11. 1-7.
Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized struc-
tured storage system. ACM SIGOPS Operating Systems Review 44, 2 (2010), 35-40.
Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun Cho. 2015. F2FS:
A New File System for Flash Storage. In 13th USENIX Conference on File and
Storage Technologies (FAST 15). USENIX Association, Santa Clara, CA, 273-286.
https://www.usenix.org/conference/fast15/technical-sessions/presentation/lee
Alberto Lerner and Philippe Bonnet. 2021. Not Your Grandpa’s SSD: The Era of
Co-Designed Storage Devices. In Proceedings of the 2021 International Conference
on Management of Data (Virtual Event, China) (SIGMOD/PODS °21). 2852-2858.
hitps://doi.org/10.1145/3448016.3457540

Heiner Litz, David Cheriton, Amin Firoozshahian, Omid Azizi, and John P Steven-
son. 2014. SI-TM: Reducing transactional memory abort rates through snapshot
isolation. In Proceedings of the 19th international conference on Architectural sup-
port for programming languages and operating systems. 383-398.

Heiner Litz, Ricardo] Dias, and David R Cheriton. 2015. Efficient correction of
anomalies in snapshot isolation transactions. ACM Transactions on Architecture
and Code Optimization (TACO) 11, 4 (2015), 1-24.

Heiner Litz, Javier Gonzalez, Ana Klimovic, and Christos Kozyrakis. 2021. RAIL:
Predictable, Low Tail Latency for NVMe Flash. In Transactions on Storage (ToS).
Joshua Lockerman, Jose M. Faleiro, Juno Kim, Soham Sankaran, Daniel J. Abadi,
James Aspnes, Siddhartha Sen, and Mahesh Balakrishnan. 2018. The FuzzyLog: A
Partially Ordered Shared Log. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 357-
372. https://www.usenix.org/conference/osdi18/presentation/lockerman
Umesh Maheshwari. 2021. From Blocks to Rocks: A Natural Extension of Zoned
Namespaces. In Proceedings of the 13th ACM Workshop on Hot Topics in Storage
and File Systems (HotStorage "21). 21-27. https://doi.org/10.1145/3465332.3470870
Yoshinori Matsunobu, Siying Dong, and Herman Lee. 2020. MyRocks: LSM-tree
database storage engine serving Facebook’s social graph. Proceedings of the VLDB
Endowment 13, 12 (2020), 3217-3230.

Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
log-structured merge-tree (LSM-tree). Acta Informatica 33, 4 (1996), 351-385.
Publisher: Springer.

Jong-Hyeok Park, Soyee Choi, Gihwan Oh, and Sang-Won Lee. 2021. SaS: SSD as
SQL Database System. In Proceedings of VLDB Endowment, Vol. 14. 1481-1488.
https://doi.org/10.14778/3461535.3461538

Ivan Luiz Picoli, Niclas Hedam, Philippe Bonnet, and Pinar T6ziin. 2020. Open-
Channel SSD (What is it Good For). In CIDR.

Colin Reid and Phil Bernstein. 2010. Implementing an Append-Only Inter-
face for Semiconductor Storage. IEEE Data Eng. Bull. 33 (Jan. 2010), 14—
20. https://www.microsoft.com/en-us/research/publication/implementing-an-
append-only-interface-for-semiconductor-storage/

Ohad Rodeh, Josef Bacik, and Chris Mason. 2013. BTRFS: The Linux B-Tree
Filesystem. ACM Trans. Storage 9, 3, Article 9 (Aug. 2013), 32 pages. https:
//doi.org/10.1145/2501620.2501623

Mendel Rosenblum and John K Ousterhout. 1991. The design and implementation
of a log-structured file system. In Proceedings of the thirteenth ACM symposium
on Operating systems principles. 1-15.

Manoj P. Saha, Adnan Maruf, Bryan S. Kim, and Janki Bhimani. 2021. KV-SSD:
What Is It Good For?. In 2021 58th ACM/IEEE Design Automation Conference
(DAC). 1105-1110. https://doi.org/10.1109/DAC18074.2021.9586111

[56] Michael A. Sevilla, Noah Watkins, Ivo Jimenez, Peter Alvaro, Shel Finkelstein,

Jeff LeFevre, and Carlos Maltzahn. 2017. Malacology: A Programmable Storage

https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/balakrishnan
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/balakrishnan
https://doi.org/10.1145/2517349.2522732
https://doi.org/10.1145/2723372.2737788
https://doi.org/10.1145/2723372.2737788
https://www.usenix.org/conference/atc21/presentation/bjorling
https://www.usenix.org/conference/atc21/presentation/bjorling
https://www.usenix.org/conference/fast17/technical-sessions/presentation/bjorling
https://www.usenix.org/conference/fast17/technical-sessions/presentation/bjorling
https://doi.org/10.1145/602259.602261
https://doi.org/10.1145/602259.602261
https://arxiv.org/abs/2103.02515
https://www.usenix.org/conference/nsdi20/presentation/ding
https://www.usenix.org/conference/fast21/presentation/dong
https://www.usenix.org/conference/fast21/presentation/dong
https://lwn.net/Articles/794364/
https://lwn.net/Articles/794364/
https://www.usenix.org/conference/nsdi-08/consensus-routing-internet-distributed-system
https://www.usenix.org/conference/nsdi-08/consensus-routing-internet-distributed-system
https://www.usenix.org/conference/fast19/presentation/kim-taejin
https://www.usenix.org/conference/fast19/presentation/kim-taejin
https://www.usenix.org/conference/fast15/technical-sessions/presentation/lee
https://doi.org/10.1145/3448016.3457540
https://www.usenix.org/conference/osdi18/presentation/lockerman
https://doi.org/10.1145/3465332.3470870
https://doi.org/10.14778/3461535.3461538
https://www.microsoft.com/en-us/research/publication/implementing-an-append-only-interface-for-semiconductor-storage/
https://www.microsoft.com/en-us/research/publication/implementing-an-append-only-interface-for-semiconductor-storage/
https://doi.org/10.1145/2501620.2501623
https://doi.org/10.1145/2501620.2501623
https://doi.org/10.1109/DAC18074.2021.9586111

[57

[58

[59

[60

]

System. In Proceedings of the Twelfth European Conference on Computer Systems
(Belgrade, Serbia) (EuroSys ’17). Association for Computing Machinery, New York,
NY, USA, 175-190. https://doi.org/10.1145/3064176.3064208

Theano Stavrinos, Daniel S. Berger, Ethan Katz-Bassett, and Wyatt Lloyd. 2021.
Don’t be a blockhead: zoned namespaces make work on conventional SSDs
obsolete. In Proceedings of the Workshop on Hot Topics in Operating Systems.
Association for Computing Machinery, 144-151. https://doi.org/10.1145/3458336.
3465300

Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy transactions in multicore in-memory databases. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles. 18-32.
Alexandre Verbitski, Anurag Gupta, Debanjan Saha, James Corey, Kamal Gupta,
Murali Brahmadesam, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice,
Tengiz Kharatishvilli, and Xiaofeng Bao. 2018. Amazon Aurora: On Avoiding
Distributed Consensus for I/Os, Commits, and Membership Changes. In Proceed-
ings of the 2018 International Conference on Management of Data (SIGMOD ’18).
789-796. https://doi.org/10.1145/3183713.3196937

Peter Wilcox and Heiner Litz. 2021. Design for Computational Storage Simulation
Platform. In Proceedings of the Workshop on Challenges and Opportunities of Effi-
cient and Performant Storage Systems (Online Event, United Kingdom) (CHEOPS

[61
[62

[63

(64

[65

]
]
]

]

Devashish R. Purandare, Peter Wilcox, Heiner Litz, and Shel Finkelstein

"21). Association for Computing Machinery, New York, NY, USA, Article 5, 8 pages.
https://doi.org/10.1145/3439839.3459085

NVM Express Workgroup. 2021. NVM Express Specification 2.0.
nvmexpress.org/developers/nvme-specification/

NVM Express Workgroup. 2021. NVM Express Zoned Namespaces Command
Set 1.1. https://nvmexpress.org/developers/nvme-command- set-specifications/
Sung-Ming Wu, Kai-Hsiang Lin, and Li-Pin Chang. 2018. KVSSD: Close inte-
gration of LSM trees and flash translation layer for write-efficient KV store. In
2018 Design, Automation Test in Europe Conference Exhibition (DATE). 563-568.
https://doi.org/10.23919/DATE.2018.8342070

Minghao Xie, Chen Qian, and Heiner Litz. 2020. ReFlex4ARM: Supporting 100GbE
Flash Storage Disaggregation on ARM SoC. In OCP Future Technology Symposium.

Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala, and Swaminathan Sun-
dararaman. 2014. Don’t Stack Your Log On My Log. In 2nd Workshop on Interac-
tions of NVM/Flash with Operating Systems and Workloads (INFLOW 14). USENIX
Association, Broomfield, CO. https://www.usenix.org/conference/inflow14/
workshop-program/presentation/yang

https://

https://doi.org/10.1145/3064176.3064208
https://doi.org/10.1145/3458336.3465300
https://doi.org/10.1145/3458336.3465300
https://doi.org/10.1145/3183713.3196937
https://doi.org/10.1145/3439839.3459085
https://nvmexpress.org/developers/nvme-specification/
https://nvmexpress.org/developers/nvme-specification/
https://nvmexpress.org/developers/nvme-command-set-specifications/
https://doi.org/10.23919/DATE.2018.8342070
https://www.usenix.org/conference/inflow14/workshop-program/presentation/yang
https://www.usenix.org/conference/inflow14/workshop-program/presentation/yang

	Abstract
	1 Introduction
	2 Zone Append and Group Append
	2.1 Zone Append
	2.2 Group Append

	3 Related Work
	4 Log-Based File Systems
	4.1 Evolution to ZNS SSDs
	4.2 Research Directions

	5 LSM Trees and RocksDB
	5.1 Evolution to ZNS SSDs
	5.2 Research Directions

	6 Databases
	6.1 Evolution to ZNS SSDs
	6.2 Research Directions

	7 Event Logs and Shared Logs
	7.1 Evolution to ZNS SSDs
	7.2 Research Directions

	8 General Research Directions
	8.1 Placement
	8.2 Computational and Disaggregated Storage
	8.3 Price/Performance
	8.4 Metadata
	8.5 Replication
	8.6 Zone Random Write Area

	9 Conclusion
	References

