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ABSTRACT
We derive new iterative CTE variants from the simple loop-based,
operational semantics of SQL:1999’s WITH RECURSIVE. In the ab-
sence of fixpoint-based semantics and monotonicity restrictions,
these CTE variants (1) can hold onto as well as forget the results of
earlier loop iterations or (2) maintain iteration results in a keyed
table, enabling a SQL authoring style that mimics imperative algo-
rithms. We exercise the new variants using a series of examples to
demonstrate that this fresh look at CTEs has a beneficial impact on
the readability and performance of iterative SQL queries.

1 ITERATE LIKE IT’S 1999?
SQL:1999 [7,20] introduced WITH RECURSIVE—or recursive common
table expressions (CTEs)—a true game changer which turned the

WITH RECURSIVE
T(· · ·) AS (

q1
UNION [ALL]

q
𝛿
(T)

)
TABLE T;

query language into a Turing-complete pro-
gramming language with, admittedly, a very
distinctive flavor. In a nutshell, the recursive
CTE on the left iterates the evaluation of query
q
𝛿
(read: “q loop”) which can refer to tableT to

access the rows produced in an earlier iteration.
The first iteration ofq

𝛿
processes the rows produced byq1. Iteration

stops once the least fixpoint T = q1 UNION [ALL]q
𝛿
(T) has been

reached, returning tableT as the overall result.
WITH RECURSIVE is powerful and versatile but proved to be no-

toriously hard to grasp and master. Indeed, only simple applications
like the computation of transitive closures or bills of material in hier-
achical assemblies prevail in practice. Among the many challenges,
let us highlight the following:
(1) The existence and uniqueness of the fixpoint is guaranteed

only ifq
𝛿
is monotonic [2, 8]. This leads to significant syntac-

tic restrictions onq
𝛿
that rule out uses of negation (e.g., NOT

EXISTS), INTERSECT/EXCEPT, outer joins, duplicate row elimi-
nation via DISTINCT, or grouping and aggregation. Working
around such limitations can turn simple, idiomatic SQL queries
into syntactic atrocities.

(2) Monotonicity enables the semi-naive evaluation ofq
𝛿
over only

the rows produced in the immediately preceding iteration [1].
While this aids the efficient execution of recursive CTEs,q

𝛿
now

exhibits “short-term memory” in which prior results (or the
history of the computation, if you will) are inaccessible. This
led query authors to adopt idioms that collect result rows in
array-like structures to be carried from iteration to iteration [17,
§ 7.8.2.2, CYCLE]. Not only does this clutter the query code,
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but such home-grown row memory management comes at a
space and runtime price. On top of that, semi-naive evaluation
requires q

𝛿
to be linear in T [2], adding further to the pile of

syntactic restrictions.

In consequence, we find complex iterative computation that could
benefit from evaluation close to the tabular data to be (i) predomi-
nantly realized outside RDBMSs [4, 11, 13] or (ii) cast in terms of
iterative or recursive PL/SQL or SQL UDFs. Both options come with
their own performance drawbacks [5, 12].

Iterative CTEs based on simple loops. To counter this frustrat-
ing state of affairs, the following pages explore descendants of
WITH RECURSIVE that directly derive from its straightforward loop-
based, operational semantics.
• This loop-based semantics explains the behavior of iterative CTEs
in a procedural style as it is typically found in RDBMS documen-
tation or textbooks. Unlike fixpoints, this semantics should be
immediately comprehensible for query authors (see Section 2).

• In the absence of fixpoint-induced monotonicity requirements,
we may lift all syntactic restrictions on q

𝛿
, leading to compact

(even elegant) query code that requires fewer workarounds.
• We discuss a CTE variant in which tableT is operated like a keyed
dictionary of rows that admits to read and overwrite former
result rows. Such dictionaries (or associative arrays) are core
data structures in many imperative algorithms, admitting a direct
transcription of these algorithms into SQL (Section 3.1).

• Wepromote selective long-termmemory inwhich queries control
whether or how long a result row shall be remembered and thus
be available in future iterations. This also enables sensible uses
of non-linear references toT inq

𝛿
(Sections 3.2 and 3.3).

• The loop-based semantics purposely mimics the actual implemen-
tations of recursive CTEs in database kernels. The proposed CTE
variants are thus easily integrated into existing query engines.

We dedicate the lion share of the paper to sketch scenarios that test-
drive these new iterative SQL CTEs. Section 3 reviews the resulting
query code but also sheds lights on its runtime and space usage.

Let us not proceed without noting that we are not keen to pro-
mote new SQL syntax. However, we invite readers to dabble with
the thought of how iterative queries in SQL could evolve or be
different from what was proposed 23 years ago.

2 CTEs THAT LOOP
A recursive CTE evaluates the initial SQL query q1 once, then it-
erates the evaluation of q

𝛿
. This essence is captured by the loop-

based, procedural account of WITH RECURSIVE in Figure 1a. From
this original loop, we derive a family of iterative CTE constructs
that preserve this essence (Figures 1b to 1d). The roles of the table-
valued variablesw,i,u in all four CTE variants coincide, only table
r is newly introduced to realize longer-term row memory:
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WITH RECURSIVE
T(c1,...,c𝑛) AS (

q1
UNION ALL

q
𝛿
(T)

)
TABLE T;

1 u � q1
2 w � u

4 loop
5 i � q

𝛿
(w)

6 ifi = ∅ then break
7 u � u ⊎i
8 w � i

10 returnu

(a) Vanilla.

WITH ITERATIVE
T(c1,...,c𝑛) AS (

q1
UNION ALL

q
𝛿
(T)

)
TABLE T;

2 w � q1
4 loop
5 i � q

𝛿
(w)

6 ifi = ∅ then break

8 w � i

10 returnw

(b) Non-accumulating.

WITH ITERATIVE
T(k1,...,k𝑚,c1,...,c𝑛) KEY (k1,...,k𝑚) AS (

q1
UNION ALL

q
𝛿
(T,RECURRING(T))

)
TABLE T;

1 u � upsert (∅,q1)
2 w � u

4 loop
5 i � q

𝛿
(w,u)

6 ifi = ∅ then break
7 u � upsert (u,i)
8 w � i

10 returnu

(c) Union tableu with upsert semantics.

WITH ITERATIVE
T(ttl,c1,...,c𝑛) TTL (ttl) AS (

q1
UNION ALL

q
𝛿
(T,RECURRING(T))

)
TABLE T;

1 u � q1
2 w � expire (u)
3 r � w
4 loop
5 i � q

𝛿
(w,r)

6 ifi = ∅ then break
7 u � u ⊎i
8 w � expire (i)
9 r � expire (r) ⊎w
10 returnu

(d) Expiring row memory.

Figure 1: Loop-based, operational semantics for a family of iterative SQL CTEs. Our focus is on the KEY and TTL variants.

upsert(u,i) ≡
{

key error if |𝛺
(
πk1,...,k𝑚 (i)

)
| < |i |

(u ⧔k1,...,k𝑚 i) ∪. i otherwise

(a) Maintaining union table u in CTE variant KEY (⧔ and 𝛺

denote left antijoin and duplicate elimination, respectively).

expire(s) ≡ πttl�ttl−1,c1,...,c𝑛
(
σttl>0 (s)

)
(b) Row expiry and aging in the TTL CTE variant.

Figure 2: Auxiliaries to support CTE variants KEY and TTL.

w (working table): holds the rows produced by the immediately
preceding iteration. Accessible byq

𝛿
through table nameT.

i (intermediate table): holds the rows of the current evaluation of
q
𝛿
. All CTE variants exit their loop ifi turns out to be empty

(see Lines 5 and 6 in Figure 1).
u (union table): collects rows returned byq1 and all intermediate

tables computed byq
𝛿
. Defines the CTE’s result.

r (recurring table): holds rows produced by earlier iterations (up to
a defined row age), providing controlled access to the history
of the computation. Accessible byq

𝛿
through RECURRING(T).

Let us shine a light on all CTE variants.

Vanilla WITH RECURSIVE. We argue that the procedure of Figure 1a
embodies the intuitive understanding that most query authors have
developed for recursive CTEs. If q

𝛿
is monotonic, the loop meets

the original SQL:1999 fixpoint semantics.
Importantly, (i) the utility of this iterative computational pattern

does not hinge on q
𝛿
being monotonic, and (ii) the loop closely

matches the engine-internal implementations of WITH RECURSIVE
(this is certainly so for PostgreSQL [16]).1 The basic loop of Figure 1a
thus makes for the ideal jumping-off point for our exploration.

Once we shake off the fixpoint prerequisite, we can obtain three
interesting CTE variants through few local loop code changes that,
nevertheless, still honor the original CTE spirit.

Non-accumulating WITH ITERATIVE (Figure 1b). Originally pro-
posed in [15] to efficiently express in-database clustering over tabu-
lar data, WITH ITERATIVE does not accumulate intermediate results
in union tableu (the loop thus misses the assignments tou in Lines 1
1In fact, if you cover up a non-monotonicq

𝛿
using shallow syntactic disguises, Post-

greSQL evaluates the resulting WITH RECURSIVE with predictable and useful results.

and 7). Since the last non-empty evaluation of q
𝛿
already defines

the overall result, there is no need to hold on to a complete trace
of the computation in u. We note that the resulting runtime and
space savings can be significant and refer to [15] for a complete
discussion of the non-accumulating WITH ITERATIVE.

Operating tableu like a keyed dictionary (KEY, Figure 1c). Re-
call that recursive CTEs operate union tableu in an append-only
fashion (cf. assignment u � u ⊎ i in Line 7 of Figure 1a). This
changes with CTE variant KEY(k1,...,k𝑚):

When q1 or q
𝛿
emit a row t = (𝑘1, ... , 𝑘𝑚, 𝑐1, ... , 𝑐𝑛), t replaces

an older row of the same key (𝑘1, ... , 𝑘𝑚) in tableu. If there is
no such row,t is simply added tou (upsert).

It is a runtime error ifq1 orq
𝛿
yield multiple rows sharing one key

in any given iteration: see functionupsert(u,i) in Figure 2a which
updates tableu with the resultsi of the most recent iteration.

In effect, union tableu behaves like a keyed dictionary (or associative
array) which accepts updates of the formu[(𝑘1, ... , 𝑘𝑚)] � t. Under
the KEY variant,q

𝛿
may read the current state of the full dictionary

via table name RECURRING(T) as well as access the rows added
in the last iteration—the “hot rows” in the dictionary—as usual
throughT (note how tablesw andu are passed toq

𝛿
in Line 5 of Fig-

ure 1c). The spread of key values, i.e., the size of the active domain of
columnsk1, ... ,k𝑚 , limits the size of tableu and thus RECURRING(T),
which queries can use to control space usage (see Section 3.1 for a
quantitative assessment).

Most interestingly, access to the full dictionary and the ability
to “overwrite” its entries, enable a query authoring style in which
SQL code comes remarkably close to imperative (often stateful)
formulations of iterative algorithms in which associative arrays are
core data structures. Section 3.1 aims to demonstrate this, too.

Iteration with aging rowmemory (TTL, Figure 1d). CTE variant
TTL(ttl) has been designed to address the effects ofq

𝛿
’s short-term

row memory:
Whenq1 orq𝛿emit a rowt with value ℓ ⩾ 0 in columnttl, rowt
will remain accessible in table RECURRING(T)—the recurring
table r—for the upcoming ℓ iterations.

As usual, T only holds those rows produced in the immediately
preceding iteration—note how Line 5 in Figure 1d passes tablesw
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nodes
node
v0v1v2v3v4v5v6

edges
here there
v0 v1v1 v0v0 v3v3 v0v1 v4v4 v1...

...

𝐶0

𝐶2

𝐶6

v0 v1

v3 v4

v2

v5
v6

(a) Tabular graph encoding.

cc
node comp
v0 0
v1 0
v2 2
v3 0
v4 0
v5 2
v6 6

(b) Result.

4 foreach n in nodes
3 cc[n] � n

while true
N � nodes with updated component
ifN = ø then return cc

7 foreach key u in cc, v inN
7,8 foreach e = u v in edges
9 if cc[v] < cc[u] then
6 cc[u] � cc[v] ⊛

(line(s) in SQL text)

(c) Imperative code for CC and...

1WITH ITERATIVE
2cc(node, comp) KEY (node) AS (
3SELECT n.node, n.node AS comp
4FROM nodes AS n
5UNION ALL
6(SELECT DISTINCT ON (node) u.node, v.comp
7FROM RECURRING(cc) AS u, cc AS v, edges AS e
8WHERE (e.here, e.there) = (u.node, v.node)
9AND v.comp < u.comp
10ORDER BY u.node, v.comp)
11)
12TABLE cc;

(d) ...its SQL formulation (KEY).

Figure 3: CTE variant KEY admits the transcription of stateful iterative code into SQL (here: connected components).

andr toq
𝛿
. Accordingly, reading thettl value of a row inq

𝛿
reveals

its “time (yet) to live.”

Since each row returned byq
𝛿
may carry its individualttl value,

queries can ensure that table RECURRING(T) only contains those
rows that are indeed relevant for the upcoming computation steps
(applications of which are found in Sections 3.2 and 3.3). Keeping
the cardinality of RECURRING(T) in check also aids efficient CTE
evaluation. Emitting a rowt witht.ttl = 0 submitst to the union
table but does not lett recur in any future iteration, an idiom that
queries can use to commit a result but then immediately forget
about it (again, see Section 3.2 for a SQL query that employs this
idiom).

The TTL extension is conservative in that it reduces to the vanilla
WITH RECURSIVE ifq1 andq

𝛿
(i) set columnttl = 1 for all emitted

rows and otherwise (ii) do not read column ttl. Row expiry and
aging are automatic and do not need to be expressed within q

𝛿

itself (see Lines 2, 8, and 9 in Figure 1d): function expire(·) dis-
cards expired rows (ttl = 0) and then ages the remaining rows by
decrementing theirttl value (Figure 2b).

PostgreSQL implementation. Since all new CTE variants directly
derive their control and data flow from the vanilla WITH RECURSIVE,
their prototypical implementation inside PostgreSQL v13 turned
out to be straightforward (we put this to use in Section 3 below). To
support variant KEY in particular, we could bank on PostgreSQL’s
own TupleHashTable and its associated support routines to imple-
mentupsert(·, ·) of Figure 2a. All database kernel changes remained
local to PostgreSQL’s original CTE execution code.

3 AN EXERCISE IN ITERATIVE CTEs
Formulating iterative queries in the absence of fixpoint-induced
syntactic restrictions can be outright fun and lead to compact, some-
times even elegant, SQL formulations of a wide variety of algorithms.
The following subsections aim to make this point and provide a
taste of programming with the CTE variants of Section 2. We start
out with an established problem over (tabular encodings of) graphs
and, quite deliberately, end with one that pushes the database en-
velope (parsing based on context-free grammars), to provide an
impression of what problems are comfortably in range.

3.1 Connected Components (KEY)
A keyed union table with upsert semantics can support the direct
transcription of stateful iterative algorithms into SQL.

Here, we focus on finding the connected components in an undi-
rected graph. An iterative CTE of variant KEY will operate over a
graph encoding held in tables nodes and edges as shown in Fig-
ure 3a (note how an undirected edge 𝑢 𝑣 is encoded by two rows
(𝑢, 𝑣) and (𝑣,𝑢) in table edges). Two nodes share a component𝐶 if
they are connected by any path: node 𝑣0 thus shares component𝐶0
with 𝑣1 while the unreachable 𝑣6 sits in its separate component 𝐶6.
We are after a table cc (see Figure 3b) that assigns each node to
its component (any unique identification of the components in
column comp will do—here we reuse node IDs as component IDs).

Figure 3c depicts an imperative-style algorithm over tables nodes
and edges that finds the graph’s connected components. The proce-
duremaintains an associative array cc in which an entry cc[𝑣] = 𝐶

indicates that node 𝑣 is located in component 𝐶 . This node-to-
component assignment is iteratively updated (see the assignment
marked by ⊛) until it becomes stable and each node has found its
home component.

This algorithm design directly carries over to the SQL code shown
in Figure 3d. The grey lines indicate where pieces of the impera-
tive procedure find their place in the iterative CTE:
• In q1, each node is initially assigned its own, unique compo-
nent: the emitted row (n.node, n.node) corresponds with the
assignment cc[n.node] � n.node since column node has been
declared key of table cc (see KEY(node) in Line 2).

• Inq
𝛿
, should node u be adjacent to vwith a current component ID

v.comp smaller than u’s, assign u to v’s component, too. In Line 6,
q
𝛿
thus emits row (u.node, v.comp), effectively performing the

dictionary update cc[u.node] � v.comp at ⊛.
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Figure 4: Running connected components on six graphs.
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If node u has multiple neighbors v1, ... , v𝑚 , the minimum of
their 𝑚 component IDs will be u’s component: in the impera-
tive code, an earlier assignment to cc[u] will be overwritten
by cc[v𝑖] should the latter be smaller (see the nested foreach
loops in Figure 3c). The same effect is achieved by the pair
ORDER BY u.node, v.comp and DISTINCT ON (node) on the SQL
side which will pick the smallest v.comp ID for each u.node.

Note how the CTE can refer to table RECURRING(cc) to access
the current node-to-component assignment for all nodes in the
graph, while table cc only holds nodes whose assignment has most
recently changed (cf. variableN on the imperative side). If no such
changes are recorded in table cc,q

𝛿
delivers zero rows, and the CTE

will yield the then stable union table as the result (recall Figure 1c).

Cap on union table size. Due to KEY(node) and the upsert se-
mantics, the union table will hold (at most) one entry per node—its
size will thus never exceed the cardinality of table nodes.

This limit is notably lower than the union table size produced by
a variant of connected components formulated using the original
SQL:1999 fixpoint-based WITH RECURSIVE. This query will proceed
in two phases (and thus is stratified [11]):
P1. Use the CTE to perform walks from all nodes 𝑢 in the graph,

returning row (𝑢, 𝑣) if node 𝑣 is reachable from 𝑢.
P2. For each𝑢, the node 𝑣 with minimum ID defines𝑢’s component.
Since P2 involves grouping (by 𝑢) and MIN aggregation, its compu-
tation cannot be folded into the SQL:1999 CTE of P1. This CTE will
construct a, typically sizable, union table whose cardinality reflects
the number of non-intersecting paths in the graph.

The impact of this union table size difference becomes tangible
when we apply both, the KEY and stratified CTE variants, to a series
of six graphs obtained from the SNAP archive [14], see the bottom
half of the chart in Figure 4. While the KEY variant predictably con-
structs union tables holding one row per node, the stratified query
and its CTE assemble union tables that may exceed 108 rows even
for moderately sized graph instances. As is expected, PostgreSQL
rewards the economical space usage of the KEY-based CTE with
runtime reductions of factors from 10 to 100 and beyond (see the
top half of Figure 4).

3.2 Twig Matching (TTL)
An iterative query benefits if it can be specific about the window

of time in which prior result rows remain relevant. CTE variant TTL
provides such “garbage row management” for table RECURRING(T).
This can aid query formulation and helps to reduce space usage as
well as running time.

Here, we study this effect for the SQL query of Figure 5 that explores
a dynamic search space of labeled nodes (or states). Initial queryq1
starts from the nodes n returned by start_nodes(), then q

𝛿
iter-

atively expands the nodes f at the current fringe of the already
visited search space usingexpand_node(f.node).2 In the resulting
space of nodes, the SQL query aims to find node constellations of
interest: the query of Figure 5 seeks the indicated three-layer twig

2We leave start_nodes and expand_node unspecified here. Either could be imple-
mented in terms of, e.g, a SQL UDF or a subquery. The successor nodes returned by
expand_node may form an arbitrary DAG-shaped search space of finite size.

match

expand

a

b

c d

1 WITH ITERATIVE
2 fringe(ttl, node, tag, parent, match) TTL (ttl) AS (
3 SELECT 3 AS ttl,
4 n.node, n.tag, NULL AS parent, NULL AS match
5 FROM start_nodes() AS n
6 UNION ALL -- recursive CTE
7 (SELECT 0 AS ttl,
8 b.node, b.tag, b.parent, array[a,b,c,d] AS match
9 FROM RECURRING(fringe) AS a, RECURRING(fringe) AS b,
10 RECURRING(fringe) AS c, RECURRING(fringe) AS d
11 WHERE (a.tag, b.tag, c.tag, d.tag) = ('a','b','c','d')
12 AND (b.parent, c.parent, d.parent) = (a.node, b.node, b.node)
13 UNION ALL
14 SELECT DISTINCT ON (node, parent) 3 AS ttl,
15 n.node, n.tag, f.node AS parent, NULL AS match
16 FROM fringe AS f, LATERAL expand_node(f.node) AS n
17 )
18 )
19 SELECT f.*
20 FROM fringe AS f
21 WHERE f.match IS NOT NULL;

Figure 5: Twig pattern matching (CTE variant TTL).

pattern of nodes aa to ad . We deliberately authoredq
𝛿
such that the

concerns of node expansion and twig matching are separated.

Since we know that the twig pattern has depth three, nodes that are
expanded byq

𝛿
will become irrelevant after three further iterations

of expansion (those future nodes will not be able to connect to
branch root aa ).q

𝛿
makes this observation explicit through column

value 3 AS ttl in its expansion part (see Line 14 and the TTL(ttl)
clause in Line 2 of the query code). Table RECURRING(fringe)
thus will only hold those nodes that are currently relevant for twig
matching—older nodes are “forgotten” and will be inaccessible.

As a result, the matching part ofq
𝛿
(Lines 7 to 12) can opt for the

most straightforward formulation of twig matching: row expiry en-
sures that the repeated self-joins over table RECURRING(fringe)
do not risk an undesirable blow-up in join size. Note that matches
are emitted using 0 AS ttl (Line 7) which adds them to union ta-
ble of all completed matches but will not let them recur in future
iterations.

Layer-specific TTL. Still,q
𝛿
can be even more specific about node

aging and row garbage disposal. The iterated calls ofexpand_node
explore the search space in layers: the nodes f𝑖 at the fringe define

a

b

c u d v

f 1 f 2

expand_nodes (f𝑖)
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Figure 6: Layer-based aging.

the present, all nodes encoun-
tered in the same earlier iter-
ation form a layer of the past
(see Figure 6 in which layers
are rendered the darker the
longer they lie in the past).
This layering applies to the
twig pattern as well: nodes
labelled aa are located in the
twig’s root layer at height 3
seeking to connect (via ab ) to
leaf nodes ac or ad two layers
below. Query q

𝛿
can express

this label-based node-to-layer
assignment once we replace 3 AS ttl in Line 14 of Figure 5 by
CASE n.tag WHEN 'a' THEN 3 WHEN 'b' THEN 2 ELSE 1 END AS ttl.
The CTE’s builtin row aging then ensures that nodes at layer 1
that do not occur in any twig—consider au and av in Figure 6, for
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example—will indeed expire after a single iteration (such nodes are
only temporarily relevant to move the fringe forward).

The chart in Figure 7 reports that row aging at such finer granularity
indeed further reduces the cardinality of table RECURRING(fringe)
of non-expired rows. We conducted the experiment for search
spaces between 2 and 4 million nodes but—as expected—this mar-
ginally impacts the average cardinality of the window of active
nodes. Yet, since table RECURRING(fringe) is self-joined during
twig matching, the query’s run time increasingly benefits as we
perform more matches with growing search space sizes.

3.3 CYK Parsing (TTL)
Quick row expiry helps iterative query efficiency. Holding on to
rows long enough, however, can be required to ensure query cor-
rectness. Let us zoom in on this with one final TTL variant example
which revolves around the Cocke-Younger-Kasami parsing algo-
rithm (CYK) [21].
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Figure 7: A specific TTL reduces the size of RECURRING(·).

1 WITH ITERATIVE
2 parse(ttl, lhs, from, to) TTL (ttl) AS (
3 SELECT GREATEST(t.i-1, N-t.i) AS ttl, g.lhs, t.i AS from, t.i AS to
4 FROM tokens AS t, grammar AS g
5 WHERE t.sym ~ g.sym
6 UNION
7 SELECT GREATEST(l.from-1, N-r.to) AS ttl, g.lhs, l.from, r.to
8 FROM RECURRING(parse) AS l, RECURRING(parse) AS r, grammar AS g
9 WHERE l.to + 1 = r.from
10 AND (g.rhs1, g.rhs2) = (l.lhs, r.lhs)
11 )
12 TABLE parse;

Figure 8: A formulation of CYK parsing in SQL (variant TTL).

CYK parses input token sequences based on context-free gram-
mars in Chomsky normal form, in which the righthand side of
a grammar rule either features one token or exactly two non-
terminals [3]. Here, we use the input 6*(3+4) and the grammar of
parenthesized arithmetic expressions shown in Figure 9a to make
CYK tangible. (Tokens need not represent characters, though, and
other applications of parsing in a database context may involve
complex feature extraction in time series data [18], for example.)

Ten lines of SQL (Figure 8) implement the complete CYK algorithm
using a TTL CTE. The query operates over (i) table tokens(sym,i)
in which theN rows (𝑠, 𝑖) indicate that token 𝑠 occurs at input po-
sition 1 ⩽ 𝑖 ⩽ N (see the very bottom of Figure 9b), and (ii) ta-
ble grammar (Figure 9a) in which each row encodes one rule of the
Chomsky grammar.

CYK—and thus the CTE—proceed bottom-up:q1 finds (the left-
hand sides lhs of) the rules that produce the individual tokens
in the input sequence. In subsequent iterations, q

𝛿
combines (or,

literally, joins) two token sequences l and r, provided that they
are adjacent in the input (l.to+1 = l.from) and that a rule g =

g.lhs � g.rhs1 g.rhs2 in grammar derives their lefthand sides:
(g.rhs1,g.rhs2) = (l.lhs,r.lhs).

(Aside: We operate this CTE in set-based UNION semantics to
avoid to learn about identical parses multiple times. As for SQL:1999
CTEs, the use of UNION indicates that no row t will find its way
into intermediate tablei ift is already in union tableu. Essentially,
in the semantics of Figure 1d, replace Line 5 byi � q

𝛿
(w,r) \u.)

Remembering parses as long as needed... Both, l and r, are
found through two lookups in RECURRING(parse), the table of
already known partial parses. At this point, it does not suffice to refer
to the partial parses found in the immediately preceding iteration
(see the layered parse tree in Figure 9b): when non-terminalSub is
to be established in iteration 3, its left partial parseOpen had already
been found byq1 in iteration 0, i.e., three iterations ago. Likewise,
Exp in iteration 5 can only be established ifProd from iteration 1
still recurs as a relevant partial parse.

...but no longer than that. Do we thus hold on to partial parses
for the entire parsing process, i.e. for the maximum ofN − 1 itera-
tions required to build a left-deep (or right-deep) parse tree for the
input of lengthN? That would be safe but wasteful. Much like in Sec-
tion 3.2, we can use algorithmic insight to let the query dispose of
rows early.

Refer to Figure 9c. Since the current rule g derives the input
tokens from position l.from to r.to, the parse trees 𝑡1 and 𝑡2

Exp �Sum Term Sum � Exp Add
Prod Fact Prod � Term Mul
[0..9]+ Fact � [0..9]+
Sub Close Sub Close

Term �Prod Fact Open � (
[0..9]+ Close � )
Sum Term Add � +

Sub �Open Exp Mul � *

grammar
lhs sym rhs1 rhs2
Exp □ Sum Term
Exp □ Prod Fact
Exp [0..9]+ □ □
...

...
...

...
Mul [*] □ □

(a) Expression grammar in Chomsky normal form.
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6 * ( 3 + 4 )
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(b) Layered parse tree for 6*(3+4).
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(c) Parse tree height limits.

Figure 9: A TTL CTE can use deliberate assignments of time to live values (see annotations in ) to expire partial parses early.
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Figure 10: SQL-based CYK parser: runtime and row expiry.

to the immediate left and right will derive token sequences of
length l.from-1 andN-r.to, respectively. Even if these parse trees
take the shape of left- or right-deep linear chains, it will take no
more than GREATEST(l.from-1,N-r.to) iterations to construct
them (see the computation of column ttl in Line 7 of Figure 8—
the in Figure 9b annotate the parse tree nodes with their resulting
ttl value). If we keep g’s partial parse for the indicated number
of iterations, it is guaranteed that its parse tree can be joined with
either 𝑡1 or 𝑡2. Beyond that point, we can let the partial parse expire
from RECURRING(parse).

Compared to the conservative time to liveN-1, this simple change
to the query indeed leads to significantly faster row expiry (cf. the
bar chart in the bottom half of Figure 10, we measured the white
bars when we replaced the underlined expressions in Figure 8 by
N-1 AS ttl).

Non-linear recursion: TTL vs. vanilla WITH RECURSIVE. A two-
fold reference to earlier partial parses leads to the elegant SQL
formulation of CYK in Figure 8. In absence of TTL or KEY CTEs, yet
again we would need to work around SQL:1999 restrictions to allow
multiple working table references. On top of the syntactic tricks
we would be required to play in PostgreSQL (cf. Section 2), in each
iteration it would be the query’s own responsibility to explicitly
add the current working table contents to q

𝛿
’s result. Only then

do we obtain the expected behavior of non-linear recursion [2]
and implement the longer-term row memory required by CYK. We
are definitely entering the territory of syntactic atrocities that was
already criticized in Section 1.

While this hurts the query’s readability, it also impacts its per-
formance. When we run the CYK parser against token sequence
of growing lengths, we find the expected runtime advantage of
a proper in-kernel TTL implementation over this tinkering with
non-linear recursion in vanilla PostgreSQL (see the upper half of Fig-
ure 10).

4 EARLIER AND FUTUREWORK
Regarding semantics, WITH RECURSIVE may be the odd man out
among the SQL language constructs. The CTE’s unique ability to ex-
press arbitrary iterative in-database computation, however, makes
it an essential building block if complex algorithms are to be evalu-
ated close to tabular data. Efforts that address the applicability and
efficiency of recursive CTEs thus abound.

In RaSQL, CTEs retain their fixpoint semantics, yet specific forms
of aggregation and grouping are admissable ifq

𝛿
exhibits the PreM

property [11, 22]. This enables, for example, a formulation of con-
nected components that resembles the code in Figure 3d. Much like
we observed in Section 3.1, in the absence of stratification, RaSQL’s
Spark-based implementation can improve the running time of con-
nected components by a factor of 100. The recentDatalog◦ effort [13],
too, addresses the interleaving of recursion and aggregation, focus-
ing on the optimization of the actual looping logic (as opposed to
the loop’s body).

A variation of the WITH ITERATIVE KEY semantics (recall Fig-
ures 1b and 1c) led theDBSpinner project [9] to a new iterative query
construct that aids query readability. We share their observation
that the in-kernel implementation of such constructs is material
to efficient evaluation. SQLoop [10] follows a different path and
iteratively drives the evaluation of CTE variants from outside the
RDBMS.

Unlike PostgreSQL, MariaDB [19] offers a configuration option
that admits non-linear recursion in CTEs. Working table w then
holds all rows found in earlier iterations—instead, we propose to
give queries fine-grained control over row retention and expiry in
table RECURRING(T).

Beyond KEY and TTL. Behind the scenes of PL/SQL translation [6],
CTEs continue to be a great compilation target. Still, we are under-
way to further develop the pragmatics and efficiency of CTEs when
they are used as user-facing SQL constructs. CTE variants currently
on our workbench include:
• Iterative queries that may place an intermediate result rowt into
one of multiple different working tables (selected by the value in
designated columnt.wt, much like we introduced columnttl).

• Modifiers (like RECURRING(·)) that lead the CTE to maintain
rows in a special working stack w (as opposed to a table) such
that successive iterations ofq

𝛿
can read earlier rows using a LIFO

discipline.
On the side of in-kernel underpinnings, the latter CTE variant—just
like KEY and TTL—will benefit from dedicated internal representa-
tions of w (e.g., in terms of a ttl-based priority queue in the case
of TTL to speed up expiry). This, too, is currently in the works.
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