
mutable: A Modern DBMS for Research and Fast Prototyping
Immanuel Haffner

Saarland University, Saarland Informatics Campus
Germany

immanuel.haffner@bigdata.uni-saarland.de

Jens Dittrich
Saarland University, Saarland Informatics Campus

Germany
jens.dittrich@bigdata.uni-saarland.de

ABSTRACT
Few to zero DBMSs provide extensibility together with implemen-
tations of modern concepts, like query compilation for example. We
see this as an impeding factor in academic research in our domain.
Therefore, in this work, we present mutable, a system developed
at our group, that is fitted to academic research and education.
mutable features a modular design, where individual components
can be composed to form a complete system. Each component can
be replaced by an alternative implementation, thereby mutating the
system. Our fine-granular design of components allows for precise
mutation of the system. Metaprogramming and just-in-time compi-
lation are used to remedy abstraction overheads. In this demo, we
present the high-level design goals of mutable, discuss our vision
of a modular design, present some of the components, provide an
outlook to research we conducted within mutable, and demonstrate
some developer-facing features.

1 INTRODUCTION
Bobby Tables is a young Ph.D. student in the field of database
systems, who just recently started doing his own research. Bobby
has an idea how to compute join orders more efficiently. At some
point, Bobby has to implement his idea to perform an empirical
evaluation. Bobby now has to make an important decision: He
can (1) implement his idea in an existing (open-source) system or
(2) implement his idea stand-alone, i.e. not integrating it into a
system. Bobby asks for guidance from his Ph.D. advisor, who tells
him that there are strengths and weaknesses to either approach
and presents the following arguments regarding implementation
in an existing system:
+ Bobby can save some development effort by implementing his
approach in an existing system. He will be able to rely on a rich
infrastructure taking care of many things unrelated to his topic
of research, e.g., parsing and semantic analysis, concurrency
control, buffer management, storage, or query execution.

+When related algorithms have been implemented in the same
system, Bobby can use them “off the shelf” for his evaluation.

+ There is always this one reviewer that expects you to evaluate
your approach in a real database system. Bobby can consider it
done.

− System-specific design decisions may (negatively) affect exper-
iments. In the case of join ordering, a system with particularly
slow query execution may dwarf Bobby’s improvements over
related works when comparing end-to-end workload execution
times.

− Bobby may have to re-implement related algorithms in the cho-
sen system, somewhat contradicting the argument of saving
development effort.

− Alternatively, Bobby can evaluate implementations in other sys-
tems. However, this has the significant downside of leading to

an “apples to oranges” comparison. In the case of join order-
ing, different systems may use different cost models, different
cardinality estimation, or simply deploy more or less efficient
data structures. All these factors can obfuscate Bobby’s empirical
findings.
After some consideration, Bobby decides to implement his join

ordering algorithm in an existing system. But which system should
he choose? Bobby searches online for some candidates and quickly
finds the Database of Databases (dbdb.io). The site lists a whooping
875 database systems as of December 2022. Bobby is convinced
that he will find a suitable system for his implementation among
these many candidates. He uses the filter to refine his search to sys-
tems of “Academic” or “Educational” type and having a relational
data model. Surprisingly, from the initial 875 systems only 34 re-
main. Still, Bobby is confident as he spots some famous research
projects within the list: PostgreSQL, HyPer, MonetDB, DuckDB,
and NoisePage, to name a few. Bobby takes a closer look at the
open-source systems to understand how he can implement and inte-
grate his join ordering algorithm. He finds that all systems provide
some form of (online) documentation. However, the documentation
is mainly targeted at database users and administrators. Sometimes,
the documentation also includes a description and motivation of
internal design decision, e.g., what algorithm for join ordering is
implemented in the system. Some systems provide APIs and accom-
panying documentation for extending the supported data types or
implementing user-defined functions or for embedding a system.
Sadly, no system provides a documentation targeted at database
researchers and developers, that would explain how new algorithms
for solving a particular database problem – like join ordering, for
example – can be implemented in the system [3, 9, 20, 23]. From
Bobby’s point of view, it is unclear whether such APIs even ex-
ist and proper documentation is just lacking. In addition to these
problems, the aforementioned systems generally do not ship with
alternative implementations of the same system component, e.g.,
different algorithms for computing join orders. This is cumbersome
for Bobby, as he cannot easily pick up and evaluate algorithms of
related works.

The tragedy of Bobby Tables is a story many Ph.D. students
and post-doctoral researchers are familiar with. For this reason,
in this paper, we propose a new database system that is designed
for researchers, scholars, and developers. We present a system
that can serve as a universal framework for implementing and
experimenting with new database technology and that can serve as
a common test bed for experimental evaluations. What would such
a system have to look like? How would one design such a system?
This work is a mix of a system and a vision paper.

� github.com/mutable-org/mutable

https://dbdb.io/
https://github.com/mutable-org/mutable

Immanuel Haffner and Jens Dittrich

1.1 Outline
In Section 2, we present our design goals, contrast to prior work, and
propose our approach with mutable. Section 3 to Section 7 present
some of mutable’s features, both conceptually and by example.

2 DATABASE SYSTEM DESIGN
To help Bobby out of his misery, we want to design a database
system that is mainly targeted at academic research. We work out
the following design goals that we deem inevitable to foster efficient
research and education.

2.1 Design Goals
Extensibility. The DBMS should be easily extensible to augment it
with new algorithms. There should be as little obstacles as possible
to get started developing with the system. Proper documentation
and clean APIs will go a long way to fulfill this design goal.
Separation of Concerns. When implementing a new algorithm
in the DBMS, one should not need to know about implementation
details of the remainder of the system. The system should be split
into individual components. Each component will fulfill a single
purpose and is independent of other components. In particular,
components shall appear to the outside as stateless and hence make
it impossible to rely on internal state. This principle must guide the
design process of the API.
Abstraction. . . To enable easy adoption by practitioners and re-
searchers, abstractions are necessary to focus attention on details of
importance to our community.With abstraction, we can form a com-
mon “language of symbols” we operate with. To achieve this, types,
functions, classes, and methods should be named and designed in
consistence with academic terminology and usage. Complex the-
oretical constructs need to be broken down into atoms and the
system should be designed around these atoms.
. . .without regret. Traditionally, abstraction in software design
comes at a cost. For example, abstraction through interfaces (or
abstract classes) comes at the cost of dynamic dispatches, posing a
considerable overhead for frequently called functions. Abstractions,
in general, pose artificial boundaries that hinder a compiler from
specializing and aggressively optimizing code. Enabling aggressive
optimization by the compiler and avoiding overheads from dy-
namic dispatches will be absolutely necessary to achieve maximum
performance.

These design goals are very broad and are fitting to any software
system. In the following, we will elaborate in more depth how these
goals apply to a database system and how we aim to achieve them.

2.2 Related Work
Certainly, each of the aforementioned design goals has already been
studied by our community. We therefore briefly revisit prior work
and emphasize potential shortcomings in their design.

Extensible DBMSs can be dissected into two groups. The first
group contains “complete” DBMSs with support for extending the
system by a user. Such systems may allow for introducing ab-
stract data types (ADT) into the language by implementing them
in a domain-specific language (DSL). Other common extensibility
features are custom storage techniques or data access methods.

mutable Cardinality
Estimation

Plan
Enumer-
ation

Cost
Function

Data
Layout

Storage

Query
Execution

. . .

DPccp

DPsub

DPsize

TDMinCutAGaT

TDMinCutBranch

Implementations

Figure 1: Components of mutable with multiple, inter-
changable implementations of plan enumeration.

Systems belonging to this group are ADT-Ingres [28], R2D2 [14],
PostgreSQL [25, 27], Starburst [12, 26], and DuckDB [24].

The second group is formed of systems providing “DBMS build-
ing blocks” to ease the construction of specialized, purpose-built
systems. Two ambassadors of this group, that have a strong aca-
demical background, are GENESIS [5] and EXODUS [8]. GENESIS
provides a “file” (storage) management system, named JUPITER,
that is composed of several layers. JUPITER provides several im-
plementations for each layer and can be arbitrarily composed by
selecting one implementation for each layer. For example, to im-
plement a new buffer management strategy in GENESIS, one must
first implement JUPITER’s buffer management layer and then con-
figure JUPITER to use this implementation for buffer management.
While GENESIS’ extensibility evolves around storage management,
EXODUS aims to provide a framework for building a custom DBMS.
EXODUS ships with a generic storage manager with support for
concurrent and recoverable operations on objects of any size, a
library of type-agnostic access methods, a query optimizer genera-
tor, and tools for constructing query language front-ends. While
EXODUS provides much flexibility, it does not provide a complete,
off-the-shelf DBMS. Of all these extensible systems, none fulfills
our goal of abstraction without regret. The authors of GENESIS
not only acknowledge this fact, but even envision how to resolve
this issue in the future:

From the side of software development, a technology is needed to
compose layers of software at compile time (not at run-time as we are
now doing). Compile-time composition has the potential of eliminating
unneeded generality [. . .] through code simplification.

— Batory et al. [5]
Consequently, systems that compile queries naturally fall into

this category: While allowing for composition of (physical) opera-
tors to form a query plan is an abstraction, compiling the final plan
produces code free of (or with less) abstractions [13, 15, 16, 18, 21].
However, dbdb lists only a single database system of “Academic” or
“Educational” type that performs code generation, namely NoiseP-
age. It appears that NoisePage is the only open-source, relational
database system capable of achieving abstraction without regret.
However, this system appears not to be designed for extensibility
or exchangeability of components.

2.3 Our Approach: The mutable System
As we did not see a single DBMS sufficiently satisfying our afore-
mentioned design goals, we decided to start building a new database
system, named mutable [/'mju:t@bl/]. Our system aims to fulfill our
design goals, as we elaborate next, and it is particularly fitted for
academic research and education.

mutable: A Modern DBMS for Research and Fast Prototyping

Extensibility. To achieve extensibility, mutable is a system com-
posed of independent components. We provide a visualization of
this concept in Figure 1. This design is very similar to that of GEN-
ESIS’ storage system JUPITER (Section 2.2). Each component in the
system fulfills a single, logically isolated task, e.g., plan enumera-
tion for query optimization. Different implementations of the same
component can easily be interchanged to mutate system behavior.
Therefore, the system can easily be extended by providing a new
implementation of a component.
Separation of concerns. A separation of concerns is achieved
through a paradigm named “The Value is the Boundary” that was
proposed by Gary Bernhardt at SCNA 2012 [6]. To us, this para-
digm means that the components appear to the outside world as
stateless. They take values (potentially in the shape of data struc-
tures) as input, and they produce values (again, potentially data
structures). Components shall not be dependent on internal state of
other parts of the system. This design guarantees that a developer
of one component need not be concerned with the implementation
of any other component in the system. Dissecting the intrinsic logic
into separate components and defining the “values” that need to
be communicated in between is one of the crucial design processes
involved in building mutable. Naturally, we must represent state
at some point. This is what Gary Bernhardt named the imperative
shell. It is an imperative layer that connects the individual com-
ponents, communicates the values between them, and holds the
state of the system. Our work on mutable aims to provide both, an
implementation of this imperative shell and the development of
components. In Section 2.4 we elaborate the concept of imperative
shell, and in Section 3 and following we elaborate the design and
development of components.
Abstraction. . . Abstraction is achieved by designing types, classes,
methods, functions etc. in consistence with their academic usage
and using the nomenclature common in our academic research.
. . .without regret. To achieve abstraction without regret, we en-
vision a development process that heavily exploits metaprogram-
ming to eliminate abstractions, as envisioned by Batory et al. [5].
For this purpose, be build on specialization through template-based
metaprogramming and just-in-time (JIT) compilation. More pre-
cisely, we are developing a DSL that gives developers the impression
of writing regular, imperative code. In the background, execution
of that DSL code actually produces code that is compiled and exe-
cuted. Compilation and execution of such generated code is handled
implicitly by mutable. The developer need not be concerned with
this process. By compiling (and potentially optimizing) this code,
mutable is able to avoid abstraction overheads when executing
the compiled code. Consider, for example, the development of a
multi-version concurrency control (MVCC) algorithm, where each ex-
ecuting query must produce its read- and write-sets. In a traditional
system, the MVCC component might have to register callbacks at
the storage component to be informed of any read and write opera-
tions. Each such callback is an indirect function call, introducing
unnecessary overhead to query execution. If this approach were
implemented in mutable, however, the MVCC component would
register callbacks at the storage component that are implemented
in our DSL. As a consequence, when the query is compiled, the
code for data access is directly augmented by code to generate the

read- and write-sets. Thereby, the indirect call that was originally
necessary to achieve abstraction has been eliminated.

In the following sections, we present several features of mutable
in detail. We believe that these features make the system an appeal-
ing choice for researchers. We accompany our feature presentation
with examples, such that the reader can observe how our imple-
mentation fulfills our design goals.

2.4 mutable: The Imperative Shell
As we explained above, components are designed to provide no
observable state to the outside. This guarantees that no part of
the system may rely on implementation details exposed through
internal state. Further, this level of encapsulation guarantees that
components can safely be exchanged. However, a database system
is an inherently stateful system. This state must be represented
somewhere. Observe that, though the components themselves are
stateless, they consume and produce values that represent state.
These values must be communicated / passed between the compo-
nents of the system, and they may be stored to persist state. This is
exactly the task of the imperative shell. It connects the components,
it controls the flow of data between them, and it represents state
by storing values produced by components. Thereby, the impera-
tive shell defines the interfaces of components, in terms of values
consumed and produced.

Let us make this more concrete with an example. The tables of a
database system represent state and are held within the imperative
shell. However, the logic that operates on tables may be imple-
mented in an execution backend component. Different backends
may implement operations differently, yet they must all adhere to
some common specification.

3 COMPONENTS
Problem. In systems research – like our domain – it is necessary
to conduct empirical studies to evaluate novel approaches. More
so, we must also evaluate prior work to enable comparison and
to contrast to our own work. In this process, it is important to
perform the evaluations of both our and prior work under the exact
same conditions. Only then can we truly compare our experimental
findings and draw conclusions. However, this process is frequently
disturbed. Consider, for example, the scenario that the original im-
plementation of an algorithm is completely inaccessible. In this
case, we must reimplement this algorithm to conduct our evalu-
ation. Thereby, we may unknowingly improve or deteriorate the
original algorithm. Nevertheless, reimplementation causes delay
to our research. In an alternative scenario, the algorithm might be
available, but as part of a complete system. In that case, we can
fit our evaluation to the respective system. We must take great
care to replicate the conditions under which the algorithm is eval-
uated. And yet, specifics to the system may unwittingly alter the
experimental results.
Vision. Ideally, all algorithms of all related works are directly
available for evaluation within a unifying system. Further, these al-
gorithms all implement a common interface. This common interface
guarantees that the conditions, under which evaluations are per-
formed, are identical: all implementations share the same “view of

Immanuel Haffner and Jens Dittrich

R S T
𝑅.𝑖𝑑 = 𝑆.𝑟𝑖𝑑 𝑆.𝑖𝑑 = 𝑇 .𝑠𝑖𝑑

R.x < 42 S.name LIKE 'Bobby%Tables' T.y > 13

Figure 2: A query graph with three relations and two join
predicates. Each relation has one selection predicate.

Listing 1 Interface of the PlanEnumerator component.

1 struct PlanEnumerator {

2 /** Enumerate feasible plans for query \p G.

3 * \param G graph representation of the query

4 * \param CE cardinality estimator component of the

5 * queried database

6 * \param CF cost function to minimize

7 * \param PT table of best plans found , with one

8 entry per feasible partial plan

9 */

10 virtual void enumerate_plans(

11 const QueryGraph &G, // value (in)

12 const CardinalityEstimator &CE, // component

13 const CostFunction &CF, // component

14 PlanTable &PT // value (in & out)

15) const = 0;

16 };

Table 1: Incoming
PlanTable for the invoca-
tion of the PlanEnumerator.
The PlanTable has been
populated with entries
for single relations.
Relations Cardinality Cost Plan

{𝑅} 50 0 𝑅

{𝑆 } 20 0 𝑆

{𝑇 } 35 0 𝑇

Table 2: Final PlanTable after the
invocation of the PlanEnumerator.
Note that there is no entry for
{𝑅,𝑇 } since our implementa-
tion in Listing 2 does not con-
sider Cartesian products.
Relations Cardinality Cost Plan

{𝑅} 50 0 𝑅

{𝑆 } 20 0 𝑆

{𝑇 } 35 0 𝑇

{𝑅, 𝑆 } 17 17 𝑅 1 𝑆

{𝑆,𝑇 } 13 13 𝑆 1 𝑇

{𝑅, 𝑆,𝑇 } 7 20 𝑅 1 (𝑆 1 𝑇)

the world”. Because of the common interface, all implementations
are completely interchangeable.
Our approach. The mutable system is composed of many com-
ponents, as illustrated in Figure 1. For each component, we have
devised an interface that describes precisely what information a
component receives as input and what information a component
produces as output. The process of designing component inter-
faces follows the principle “The Value is the Boundary”, proposed
by Bernhardt [6]. As we shall see in the following, this design prin-
ciple allows for clean separation of concerns, enables isolated test-
ing of components, and further enables experimentally evaluating
components in isolation of the remainder of the system.
Example. To exemplify our approach, let us look at mutable’s
interface for (logical) join order optimization. In mutable, join or-
dering computes for a given query graph a partial order in which
sets of relations are joined. Figure 2 shows an example of a query
graph. To compute a join order for this query, mutable invokes the
PlanEnumerator component through the interface presented in List-
ing 1. The first argument to invocation is the query graph. The
second argument is the CardinalityEstimator component. Its task
is to estimate the cardinality of any given set of relations of the
query graph, e.g., to estimate cardinality({𝑅, 𝑆}) = 17. The third
argument is the cost function to minimize with optimization. The
fourth argument is a PlanTable, a data structure similar to a dy-
namic programming (DP) table. Although the PlanTable can be used

Listing 2 DPccp implementation of a PlanEnumerator component.

1 struct DPccp : PlanEnumerator {

2 void enumerate_plans (...) const override {

3 const AdjacencyMatrix &M = G.adjacency_matrix ();

4 auto handle_CSG_pair = [&](Subproblem left ,

5 Subproblem right)

6 { PT.update(G, CE, CF, left , right); };

7 M.for_each_CSG_pair_undirected(handle_CSG_pair);

8 }

9 };

for computing a join order via dynamic programming, it can also
be populated with entries in any other fashion. The PlanTable is
expected to be populated with entries for single relations, as ex-
emplified in Table 1. The result of invoking the PlanEnumerator is
a PlanTable populated with entries that form a valid logical plan.
Table 2 shows the final PlanTable after join ordering.

We can observe how the PlanEnumerator component fulfills “The
Value is the Boundary”: To the outside world, a PlanEnumerator

instance appears stateless. It consumes and produces values
but it does not leak any state information, thereby prevent-
ing other components from relying on internal state. At the
same time, the PlanEnumerator uses other components, namely
CardinalityEstimator and CostFunction. These components appear
stateless to the outside, too. To evaluate a PlanEnumerator – be it for
testing or benchmarking – it suffices to (1) construct the QueryGraph,
(2) provide CardinalityEstimator and CostFunction components,
and (3) initialize a PlanTable. The ease with which we can isolate
a PlanEnumerator from the remainder of the system makes testing,
debugging, and benchmarking very accessible.

Now that we have seen the conceptual design of the interface,
we will actually implement a PlanEnumerator. We will implement
algorithm DPccp by Moerkotte and Neumann [19]. To do so, let us
go through the actual implementation of DPccp in mutable, given in
Listing 2. In line 3, we get a handle on the graph’s adjacency matrix.
This data structure enables us to efficiently enumerate all pairs of
connected subgraphs (CSGs) that are connected to one another. In
line 4 and 5, we define a lambda, that takes a connected CSG pair as
parameters left and right, and forwards it as a newly found plan
to the PlanTable. Finally, in line 7, we let the adjacency matrix M

enumerate all connected CSG pairs and provide the lambda of
line 4 as callback. Eventually, when the PlanEnumerator returns
after enumerating all plans, the PlanTable will contain an entry
with the final plan, e.g., as in Table 2.

Our example demonstrates how concise mutable’s API is. With
only 5 lines of code we are able to implement a state-of-the-art
algorithm for join ordering. Of course, the complex graph traversal
of DPccp is realized by the adjacency matrix and remains completely
hidden through the use of a callback function. Nonetheless, the code
strongly expresses intent and almost appears to be a conceptual
description of the algorithm. Also observe that our implementation
does not rely on any implementation details of other components
and fulfills only a single, isolated task: enumerating plans. This
design lets a researcher easily exchange this particular implemen-
tation for another in the system.

With respect to abstraction overheads, we should note that
PlanTable is not an abstract type. Further, PlanTable::update() is
implemented in a header file and its implementation resides within

mutable: A Modern DBMS for Research and Fast Prototyping

the same translation unit as our DPccp implementation. The com-
piler will therefore inline the call to PT.update() and abstraction
overheads are eliminated through compile-time composition. The
same holds true for for_each_CSG_pair_undirected().

4 CODE GENERATION
Problem. In the previous section, we avoided abstraction over-
heads by relying on the compiler’s ability to inline calls. However,
this technique is not always applicable. Abstract types with virtual
methods are sometimes necessary to achieve extensibility or com-
posability. This is particularly true for query execution, where the
query plan is a tree composed of abstract nodes and even within
nodes we have abstractions, e.g., for expressions. To remedy abstrac-
tion overheads, queries can be compiled to machine code. However,
we still see three problems impeding research in that direction:
(1) Systems building on LLVM [2], a rich compiler infrastructure,
simply cannot achieve peak compilation speed as LLVM is not built
for JIT compilation [11]. (2) Many compiling systems are not openly
accessible, preventing extending, modifying, or even properly eval-
uating the query compilation process. (3) Systems that are openly
accessible usually provide a low-level interface to code generation,
that is similar to LLVM. Such an interface exacerbates adoption by
DBMS researches that are not compiler experts [10, 15].
Vision. Adoption of query compilation should not be any harder
than directly implementing an algorithm in the programming lan-
guage the DBMS is written in. The implementation should express
the intent of the algorithm and must not be strictly coupled to the
code generation process. Code generation should be designed with
JIT compilation in mind. A suitable intermediate representation (IR)
and compiler infrastructure should be provided.
Our approach. We believe that a key technique to realizing our
vision is metaprogramming. It allows us to pretend to the devel-
opers that they are writing regular code while code generation
is performed in the background. This technique is becoming in-
creasingly popular, e.g. LegoBase [15], Hyper [22], Umbra [15], and
Flounder IR [10] provide DSLs for code generation throughmetapro-
gramming. We have therefore developed a deeply-embedded DSL
in C++ with a similar syntax to C++, that makes transitioning back
and forth between DBMS code and generated query code seamless.
We provide an implementation of the backend component with
WebAssembly as IR and Google’s V8 engine for JIT compilation
and adaptive execution. In this work, we will only superficially
describe our approach and focus on examples. Please refer to our
separate work on JIT compiling SQL through WebAssembly to
machine code with Google’s V8, that is published at EDBT’23 [13].
Example. In our example in Listing 3, we will implement code gen-
eration for selection with short-circuit evaluation of the selection
predicate. For this section, it is sufficient to focus on lines 5 to 16.
We will explain the remainder in the following Section 5. Lines 5
to 7 declare the execute() method that “executes” the operator. In
the context of code generation, this method actually generates the
code for this operation. In an interpreting execution backend, this
method would indeed execute the operator. This method’s first
parameter is the match, describing what part of the logical plan
to execute. We elaborate this further in the following Section 5.

Listing 3 Implementation of selection via conditional branching
and short-circuit evaluation of the selection predicate.

1 struct Sel : PhysicalOperator <

2 Sel , // CRTP type

3 SelectionLOp // pattern of logical operator(s) to match

4 > {

5 static void execute(const Match <Sel > &M,

6 CodeGenContext &Ctx ,

7 consumer_t consume) {

8 /* Inject our code generation into that of our child. */

9 M.child.execute ([&M, &Ctx , consume=std::move(consume)](){

10 /* Compile selection predicate. */

11 auto pred = Ctx.compile(M.selection.predicate ());

12 /* Conditional branching w/ short -circuit evaluation. */

13 IF (pred) {

14 /* Emit code for the remainder of the pipeline. */

15 consume ();

16 }; }); } };

The second parameter is the code generation context. It holds in-
formation necessary for code generation, e.g., an environment of
named variables required to compile SQL predicates. The third pa-
rameter is a callable that “executes” the remainder of the pipeline.
Note, that our model works slightly different from Neumann’s
produce/consume model, that was initially used in HyPer [21]:
rather than having produce() and consume() methods, we use a
lambda to inject the consuming code into the child’s code gener-
ation. Our approach is very similar to the approach proposed in
the LB2 query compiler [29], that was later adopted by HyPer [22].
In line 9, the handle M.child points to the physical operator imple-
menting the logical child of the matched selection. On this child, we
invoke execute() and pass as argument a lambda, that is defined in
the following lines. In line 11, the lambda uses the CodeGenContext

to compile the selection predicate to an abstract syntax tree (AST)
in the underlying IR. In line 13, the lambda performs a conditional
branch based on the compiled predicate. Note the particular upper-
case IF and the semicolon after the closing brace in line 16. This is
our DSL, that mimics C++ in its syntax. Behind the scenes, the IF

generates code with a conditional branch and performs short-circuit
evaluation of pred. DSL code in the then-block emits IR that is only
executed when the predicate is satisfied. In line 15, the lambda
invokes consume() to emit the consuming code of Sel’s parent. DSL
code executed by consume() emits code within the then-block. This
means, code generated further up in the same pipeline will only be
executed if the selection predicate is satisfied.

While there is some boilerplate code in Listing 3, the actual
code generation happens in lines 11 to 15. Because of our DSL,
that code is understandable by developers unfamiliar with code
generation or compilation. Even more, we believe that with little
practice developers will be able to benefit from compilation through
metaprogramming with our DSL without necessarily having to
understand the processes behind it.

5 PHYSICAL OPTIMIZATION
Problem. After implementing physical selection Sel in Section 4,
we must inform the optimizer somehow that this is a suitable imple-
mentation for logical selection. While this step might appear trivial
at first glance, there may be multiple physical implementations of
the same logical operator, each fitted for a particular situation and
hence with dependent cost. This fact calls for an optimization step

Immanuel Haffner and Jens Dittrich

Listing 4 Register Sel with the physical optimization process.

1 PhysicalOptimizer &PO = ...;

2 PO.register_operator <Sel >();

Table 3: Physical implementations of logical patterns.

Pattern C++ Code Algorithm

𝜎

?
SelectionLOp

branching selection

predicated selection

1

? ?
JoinLOp

simple-hash join

sort-merge join
Γ

1

? ?

pattern_t<GroupingLOp,
JoinLOp>

groupjoin

that assigns physical implementations to logical operators. How-
ever, a one-to-one assignment of physical to logical operators is
insufficient: Menon et al. [18] propose to fuse operators to produce
more specialized implementations that can improve performance
over naïve sequential application. This raises the question of how
such fused operators can be considered in the optimization step.
Vision. A DBMS researcher should be free to provide multiple
physical implementations of any composition of logical operators.
The optimization step that assigns physical implementations to the
logical plan must consider all implementations and find the best of
all possible physical plans.
Our approach. In Section 3, we mentioned that the logical plan
only induces a partial order and is represented as a tree. We im-
plement a second optimization phase that enumerates physical
implementations of the logical plan to find the best physical imple-
mentation. We treat physical operator implementations as partial
graph covers and enumerate all possible coverings of the logical
plan. This can be done in linear time [7, p. 11, Section 2.5.2].
Example. After implementing selection in Sel, we must register
Sel with the physical optimization process. In Listing 4, we invoke
method register_operator() and pass as template argument the
concrete type Sel. The method extracts from Sel the pattern to
match, that was provided in line 3 of Listing 3. While the pattern
to match a single SelectionLOp is trivial, our mechanism allows for
more complex patterns to be declared. We provide some examples
in Table 3. The helper class pattern_t allows for recursively compos-
ing patterns. In addition to execution, physical operators can define
custom physical cost functions as well as pre- and post-conditions
to be considered in optimization. For example, it is possible to pro-
vide different cost functions for sort-merge join vs. simple-hash join
and to formulate a post-condition for sort-merge join informing
the optimizer that the join result is sorted on the join key.

6 PHYSICAL DATA LAYOUT INDEPENDENCE
Problem. The ability to decouple the physical data layout from the
logical schema is a central building block of DBMSs. Some systems
delegate this task to frameworks, like Apache Arrow [17], while
others implement a particular physical data layout directly, e.g.,
NoisePage [4]. Delegating this task to a framework introduces a
framework’s overheads into query processing. Directly implement-
ing usually leads to hard-coding the data layout into the DBMS.

Listing 5 Implementation of a PAX layout.

1 DataLayout layout;

2 auto &block = layout.add_inode(/* num_tuples= */ 128,

3 /* stride_in_bits= */ 12288);

4 block.add_leaf(// INT(4) PRIMARY KEY

5 /* type= */ Type:: Get_Integer(Type::TY_Vector , 4),

6 /* idx= */ 0,

7 /* offset= */ 0,

8 /* stride= */ 32);

9 block.add_leaf(// CHAR (6)

10 /* type= */ Type:: Get_Char(Type::TY_Vector , 6),

11 /* idx= */ 1,

12 /* offset= */ 4096, // 128 * 32

13 /* stride= */ 48); // 6 * 8

14 block.add_leaf(// BOOL

15 /* type= */ Type:: Get_Boolean(Type:: TY_Vector),

16 /* idx= */ 2,

17 /* offset= */ 10240, // 4096 + 128 * 48

18 /* stride= */ 1);

19 block.add_leaf(// NULL bitmap

20 /* type= */ Type:: Get_Bitmap(Type::TY_Vector , 3),

21 /* idx= */ 3,

22 /* offset= */ 10368, // 10240 + 128 * 1

23 /* stride= */ 3);

Vision. It should be possible to provide different strategies for
mapping from a logical table schema to physical data layouts. A
compiling backend should compile these mappings to direct data
accesses, embedded in the compiled query, to avoid interpretation
overheads.
Our approach. In mutable, we provide a concise method of de-
scribing the mapping from schema to data layout. Our method is
generic enough to support arbitrary layouts of finite size. More pre-
cisely, our method allows for arbitrarily nested structures composed
of various types, supporting even bit addressing and alignment. For
example, the BOOL and BITMAP types need not be aligned to a whole
multiple of a byte nor does their size need to be a whole multiple of
a byte. A current limitation of our method is that we do not support
variable-sized fields or pointers.

To efficiently access data through the description provided by
a DataLayout, we translate DataLayouts in our interpreter and
WebAssembly-based backends. The latter we present in Section 4.
Example. In Listing 5, we construct a DataLayout for a table with
attributes INT(4) PRIMARY KEY, CHAR(6), and BOOL. We lay out
the data in PAX layout [18] with PAX blocks of 128 tuples. The
entire PAX layout is conceptually an indefinite sequence of PAX
blocks. We first create an empty DataLayout in line 1. Then, we
create a PAX block of 128 tuples and a stride of 12.288 bits in lines 2
and 3. In lines 4 to 18, we add the attributes to the PAX block. To add
an attribute to the PAX block, we specify the type of the attribute
together with the offset of the attribute’s column within the PAX
block and the stride of a single attribute. In lines 19 to 23, we add
the NULL bitmap to the PAX block. The NULL bitmap contains one
bit per attribute, indicating whether the corresponding attribute
is NULL.

In ourWebAssembly-based execution backend, a scan of a table
using the given DataLayout is compiled to a single loop iterating
with four pointers – one per column and one for the NULL bitmap.
On every 128-th iteration, the pointers are advanced to the next
PAX block.

mutable encapsulates the concept of computing DataLayouts for
a table schema in a component. Such a component acts as a factory

mutable: A Modern DBMS for Research and Fast Prototyping

for creating DataLayouts. We have implemented one component
for row layout and one for PAX layout. For PAX layout, one can
specify either the number of tuples per block or the size in bytes of
a single PAX block.

We see two limitations in our current implementation of this
approach: (1) We do not support variable-length structures, e.g.
arrays of variable length. (2) We do not support pointers to connect
sequences of data, e.g. we cannot represent linked lists. Currently, all
data must be finite and stored consequently in memory. Because of
these limitations, we are currently only compatible with a subset of
the Apache Arrow [1] specification. However, we are convinced that
our approach can be extended by dynamically sized structures and
pointers, and eventually it can support the full Arrow specification.
The major obstacle we see here at the moment is the JIT code
generation of data accesses from a DataLayout specification with
dynamically sized structures or pointers.

7 AUTOMATED EVALUATION
Problem. Evaluating DBMS algorithms or entire systems usually
means running benchmarks. Writing benchmarks is therefore an
inevitable task in our research. The results of benchmarks must be
gathered, organized, and visualized to be easily interpretable. To
enable comparison to related works, multiple algorithms or systems
must be evaluated. Since evaluation is a process that is interleaved
with research, it must be done repeatedly. Repeating evaluation by
hand is tedious and automating evaluation for multiple algorithms
or systems can be very cumbersome.
Vision. We envision a unifying evaluation framework, that re-
searchers can easily implement experiments in and augment by new
algorithms or systems to evaluate. The system should automate the
process of repeated evaluation, gathering results, storing results
persistently, and even visualizing results.
Our approach. For this purpose, we have built a toolkit, that
is composed of three tools: (1) The benchmarking tool runs a set
of declaratively formulated experiments and collects results. The
experiments are specified as YAML files and in such a way that
we can run the same experiment on various database systems for
comparison. The benchmarking tool can be set up to run repeatedly,
e.g., daily or after each new commit to the main branch. Gathered
experimental results are stored persistently in a database server.
(2) A web server provides a REST API to read the gathered data from
the database server. It provides both the original data and some
pre-defined aggregated values. (3) An app that we developed for
this purpose visualizes the results and monitors the benchmarking
results over time. The app raises alerts when benchmarks were not
run or when performance anomalies occurred. Our app is integrated
with GitLab so that one can sign in to an administrative console
through one’s GitLab account. Once signed in, our app offers to
directly create a GitLab issue from a raised alert. The issue is filled
with a description of the alert as well as a breadcrumb link to directly
go from GitLab issue to our app. Our app also tracks throughout
the lifetime of an issue whether it has been resolved or rejected.
Alerts can also be marked as expected, e.g. when performance
improved expectedly because of an optimization in the code, or
they can be marked as false positive, e.g. when the server running
the benchmarks had unexpected load from other sources.

Listing 6 Sketch of the YAML file for TPC-H Q1.

1 description: TPC -H Query 1 # Description. Mandatory

2 suite: TPC # Mandatory

3 benchmark: TPC -H # Mandatory

4 name: Q1 # Optional , defaults to path

5 readonly: true # Optional , defaults to false

6 chart: # Chart configuration. Every field is optional

7 x:

8 scale: linear # One of "linear", "log"

9 type: Q # One of Q, O, N, or T

10 label: 'Scale␣factor ' # Axis label

11 y:

12 scale: linear # One of "linear", "log"

13 type: Q # One of Q, O, N, or T

14 label: 'Time␣[ms]' # Axis label

15 data: # Data to load before benchmark

16 - table: # Specification of a table

17 name: 'Lineitem '

18 attributes:

19 l_orderkey: INT(4)

20 l_partkey: INT(4)

21 ...

22 file: benchmark/tpc -h/data/lineitem.tbl

23 format: # Format of the file

24 filetype: DSV

25 delimiter: '|'

26 header: false

27 systems:

28 'mutable ':

29 ... # Spec. of experiment

30 'PostgreSQL ':

31 ... # Spec. of experiment

32 'HyPer ':

33 ... # Spec. of experiment

34 'DuckDB ':

35 ... # Spec. of experiment

Example. The experiments are written in a descriptive YAML
file, providing a textual description of the experiment, how the
measurement data is to be interpreted in a chart, what data to
load before the benchmark, and how to run the workload on each
system. We provide an example for TPC-H query 1 in Listing 6. The
specification of the systems is particular to the respective system.
We provide database connectors for several database systems, with
the option to provide one’s own connector. Queries must also be
re-written per system because of potential SQL dialects or varying
feature support.

Our benchmarking tool picks up the YAML file and runs the
experiment, gathers the experimental results, and inserts all infor-
mation related to the experiment to a relational database. A REST
API written in Django provides easy access to the data.

Our browser app, written in Dart with Flutter, provides inter-
active visualization of the data. On the landing page – the “Dash-
board” – we show an aggregated view of three hand-picked bench-
mark suites, namely “operators”, “plan-enumerators”, and TPC-H,
as shown in Figure 3. This is a heavily aggregated view of perfor-
mance over the past days and intended to provide quick information
on system behavior. Though the 𝑦-axis is value-less, it is linear and
less is better.

The “Dashboard” provides a very brief overview over the per-
formance. Our app provides a detailed visualization of single ex-
periments in the “Recent Experiments” tab. Figure 4 shows the
visualization of an experiment for one-sided range queries on inte-
ger columns. The chart description from the YAML file is used to
label the axis, select the scale of the axis, and automatically select
the most appropriate style for visualization. We currently provide

Immanuel Haffner and Jens Dittrich

Figure 3: Aggregated performance statistics for selected benchmark suites, as visible on our dashboard.

Figure 4: Visualization of recent benchmark results.

Figure 5: Visualization of benchmark results over time.

scatter, line, and bar charts. We can hide single entries by toggling
them in the chart legend. Hovering over the chart shows the precise
measurements.

We can see in Figure 4 that there appears to be an outlier for
DuckDB at around 40% selectivity. We have two options to deter-
mine whether this is an outlier or reproducible behavior. In the
“Recent Experiments” tab, we can select the date of the experiment.

Figure 6: A detected performance anomaly.

Figure 7: Updating the status of a performance anomaly re-
port.

We can hence have a look at prior runs to see whether this occurred
before. Alternatively, we can go to the “Continuous Benchmark-
ing” tab. It provides aggregated performance statistics over time for
every single experiment. Figure 5 shows the continuous benchmark-
ing chart for the experiment. First, we should zoom in on the date
of the experiment, i.e. August 30, 2022, to relax the visualization.
Then, we can observe that on Aug 30, there was indeed a spike in
execution time. This suggests that this is a performance anomaly.

Manually detecting such performance anomalies would be very
cumbersome, particularly with hundreds of experiments being per-
formed every single day. We have therefore integrated into the
Django REST API a mechanism to detect and report performance
anomalies. Detected anomalies are reported on the “Dashboard”.
For the particular experiment of Figure 4, a performance anomaly
was detected, as can be seen in Figure 6. The report shows in which
experiment an anomaly was detected, the date of the anomaly,
and by which factor the performance exceeds a certain threshold.
The threshold is derived from the standard deviation of the perfor-
mance of the past two weeks. Clicking on the down arrow reveals
the recent experiment and the continuous benchmarking charts
immediately below the anomaly report.

mutable: A Modern DBMS for Research and Fast Prototyping

Our app supports updating the status of an anomaly report by
first selecting a new status and then clicking on the blue right arrow,
as we exemplify in Figure 7. A very important feature here is that
by confirming a performance anomaly, our app will create an issue
in our GitLab project and fill the issue with all information available
on the anomaly. Once the issue is tagged as being looked into or is
closed in the GitLab project, our app recognizes this and presents
the issue as either “Looking At” or “Closed”.

As we can see in the continuous benchmarking report in Fig-
ure 5, this anomaly occurred just once. It is likely that this was
due to unexpected load on the benchmarking server affecting the
measurements. It is inconvenient if this anomaly will remain on the
“Dashboard”. We can therefore easily update the status to “False
Positive” and the anomaly will disappear from the “Dashboard”.

To see the full tool in action, visit our benchmark website at
cb.mutable.uni-saarland.de.

REFERENCES
[1] The Apache Software Foundation 2022. Arrow - A cross-language development

platform for in-memory analytics. The Apache Software Foundation. https:
//arrow.apache.org

[2] 2022. The LLVM Compiler Infrastructure. https://llvm.org
[3] 2022. NoisePage. https://github.com/cmu-db/noisepage/tree/master/docs
[4] 2022. NoisePage - Database Management System Project. https://noise.page
[5] D. S. Batory, J. R. Barnett, J. F. Garza, K. P. Smith, K. Tsukuda, B. C. Twichell, and

T. E. Wise. 1988. GENESIS: An Extensible Database Management System. IEEE
Trans. Softw. Eng. 14, 11 (1988).

[6] G. Bernhardt. 2012. Boundaries. https://www.destroyallsoftware.com/talks/
boundaries

[7] R. T. E. Bruns. 2007. Instruction selection on directed acyclic graphs. (2007).
[8] M. J. Carey and D. J. DeWitt. 1987. An Overview of the EXODUS Project. IEEE

Data Eng. Bull. 10, 2 (1987).
[9] DuckDB Foundation 2022. DuckDB. DuckDB Foundation. https://duckdb.org/
[10] Henning Funke, Jan Mühlig, and Jens Teubner. 2020. Efficient generation of

machine code for query compilers. In 16th International Workshop on Data
Management on New Hardware, DaMoN 2020, Portland, Oregon, USA, June 15,
2020, Danica Porobic and Thomas Neumann (Eds.). ACM, 6:1–6:7. https:
//doi.org/10.1145/3399666.3399925

[11] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman, L. Wagner,
A. Zakai, and J. F. Bastien. 2017. Bringing the web up to speed withWebAssembly.
In PLDI.

[12] L. M. Haas, J. C. Freytag, G. M. Lohman, and H. Pirahesh. 1989. Extensible Query
Processing in Starburst. In SIGMOD.

[13] I. Haffner and J. Dittrich. 2023. A Simplified Architecture for Fast, Adaptive
Compilation and Execution of SQL Queries. In EDBT.

[14] A. Kemper and M. Wallrath. 1987. An Analysis of Geometric Modeling in
Database Systems. CSUR 19, 1 (1987).

[15] T. Kersten, V. Leis, and T. Neumann. 2021. Tidy Tuples and Flying Start: Fast
Compilation and Fast Execution of Relational Queries in Umbra. The VLDB
Journal (2021).

[16] Y. Klonatos, C. Koch, T. Rompf, and H. Chafi. 2014. Building efficient query
engines in a high-level language. PVLDB 7, 10 (2014).

[17] Geoffrey Lentner. 2019. Shared Memory High Throughput Computing with
Apache Arrow™. In PEARC.

[18] P. Menon, T. C. Mowry, and A. Pavlo. 2017. Relaxed operator fusion for in-
memory databases: Making compilation, vectorization, and prefetching work
together at last. PVLDB 11, 1 (2017).

[19] G. Moerkotte and T. Neumann. 2006. Analysis of Two Existing and One New
Dynamic Programming Algorithm for the Generation of Optimal Bushy Join
Trees without Cross Products. In PVLDB.

[20] MonetDB B.V. 2022. MonetDB. MonetDB B.V. https://www.monetdb.org/
documentation-Jan2022/dev-guide/

[21] T. Neumann. 2011. Efficiently compiling efficient query plans for modern hard-
ware. PVLDB 4, 9 (2011).

[22] Thomas Neumann. 2021. Evolution of a Compiling Query Engine. Proc. VLDB
Endow. 14, 12 (2021), 3207–3210. https://doi.org/10.14778/3476311.3476410

[23] PostgreSQL 2022. PostgreSQL. PostgreSQL. https://www.postgresql.org/docs/
14/index.html

[24] M. Raasveldt and H. Mühleisen. 2019. DuckDB: an Embeddable Analytical
Database. In SIGMOD.

[25] L. A. Rowe and M. R. Stonebraker. 1987. The POSTGRES Data Model. Technical
Report. UC Berkeley, Dept of Electrical Engineering and Computer Science.

[26] P. Schwarz, W. Chang, J. C. Freytag, G. Lohman, J. McPherson, C. Mohan, and H.
Pirahesh. 1986. Extensibility in the Starburst Database System. In OODS.

[27] M. Stonebraker and L. A. Rowe. 1986. The Design of Postgres. (1986).
[28] M. Stonebraker, W. B. Rubenstein, and A. Guttman. 1983. Application of Abstract

Data Types and Abstract Indices to CAD Data Bases. In Engineering Design
Applications, Database Week.

[29] Ruby Y. Tahboub, Grégory M. Essertel, and Tiark Rompf. 2018. How to Architect
a Query Compiler, Revisited. In Proceedings of the 2018 International Conference
on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15,
2018, Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein (Eds.). ACM,
307–322. https://doi.org/10.1145/3183713.3196893

https://cb.mutable.uni-saarland.de
https://arrow.apache.org
https://arrow.apache.org
https://llvm.org
https://github.com/cmu-db/noisepage/tree/master/docs
https://noise.page
https://www.destroyallsoftware.com/talks/boundaries
https://www.destroyallsoftware.com/talks/boundaries
https://duckdb.org/
https://doi.org/10.1145/3399666.3399925
https://doi.org/10.1145/3399666.3399925
https://www.monetdb.org/documentation-Jan2022/dev-guide/
https://www.monetdb.org/documentation-Jan2022/dev-guide/
https://doi.org/10.14778/3476311.3476410
https://www.postgresql.org/docs/14/index.html
https://www.postgresql.org/docs/14/index.html
https://doi.org/10.1145/3183713.3196893

	Abstract
	1 Introduction
	1.1 Outline

	2 Database System Design
	2.1 Design Goals
	2.2 Related Work
	2.3 Our Approach: The mucmutable!80!blackt able System
	2.4 mucmutable!80!blackt able: The Imperative Shell

	3 Components
	4 Code Generation
	5 Physical Optimization
	6 Physical Data Layout Independence
	7 Automated Evaluation
	References

