
KÙZU∗ Graph Database Management System
Xiyang Feng∗∗ Guodong Jin∗∗ Ziyi Chen Chang Liu Semih Salihoğlu

{x74feng,guodong.jin,z473chen,c.liu,semih.salihoglu}@uwaterloo.ca
University of Waterloo

Canada

ABSTRACT
Datasets and workloads of popular applications that use graph
database management systems (GDBMSs) require a set of storage
and query processing features that RDBMSs do not traditionally
optimize for. These include optimizations for: (i) many-to-many
(m-n) joins; (ii) cyclic joins; (iii) recursive joins; (iv) semi-structured
data storage; and (v) support for universal resource identifiers. We
present Kùzu, a new GDBMS we are developing at University of
Waterloo that aims to integrate state-of-art storage, indexing, and
query processing techniques to highly optimize for this feature set.

This paper serves the dual role of describing our vision for Kùzu
and the system’s factorized query processor, which is based on two
design goals: (i) achieving good factorization structures under m-n
joins; and (ii) ensuring sequential scans that avoid entire scans of
columns and join indices when possible. As we show these two
goals can sometimes conflict and we describe our core binary and
worst-case optimal (multiway) join operators that simultaneously
achieve both goals. Kùzu is actively being developed to be a fully
functional open-source DBMS with the goal of wide user adoption.

1 INTRODUCTION
Modern GDBMSs adopt a graph/network data model and SQL-
like high-level query languages that have several graph-specific
constructs, such as arrows to describe joins and Kleene star to de-
scribe reachability between records. At their cores, GDBMSs are
relational in the sense that they map their query language con-
structs to relational operators, such as join, project, filter, or group
by, that process and output sets/relations of tuples. In practical
use, GDBMSs power several analytics-oriented applications that
are popular in fraud detection systems, recommendation engines,
master data and knowledge management, among other domains.

The workloads of these application require several storage and
processing features that existing RDBMSs are generally not opti-
mized for. These features include: (i) many-to-many (m-n) joins; (ii)
cyclic join queries, such as when finding cyclic graph patterns; (iii)
recursive joins, such as those used for reachability computations;
(iv) ability to store semi-structured data, i.e., whose columns/prop-
erty names and types are not defined to the system apriori; and
(v) storage and processing of universal resource identifiers (URIs),
which are strings identifying entities in knowledge graphs encoded

*Kù-zu (‘bright’ + ‘to know’) is a Sumerian word for“wisdom” [13].
**Equal contributions.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2023. 13th Annual Conference on
Innovative Data Systems Research (CIDR ’23). January 8-11, 2023, Amsterdam, The
Netherlands.

Figure 1: Left: columnar storage of Kùzu. Right: flat and
factorized output of the 2-hop query in Example 1.
as RDF-style triples. This paper presents Kùzu1, a new GDBMS
that we are developing at University of Waterloo that aims to opti-
mize these features through the integration of existing and novel
state-of-art storage, indexing, and query processing techniques.

Kùzu’s design is informed by our insights from discussions with
many users of GDBMSs, which we previously published as a user
survey paper [28], and developing our group’s previous system
GraphflowDB [12, 15, 18, 19], from which it differs in many impor-
tant aspects. GraphflowDB was an in-memory non-transactional
prototype system we used for our research agenda. Instead, Kùzu
aims to be a fully functional, user-facing, and a highly scalable
GDBMS, which was the most pressing challenge of users in our sur-
vey [28]. To that end, Kùzu is disk-based and scales out of memory,
implements disk-based primary key and join indices, and integrates
more robust and scalable join capabilities than GraphflowDB. In
addition, Kùzu is transactional and aims to provide the core DBMS
functionalities to be user-facing. In its current usage vision, Kùzu is
an open source embeddable library suitable for quickly developing
pipelines in the graph data science ecosystem. This is inspired by
DuckDB [1, 26] and originally by SQLite [3] 2.

This paper focuses on Kùzu’s processor, which is block-based as
in modern analytical DBMSs and further aims to satisfy two goals:

(i) Intermediate relations of m-n joins should be factorized [23],
i.e., represented as Cartesian products instead of flat tuples.

(ii) Scans should always be sequential and when possible only
scan necessary blocks from base columns or join indices.

As we next demonstrate, these two design goals are often in conflict
even in very simple queries:

Example 1. Consider the query below that asks for the owners
of the source and destination accounts of each 2-hop money transfer
facilitated by Karim’s accounts:

MATCH (c:Acc)-[t2:Trnsfr]->(a:Acc)-[t1:Transfer]->(b:Acc)
WHERE a.owner = 'Karim' RETURN c.owner, b.owner

1https://github.com/kuzudb/kuzu
2Kùzu is also inspired by other open-source DBMS projects originally from research
groups, such as PostgreSQL and MonetDB, which have also achieved wide adoption.

Figure 2: Standard GDBMS plan with INLJ-like operators.

Consider a columnar storage that we assume in this paper, where both
adjacency lists and node properties are stored in columnar structures
as in Figure 1. Consider a 𝑘-regular database, where a node 𝑣𝑖 has 𝑘
outgoing/incoming neighbors {𝑣(𝑖,1,𝑓 /𝑏), ..., 𝑣(𝑖,𝑘,𝑓 /𝑏)}, where 𝑣(𝑖, 𝑗,𝑓 /𝑏)
stands for 𝑣𝑖 ’s, 𝑗 ’th forward/backward neighbor. Suppose, Karim has
one account 𝑣1, so the output has 𝑘2 tuples. Figure 1 shows both the
flat and the succinct factorized representation of this output.

A standard plan in GDBMSs for this query, shown in Figure 2,
performs the following: (i) scan a.owner sequentially and identify
Karim’s accounts; (ii) extend the a nodes forward to b neighbors by
scanning the adjacency lists of the a bindings sequentially (except
due to the previous filter); (iii) scan the b.owner values; and (iv)
and (v) repeat (ii) and (iii) for the backward edges of a bindings.
Note that in steps (ii) and (iv), which implicitly perform an m-n join,
by extending a nodes to their forward and backward edges and
b neighbors in factorized format, such as T𝑣1= {𝑣(1,1,𝑏),..., 𝑣(1,𝑘,𝑏)}
× (𝑣1, Karim) × {𝑣(1,1,𝑓),..., 𝑣(1,𝑘,𝑓)} (edge IDs are omitted) one can
achieve the factorization structure from Figure 1. Such plans were
used in GraphflowDB [12]. However, the scans of b and c’s owner
properties perform non-sequential lookups in the owner column,
since the neighbor IDs of nodes have no locality guarantees.

In a separate experiment and analysis study [14], we showed
that because GDBMSs rely on such INLJ-like operators, they are
amenable to performing non-sequential scans when scanning prop-
erties, which can degrade their performances on many queries. We
also showed that RDBMSs, which rely only on hash joins, never
suffer from this but they scan entire tables even if only a few tuples
are needed, nor do they factorize intermediate tuples.

Our key technical approach to simultaneously achieve these
design goals is a novel modified hash join operator that we call
ASP-Join, for accumulate-semijoin-probe, which consist of 3 pipe-
lines instead of the 2-pipelined vanilla hash join. The first pipeline
accumulates a set of factorized tuples 𝑃 , such as T𝑣1 , which form the
probe side. We use 𝑃 to construct a semijoin filter which selects the
node IDs on the build side that will successfully join with 𝑃 . Using
sideways information passing (sip), this filter is then passed to the
2nd pipeline. which builds the hash table, but only (sequentially)
scanning the necessary properties/edges. Finally, the 3rd pipeline
re-scans the probe tuples in factorized format and probes the hash
table. ASP-Join is the core join operator in Kùzu and is also at the
core of our novel multiway worst-case optimal (wco) join algorithm.
As we demonstrate in our evaluations, ASP-Join-based plans are
robust and can broadly outperform the factorized and flat plans
of several state-of-the art baseline systems on a wide range of
selectivity settings on both acyclic and cyclic queries.

Our contributions and the outline of this paper are as follows: (1)
We describe the overall vision of Kùzu (Section 2); (2) We describe
Kùzu’s factorized query processor, its two design goals and our

ASP-Join-based binary and multiway wco join algorithms that
achieve these goals (Section 3). We provide details of integrating
ASP-Join into our system, including data structures to accumulate
tuples, our optimizer, as well as the system’s other core operators
and their optimizations. Sections 4, 5, and 6 present experiments,
related work, and conclusions, respectively.

2 KÙZU OVERVIEW
Kuzu is a single node (multi-core), disk-based, transactional but
read-optimized GDBMS. It adopts a classic DBMS architecture
that consists of a parser, binder, planner, storage manager, buffer
manager, query processor, and transaction manager. We give brief
overviews of different components, leaving the details of its query
processor to Section 3.
Query Language and Data Model: Kùzu adopts the property
graph model (PGM) [27], where databases are modeled as a set
of labeled nodes and edges with properties. While original PGM
supports only semi-structured properties, properties in Kùzu can
also be structured. We allow nodes and edges to have a single label,
which allows us to model them as single relations. The system has a
data definition language (DDL), through which node and edge rela-
tions with pre-defined property/column names and data types can
be specified. Semi-structured properties, which are supported only
for nodes, are not apriori defined and can be inserted into the data-
base through update commands. At a logical data level, the system
supports modeling records in node or edge relations, where node
relations have an extra “semi-structured” column, where arbitrary
key-data type-value triples can be stored. Nodes have a primary
key property where as edges are identified through system-level
global numeric identifiers. The query language of Kùzu is open-
Cypher [25], which we extended to define structured properties.
Storage and Indices: Kùzu is a columnar system similar to modern
read-optimized analytical DBMSs [1, 4]. Kùzu’s storage structures
are primarily disk-based versions of the columnar in-memory de-
signs described in reference [12]. Structured node properties are
stored in vanilla column files. Edges are double indexed and stored
in CSR-based adjacency list indices (a very simplified version is
shown in Figure 1), which are the core join indices in the system
to join node records. Adjacency list indices contain the destination
node IDs of the edges and their labels, which are omitted if the
labels of all destination nodes are guaranteed to be the same (this
can be specified in DDL statements). Edge properties are similarly
stored in “parallel” but separate CSR-based structures and double-
indexed (see reference [12]). This has storage and update costs yet
ensures that we can scan any node’s edges and properties of these
edges sequentially in both forward and backward directions. Each
node relation has by default a hash index to be able to look up nodes
on their primary keys. Storage structures are accessed through a
buffer manager, which has fixed page sizes (4KB) and adopts the
GClock eviction strategy.
Query Planner: Query planner adopts a standard architecture: a
parser parses the Cypher query and binds the types of the structured
properties and results of expressions (using the system catalog).
The planner generates an initial logical plan, which goes through a
dynamic programming-based join optimizer, which also internally
performs several optimizations such as pushing filters. Then this
plan is mapped into physical operators.

2

Figure 3: Example intermediate tuple representation as
factorized vectors for the 2-hop query in Example 1.

Transaction Support: Kùzu uses write ahead logging to achieve
atomicity and durability. Transactions are by design serializable
as we currently allow one writer transaction in the system, which
can run concurrently with multiple read transactions. All updates
to the database, from node and edge relation creation to insertion,
updates or deletions are atomic and durable if committed and can be
rolled back. We have so-far designed our transaction management
for correctness and simplicity. A more advanced multi-version
concurrency control mechanism supporting multiple concurrent
writers is in the roadmap of the next phase of the project.
User Interfaces and APIs: At the time of writing this paper, Kùzu
is an embeddable library with Python and C++ APIs. Users can im-
port the Kùzu library in applications, point to a database directory,
and issue queries and update statements. In addition, the system
has a shell console to issue statements.

Our immediate focus is on extending and polishing the system’s
user interfaces and APIs. Many applications need to store, clean,
query, or extract subgraphs from their graph-structured data before
performing more advanced graph analytics, such as building graph
neural network models. Such applications need an embeddable
easy-to-use data management system that is optimized for graph
storage and querying. An important usage vision of Kùzu is to
be the core DBMS for the graph data science ecosystem. To that
end we plan to integrate Kùzu with popular graph data science
libraries in Python, such as Python Geometric [10], Deep Graph
Library [8], Mindspore Graph Learning [2], and NetworkX [20]. In
addition, we plan to develop a REST API to better support user-
facing applications that need a server to answer interactive queries,
(e.g., return friends-of-friends of node 𝑣), which are common in the
workloads of recommendation and question answering systems.

3 FACTORIZED QUERY PROCESSOR
We next present Kùzu’s block-based and factorized processor. We
first review the processor’s intermediate factorized tuple represen-
tation design. We then cover the system’s novel join operators.

3.1 Background: Factorized Vectors
Kùzu represents intermediate relations passed between operators as
factorized vectors as described in reference [12]3. Traditional block-
based processors represent intermediate data as a set of flat tuples
in a single group of vectors. When joins are m-n, this leads to data
redundancy. For example, in traditional block-based processors, the
output of the 2-hop query from Example 1 would be represented
as a single group of vectors similar to the flat representation in
Figure 1. Even if the output is produced in small batches (e.g., of
size 1024), it would contain 𝑘2 tuples with many value repetitions,
3The original term we used in reference [12] was list-based processing. The term
factorized vectors, which we find more suitable, is due to Amine Mhedhbi.

Figure 4: An S-Join plan for the query in Example 2.

In reference [12], we showed how a block-based processor can
represent the same output more succinctly by using multiple fac-
torized vector groups, each containing a set of independent vectors.
Figure 3 shows an example of such representation, where each
vector group has a curIdx field that can be in one of two states:
• Flat: If curIdx ≥ 0, the vector group (e.g., Vector Group1 in the
figure) is flattened and represents a single tuple that consists of
the curIdx’th values in the vectors.

• Unflat: If curIdx =−1 (e.g., Vector Group2), the vector group
represents as many tuples as the size of the vectors it contains.

The intermediate tuples that factorized vector groups represent is
the Cartesian product of the sets of tuples in each vector group. For
example, the vector groups in Figure 3 represent 𝑘2 tuples. In the
theory of factorization [24], this is known as an f-representation.

3.2 Design Goals for m-n Join Operators
In reference [12], we obtained factorized structures using INLJ-
like join and scan operators. Factorization was achieved by an
Extend operator that extended a node binding from a (flattened)
vector group 𝑖 , e.g., a, to its neighbors by writing the neighbors to
another vector group 𝑗 in an unflat format. For example, we could
achieve the factorization structure in Figure 1 for the 2-hop query
with the plan in Figure 2. The use of such INLJ-like operators also
guarantees reading only the adjacency lists that will successfully
join with a node binding. However, INLJ-like operators cannot
guarantee sequential scans of adjacency lists or properties, as the
vertices in adjacency lists have no guaranteed locality. In disk-
based systems this can be very expensive. Our primary research
question when designing Kùzu’s m-n join operators was: how can
we simultaneously benefit both from factorization and fast sequential
scans?

3.3 S-Join
In reference [14], we had designed a modified hash join operator
for DuckDB, called S-Join, that could pass semijoin filters from
its build side to probe side to avoid scanning large tables. Our
implementation in DuckDB was based on flat tuple processing.
We implemented a variant of S-Join in Kùzu that does factorized
processing, which we describe here. However, as we show S-Join
can only obtain a limited set of factorized structures, which we will
address with ASP-Join. We describe S-Join through an example.

Example 2. Consider the query below:

MATCH (a:Account)-[t:Transfer]->(b:Account)
WHERE t.amount > 1000 RETURN a.owner, t.amount

3

Figure 5: A plan with ASP-Join, whose sub-plan computing
the (a)-[t1:Transfer]->(b) join is shown in detail.

A plan using S-Join for this query is shown in Figure 4. Recall
that Kùzu stores edge properties in CSR structures that are “parallel”
to the adjacency lists. So we can scan the edge properties in (a.ID)×
(t.ID, t.amount) format, where a.IDwould be flattened. An exam-
ple tuple would be {𝑣1} × {(𝑣(1,1,𝑓), amount1) ... (𝑣(1,𝑘,𝑓), amount𝑘)}.
The query further needs the a.owner properties, which needs to
be joined with these factorized tuples. S-Join has two pipelines to
perform this join.
Pipeline 1 (Hash Table Build): Since a.ID is flattened, we can
directly hash these factorized tuples on a.ID in a hash table with
payloads that contain lists of t.amount values. Figure 4 shows the
hash table that would be constructed. As part of building this hash
table, S-Join also constructs a semijoin filter identifying the a.ID
values that are hashed. 1 in location 𝑖 indicates that a.ID=𝑖 should
be scanned. This filter is passed to the probe side scan to only scan
the a.owner values that are guaranteed to be part of the join.
Pipeline 2 (Hash Table Probe): Sequentially scans the a.owner
column (only the values that pass the semijoin filter) and probes the
hash table to join a.owner values with hashed factorized tuples.

S-Join achieves our two goals only if the build side contains
a good factorization structure in which the join key is flat. As we
next demonstrate, sometimes the good factorization structure of
a sub-query may contain an unflat join keys, so joining requires
flattening the join key values and losing the factorization structure.

3.4 Binary ASP-Join
Let us return to the 2-hop query in Example 1. In this query a
plan should start scanning a nodes, and then scan the forward (or
backward) edges of a in factorization structure (a.ID, a.owner) ×
(t.ID, b.ID), where (a.ID, a.owner) is flattened. The plan would
next need to scan b.owner column and join with these factorized
tuples. However, we cannot use S-Join because b.ID values are
unflat. We would need to flatten these values, thereby losing this
factorization structure. Ideally, we should use these factorized tuples
on the probe and not the build side, but also pass a semijoin filter
to the build side to identify the successfully joining b.ID values. To
do so, our ASP-Join algorithm first accumulates the probe side of a

hash join as a first pipeline before the actual building and probing.
Figure 5 shows the plan Kùzu would generate for this query.
Pipeline 1 (Probe Accumulation): We first accumulate the set of
probe factorized tuples and store them in a temporary relation, we
call Factorized Table FT. This computation consists of only sequen-
tial operations, as we sequentially write to this temporary relation.
Similar to hash table build pipeline of S-Join we also construct a
semijoin filter to pass to the 2nd pipeline. In Example 1, the filter
would be on the b.ID values of the accumulated factorized tuples.
Pipeline 2 (Hash Table Build): The algorithm next evaluates the
build side sub-plan of the hash join, during which the appropriate
scans at the leaves, e.g., of b.owner, use the passed semijoin filter.
Pipeline 3 (Hash Table Probe): The factorized tuples in FT are
scanned and probed in the hash table to produce outputs.

We review the rest of the plan in Figure 5 for completeness. The
plan contains two other join operators: (i) the S-Join joins the
(a)-[t1]->(b) factorized tuples from the below ASP-Join with
the (c)<-[t2]-(a) edges. Here, the join key is a.ID which is flat
on both sides, so we can use S-Join; and (ii) The top ASP-Join,
joins the (c)<-[t2]-(a)-[t1]->(b) tuples, with factorization
structure (c.ID, t2.ID) × (a.ID, a.owner) × (t1.ID, b.ID,
b.owner), with (c,ID, c.owner) tuples. Here we use ASP-Join
because the 𝑐.𝐼𝐷 values from the child S-Join operator are unflat.

ASP-Join has the overhead of accumulating the probe side tuples
and re-scanning them yet as we show its overhead is acceptable
when the benefits of keeping a good factorization structure is low
and in many settings the benefits far overweighs the overheads.

3.5 Multiway WCO ASP Join
WCO join algorithms [21] have asymptotic runtime advantages
over binary joins for cyclic join queries. Briefly, in graph terms,
these algorithms take prefixes of tuples 𝑃 that match parts of a
cyclic query and extend each 𝑝 ∈ 𝑃 to a common node variable by
intersecting multiple adjacency lists of vertices matched in 𝑝 . We
review the wco Generic Join algorithm [21] through an example.

Example 3. Consider the triangle query below:

MATCH (c:Acc)<-[t3:DD]-(a:Acc)-[t1:Trn]->(b:Acc)-[t2:Trn]->(c)
WHERE a.owner ='Karim' RETURN a.owner, b.ID, c.ID

Generic Join would find all (a)-[t1:Transfer]->(b) “prefix” tu-
ples and for each edge (a=𝑣𝑖 , b=𝑣 𝑗), would intersect the forward
Transfer list of 𝑣 𝑗 and backward DirectDeposit (DD) list of 𝑣𝑖 to
compute a set of c node IDs. We call 𝑐 the “extension node variable”
and a and b the “bound” variables. This intersection effectively joins
the prefix tuples with two edge relations in a single operation. In other
cyclic queries, such as cliques, more than 2 adjacency lists can be
intersected.

The operator implementing wco joins in Kùzu is an extension of
ASP-Join. An example plan for the above triangle query is shown
in Figure 6. Suppose we have a sub-plan that generates the prefix
tuples and that needs to be followed with an ℓ-way intersection.
Pipeline 1 (Probe Accumulation): This pipeline is the same as in
the binary ASP-Join. The tuples can arrive in any factorized format
and necessary flattenings will be performed in the last pipeline (see
below). The pipeline computes ℓ semijoin filters, one for each edge
relation that store the adjacency lists that will be intersected.

4

Figure 6: A plan with a multiway ASP-Join operator that
computes the triangle query from Example 3.

Pipelines 2..ℓ+1 (Hash Table Build): For each of the ℓ edge re-
lations, the necessary adjacency lists passing the semijoin filter
are scanned, sorted, and hashed into separate hash tables using
their bound variables as keys. In practice if multiple adjacency lists
with the same edge labels and in the same direction are needed,
we take the union of these semijoin filters and construct a single
hash table. Figure 6 shows one of the hash tables, those storing
(b)-[t2:Transfer]->(c) lists, in our example.
Pipeline ℓ+2 (Hash Table Probe): The accumulated factorized
probe tuples are re-scanned and any bound variable is flattened
using a sequence of Flatten operators. For example, in Figure 6,
the 𝑏 variables of probe tuples are in unflat format and need to be
flattened as 𝑏’s forward Transfer lists will be intersected. Flatten
takes a factorized prefix tuple 𝑝 with an unflat vector group 𝑉𝐺
with 𝑘 values in it and produces 𝑘 many tuples where 𝑉𝐺 is flat.
After flattenings, the necessary adjacency lists are fetched from the
hash tables and intersected. This produces a factorized output tuple
where the results of the intersections, e.g., the c values, are stored
in an unflat vector group.

Similar to the binary ASP-Join, the multiway ASP-Join opera-
tor ensures that the scans of the adjacency lists from storage are
sequential.

As we show in our evaluations, under many settings, this ap-
proach is more robust than using INLJ-like operators, such as Graph-
flowDB’s Intersect [19] to perform multiway intersections.

3.6 Further Details
We briefly cover several implementation details of Kùzu’s processor.
Parallelism: We adopt morsel-driven parallelism [16]. Parallel
tasks run copies of the same pipeline and coordinate to get morsels
of node IDs/properties to scan until no morsels remain.
Optimizer: Kùzu adopts a dynamic programming-based join opti-
mizer whose cost metric is the number of factorized tuples, which
we chose for simplicity. Kùzu models the contents of the MATCH
clause in Cypher as a standard equi-join graph, where each node
and edge variable is modeled as a relation. For any sub-query, we
keep a best plan for each possible factorization structure, which we
limit as the number of factorization structures can grow. For edge
relations (𝑎𝑖)-[𝑒]->(𝑎 𝑗), we start with two plans: one for scanning
the edges in the forward direction, so when a values are flat and (e,

b) values are unflat and one where b values are flat and (e, a) values
are unflat. For each sub-plan 𝑆𝑃 , we maintain the IDs of the nodes
𝑎𝑖 that can pass sideways information if 𝑆𝑃 were to be joined on 𝑎𝑖 .
This is based on a simple rule: if there is a predicate on 𝑎𝑖 or on an
edge that 𝑎𝑖 is part of, then we assume that 𝑎𝑖 can pass information.
When enumerating plans for larger sub-queries, we pick between
hash join, S-Join, or ASP-Join based on the factorization struc-
tures of sub-plans and whether sub-plans can do sip. Currently,
except for primary key predicates, the selectivity estimations use
magic constants. If a subquery is cyclic, we enumerate at least one
plan where the last operator is a multiway ASP-Join.
Expression evaluations: In our approach to integrating factor-
ization to a block-based processor, binary expression evaluators
in the processor can take two types of operands: (i) both sides are
in the same vector group, in which case the evaluation happens
as in standard block-based processors and as both operands are
guaranteed to have the same size; and (ii) both sides are in different
vector groups. In this case, we ensure during plan enumeration that
at least one side is flattened and has size 1. Each binary expression
evaluation has two branches to handle these two cases.

Finally, we note that we need to maintain the multiplicity of each
factorized tuple because projections can effect the multiplicities.
For example, suppose an operator projects out the unflat 𝑏 values
in factorized tuples such as: a.owner=Karim)} × {(b.ID=𝑣(1,1,𝑓)),
..., (b.ID=𝑣(1,𝑘,𝑓))}. After the projection, we need to maintain the
information that the tuple a.owner=Karim)} has multiplicity 𝑘 . So
some operators, such as aggregations, cannot blindly assume that
each factorized tuple represents one tuple, and may need to check
multiplicities to produce correct outputs.

4 EVALUATIONS
We present experiments demonstrating the robustness and perfor-
mance benefits of using ASP-Join based plans on acyclic and cyclic
micro-benchmark queries. We also perform end-to-end system-to-
system comparisons against DuckDB (v0.4.0)4, and Umbra on the
LDBC business intelligence benchmark [9] at scale factor 100 (LDBC
100). We also compared against Neo4j but did not find its commu-
nity edition competitive with the other systems on the majority of
our queries. We do not compare against GraphflowDB, which is
an in-memory system (others are disk-based) but use a Kùzu con-
figuration (Kùzu-INLJ), which behaves similarly to GraphflowDB
plans.

We used a machine with two Intel E5-2670 @2.6GHz CPUs and
256 GB of RAM with 16 physical and 32 logical cores. We used 8
threads in each system and gave 64GB to their buffer managers.
We mark experiments that take more than 1000 seconds as timeout
(TO). We repeated each query 3 times and report the fastest runtime.

4.1 End-to-end Comparisons.
We used the LDBC interactive short reads (IS), which contain a total
of 7 queries. These are 1- to 4-hop “point” queries, i.e., they contain
an equality predicate on the primary key of one node variable.
These queries also scan properties of other nodes in the query. We
changed the outer joins (Optional Match clause in openCypher)
with full joins because our current outer join implementation is not
4https://github.com/duckdb/duckdb/releases/tag/v0.4.0

5

IS01 IS02 IS03 IS04 IS05 IS06 IS07
Kùzu 1.0 16.69 1.77 1.0 1.49 5.66 4.74
DuckDB 0.10 5264.00 43.76 0.10 24.10 5496.00 481.80
Umbra 0.94 189.22 22.37 0.83 1.89 49.92 166.66

Table 1: Runtime (ms) of Kuzu, DuckDB, and Umbra on
LDBC-SNB IS queries.

optimized. Table 1 shows our results. IS01 and IS04 are 1-hop queries.
These take sub-millisecond times across all systems and DuckDB
performs the best on these. Other queries contain at least 2-hop
queries over m-n edges. On these Kùzu consistently outperforms
DuckDB and Umbra. These queries still take sub-second time and
the primary benefit of Kùzu is its ability to do sip and avoid scanning
large chunks of the base relations. This is because the primary key
predicate is very selective and the queries contain relatively short
paths. Kùzu can do chained sip here to pass semijoin filters to all
other node variables, which gives it an advantage on these queries.
Kùzu also factorizes the outputs. However, on these queries, this
benefit is not very visible because the joins are not the dominant
factor. Finally, we investigated why DuckDB performs very poorly
on IS06 and we found that its optimizer picked a poor plan that
joined two relations without any predicates, which Umbra and
Kùzu avoided.

4.2 Acyclic Query Microbenchmarks
W evaluate different Kùzu configurations, DuckDB and Umbra,
under three simple acyclic path queries. We use LDBC 100. We use
path queries of the form (𝑎1)-[𝑒1]->(𝑎2) .. ->(𝑎𝑖) and put a predicate
<p on a manually inserted ID column/property on one of the 𝑎𝑖 and
we return the min(𝑎 𝑗 .prop) of two properties every 𝑎 𝑗 (including
𝑎𝑖). We show our 1-hop query as an example momentarily. We
modify the selectivity p on each query to test the effects of sip in
plans with ASP-Join and S-Join. In all of these queries Kùzu picks
a left-deep plan that scans the node with the predicate and extends
to the rest of the nodes using solely ASP-Join. This is our “Kùzu”
configuration. Our Kùzu-S-Join and Kùzu-INLJ use equivalent left-
deep plans that use solely S-Join and INLJ operators. For DuckDB
and Umbra we write the equivalent SQL query and let the systems
pick their plans through their optimizers. Our 1-hop query is:

MATCH (𝑎1:Person)-[𝑒1:Knows]->(𝑎2:Person) WHERE 𝑎1.ID < p
RETURN min(𝑎1.ID), min(𝑎1.bday), min(𝑎2.ID), min(𝑎2.bday)

On low selectivities, the dominant cost is the scan of the adjacency
lists and the properties and join is not a major cost. Therefore, we
expect all Kùzu configurations to performwell as they all scan small
amounts of Knows adjacency list index and other properties and ben-
efits from factorization should be minor. DuckDB and Umbra should
perform relatively worse as they need to scan these relations. Grad-
ually as we increase the selectivity, we expect DuckDB and Umbra’s
performances to become more competitive and Kùzu-S-Join and
Kùzu-INLJ to perform worse. For Kùzu-INLJ this is because INLJ
will lead to random and repeated I/Os of a2.ID/bday properties;
for Kùzu-S-Join because it loses its factorization structure when
reading a2.ID/bday properties. In contrast we expect ASP-Join’s
performance to degrade slower than other Kùzu configurations.

Our results are shown in Table 2 and consistent with our expecta-
tions. At low selectivities, we see Kùzu configurations outperform-
ing DuckDB and Umbra (with > 10x factors). At high selectivities of
10% and 100%, Umbra and DuckDB outperform Kùzu configurations
but Kùzu-S-Join and Kùzu-INLJ degrade much faster than Kùzu.
Importantly Kùzu either outperforms other systems/configuration
or is within 3.3x of the best performing one, which happens at 100%
selectivity, i.e., when ASP-Join only has overheads.

Our 2-hop query is (𝑎1:Comment)<-[:Likes]-(𝑎2:Person)-[:Likes]-
>(𝑎3:Comment) where the predicate is on the middle 𝑎2 node. This
ensures that left deep plans that start from 𝑎2 can obtain a good fac-
torization structure, so we can evaluate a case when factorization
can have major benefits. At low selectivities, we expect systems to
behave similarly to the 1-hop query for exactly the same reasons. As
selectivity increases, we again expect DuckDB/Umbra to start clos-
ing the gap and outperforming Kùzu-S-Join and Kùzu-INLJwhich
will suffer for the same reasons above. However, now Kùzu-INLJ
should remain competitive until higher selectivity levels because
we expect it to win more significantly from factorization. Kùzu now
should not only stay competitive but outperform other systems as
it does not degrade due to random I/O and still maintains a very
good factorization structure. Our results are shown in Table 2 and
confirm this expectation. We omit DuckDB which was not com-
petitive in these queries because it picked a poor join plan that
joined two large tables. As shown in the table, Kùzu performs at
sub-millisecond levels except at the highest selectivity levels, where
it outperforms other configurations and Umbra. Kùzu-INLJ is also
competitive at every level due to benefits from factorization.

Finally for our 3-hop query we used (𝑎1:P)-[:Knows]->(𝑎2:P)-
[:Knows]->(𝑎3:P)-[:Knows]->(𝑎4:P) with the predicate on 𝑎2. Our
expectations for this query is the same for our 2-hop query (as
explained momentarily) but this query demonstrates Kùzu’s ability
to do chained sip, where information is passed from𝑎2 to not only𝑎1
and 𝑎3, which are adjacent to 𝑎2 but also to 𝑎4. Our expectations are
similar to our 2-hop query because putting the predicate on 𝑎2 still
allows left deep plans used by Kùzu configurations to achieve a very
good factorization where both 𝑎1-[𝑒1]-> and -[𝑒1]->(𝑎4) adjacency
lists and the age properties on 𝑎1 and 𝑎4 can be factored out. We
again omit DuckDB for the same reaons. We now also omit Kùzu-
S-Join because it was not competitive at low selectivities and ran
out of memory for storing a large factorized table at higher ones (as
in the 2-hop query). As shown in Table 2, the behavior of the systems
is generally similar to our 2-hop query. The primary difference is
that, Kùzu can now outperform Kùzu-INLJ at lower selectivities
too, because even at the lowest selectivity level Kùzu-INLJ needs
to scan 𝑎2’s neighbors of neighbors, which makes Kùzu-INLJ suffer
more from random reads compared to the 2-hop query.

4.3 Cyclic Query Microbenchmarks
We next evaluate Kùzu’s plans with multiway ASP-Join operator
on cyclic queries. We picked three queries: (i) a triangle query; (ii) a
4-cycle; and (iii) a 4-clique query. Similar to our acyclic queries, we
put a predicate on one of the node variables and compute the min of
two properties for each variable. We compare Kùzu’s performance
against the Kùzu-INLJ configuration, which uses GraphflowDB
style Intersect operator to perform multiway intersections. We
expect Kùzu’s performance to be competitive with Kùzu-INLJ on

6

1-hop query 2-hop query 3-hop query
Selectivity Kùzu SJ INLJ DuckDB Umbra Kùzu SJ INLJ Umbra Kùzu INLJ Umbra

0.01% 0.003 0.003 0.002 0.181 0.023 0.33 12.56 0.01 1.90 0.03 0.09 0.15
0.1% 0.005 0.006 0.008 0.181 0.024 0.41 54.47 0.11 4.05 0.10 0.63 0.45
1% 0.016 0.038 0.090 0.186 0.029 0.96 OOM 1.04 12.30 0.73 6.71 6.96
10% 0.097 0.295 0.900 0.224 0.082 3.89 OOM 10.39 230.35 7.85 66.60 17.80
100% 0.637 3.381 9.010 0.240 0.191 31.98 OOM 92.35 TO 80.29 TO 236.42

Table 2: Runtimes (sec) of different Kùzu configurations, DuckDB, and Umbra on acyclic microbenchmark queries on LDBC
100. SJ and INLJ are the Kùzu-S-Join and Kùzu-INLJ configurations. OOM and TO stand for out of memory and timeout.

web-BerkStan LiveJournal
Triangle 4-Cycle 4-Clique Triangle 4-Cycle 4-Clique

Selectivity Kùzu INLJ Umbra Kùzu INLJ Umbra Kùzu INLJ Umbra Kùzu INLJ Umbra Kùzu INLJ Umbra Kùzu INLJ Umbra
0.01% 0.01 0.03 0.05 0.02 0.08 0.11 0.02 0.11 0.50 0.04 0.72 0.39 0.97 13.60 4.06 0.10 2.19 21.87
0.1% 0.02 0.28 0.07 0.21 2.35 0.64 0.12 1.64 2.59 0.11 5.58 0.65 3.91 74.91 19.68 0.89 21.66 Crash
1% 0.08 2.88 0.18 2.01 21.82 2.76 1.28 17.37 8.35 0.78 59.93 2.23 59.70 867.21 25.72 12.67 257.90 26.09
10% 0.59 29.09 1.01 20.87 206.80 8.53 13.69 160.26 17.59 6.43 585.67 14.55 531.88 TO TO 149.79 TO 128.86
100% 6.55 291.2 3.27 230.74 TO 77.39 151.84 TO 87.78 59.39 TO 39.26 TO TO TO TO TO TO

Table 3: Runtimes (sec) of Kùzu, Kùzu-INLJ (INLJ), and Umbra on cyclic queries on web-BerkStan and LiveJournal.

low selectivities and outperform it across higher selectivities, when
Kùzu-INLJ should degrade due to random and repeated scans of
adjacency lists from storage. We also used the Umbra system, which
has a wco join implementation. The main differences are that Kùzu
scans adjacency lists, sorts them on the fly and hashes them, and
probes these sorted tables and intersects them. Instead Umbra
avoids any sorting of sets of values, which is an advantage, and
instead creates nested hash tables and intersects hash sets through
hash lookups, which is a disadvantage as this is a slower way to
intersect sets. In addition, Kùzu plans can perform sip and semijoins
Here forming an expectation is harder at higher levels but for lower
levels we expect Kùzu to outperform Umbra due to its semijoins.

We use the web-BerkStan and LiveJournal datasets [17], which
respectively contain 7.6M and 69M edges. These datasets are unla-
beled, which we modeled with as a single node and single edge rela-
tions. Our results are shown in Table 3. As we expected, throughout
the experiments, Kùzu outperforms Kùzu-INLJ due to sequential
scans at higher selectivities and is competitive or outperforms Um-
bra. This indicates that at high selectivities when sip has overheads,
pre-sorting and intersecting lists is competitive with or outperforms
Umbra’s hash-based approach which avoids explicit sorting.

5 RELATEDWORK
Several of Kùzu’s core design choices are based on our prior Graph-
flowDB project [12, 15, 18, 19]. Our work on GraphflowDB focused
on integrating factorization and wco join algorithms into tradi-
tional pipelined and block-based processors. GraphflowDB relied
heavily on INLJ algorithms and pre-sorted adjacency lists, which
Kùzu completely avoids. Other approaches for integrating WCO
join algorithms [21, 22, 29] into DBMSs have been proposed in
prior work [5, 7, 11, 19]. LogicBlox integrates the Leapfrog TrieJoin
(LFTJ) wco join algorithm [29] that processes sorted tries of input
relations. The implementation description in reference [5] describes
the system relying solely on LFTJ for equi-joins and not generating
plans that mix wco and binary joins. Several work have described
richer join plans that can mix both types of algorithms depending
on the structures of the join queries [11, 19]. Umbra integrates

WCO join-style multiway joins by building nested hash indices on
the fly as we discussed in Section 4.

Another core goal of Kùzu’s query processor is to adopt fac-
torized processing. The primary goal of factorization is to factor
out repeated values when multi-valued dependencies emerge in
intermediate results under m-n joins. The theory of factorized
databases [23, 24] has developed both factorization representation
systems for relations as well as a set of algorithms for core relational
operators that show that factorized query processing can have as-
ymptotic time improvements over flat processing. Olteanu et al.
have also developed a factorized query processor that implements
these core algorithms in the FDB [6] system. These algorithms
however rely on representing input relations as sorted tries and
process and output tries, which does not seem suitable to integrate
into traditional pipelined DBMS processors.

6 CONCLUSIONS
We presented the Kùzu system that is being developed to be a
highly-scalable and efficient GDBMS that integrates state of the
art techniques for graph data management and query processing.
We described the system’s query processor, which is designed to
both use efficient factorization structures under m-n joins as well
as perform only sequential scans. We described how we achieve
these goals using hash join-based join operators that can perform
sideways information both from the build side to the probe side and
vice versa. We demonstrated the robustness and high performance
of plans that use these join algorithms. Kùzu is being developed ac-
tively and integrating new features and aims to be a widely adopted
fully functional DBMS. We hope Kùzu can also be a productive
research infrastructure for researchers to design novel techniques
for managing databases modeled as graphs.
7 ACKNOWLEDGEMENTS
We are grateful to Pranjal Gupta, who designed the core storage
layer of the system, and Amine Mhedhbi, who helped in the ini-
tial implementation of the query processor. We also thank both
for numerous useful discussions. We are also grateful to Lori Pa-
niak for his help in solving numerous technical issues during our
development and experiments.

7

REFERENCES
[1] 2021. DuckDB. https://duckdb.org
[2] 2022. Mindspore Graph Learning https://www.mindspore.cn/graphlearning/

docs/en/master/index.html.
[3] 2022. SQLite. https://www.sqlite.org/index.html
[4] Daniel Abadi, Peter A. Boncz, Stavros Harizopoulos, Stratos Idreos, and Samuel

Madden. 2013. The Design and Implementation of Modern Column-Oriented
Database Systems. Foundations and Trends in Databases (2013).

[5] Molham Aref et al. 2015. Design and Implementation of the LogicBlox System.
In SIGMOD.

[6] Nurzhan Bakibayev, Dan Olteanu, and Jakub Závodný. 2012. FDB: A Query
Engine for Factorised Relational Databases. PVLDB 5, 11 (2012).

[7] Christopher R. Aberger et al. 2017. EmptyHeaded: A Relational Engine for Graph
Processing. TODS 42, 4 (2017).

[8] Minjie Wang et al. 2019. Deep Graph Library: A Graph-Centric, Highly-
Performant Package for Graph Neural Networks. arXiv: Learning (2019).

[9] Renzo Angles et. al. 2020. The LDBC Social Network Benchmark. CoRR
abs/2001.02299 (2020).

[10] Matthias Fey and Jan Eric Lenssen. 2019. Fast Graph Representation Learning
with PyTorch Geometric. CoRR abs/1903.02428 (2019).

[11] Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and Thomas
Neumann. 2020. Adopting Worst-Case Optimal Joins in Relational Database
Systems. PVLDB 13, 12 (2020).

[12] Pranjal Gupta, Amine Mhedhbi, and Semih Salihoglu. 2021. Columnar Storage
and List-based Processing for Graph Database Management Systems. PVLDB 14,
11 (2021).

[13] John A. Halloran. 2006. Sumerian Lexicon: A Dictionary Guide to the Ancient
Sumerian Language. Logogram Publishing.

[14] Guodong Jin and Semih Salihoglu. 2022. Making RDBMSs Efficient on Graph
Workloads through Predefined Joins. PVLDB 15, 5 (2022).

[15] Chathura Kankanamge, Siddhartha Sahu, Amine Mhedbhi, Jeremy Chen, and
Semih Salihoglu. 2017. Graphflow: An active graph database. In SIGMOD.

[16] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
driven parallelism: a NUMA-aware query evaluation framework for the many-
core age. In SIGMOD.

[17] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[18] Amine Mhedhbi, Pranjal Gupta, Shahid Khaliq, and Semih Salihoglu. 2021. A+
Indexes: Lightweight and Highly Flexible Adjacency Lists for Graph Database
Management Systems. In ICDE.

[19] Amine Mhedhbi, Chathura Kankanamge, and Semih Salihoglu. 2021. Optimizing
One-time and Continuous Subgraph Queries using Worst-Case Optimal Joins.
TODS (2021).

[20] NetworkX 2022. NetworkX https://networkx.org/.
[21] H. Ngo, C. Ré, and A. Rudra. 2014. Skew Strikes Back: New Developments in the

Theory of Join Algorithms. SIGMOD Record 42, 4 (2014).
[22] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2012. Worst-case

Optimal Join Algorithms. In PODS.
[23] Dan Olteanu and Maximilian Schleich. 2016. Factorized databases. ACM SIGMOD

Record 45 (2016).
[24] Dan Olteanu and Jakub Závodnỳ. 2015. Size bounds for factorised representations

of query results. TODS 40, 1 (2015).
[25] openCypher 2022. openCypher. https://www.opencypher.org.
[26] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: an embeddable analytical

database. In SIGMOD.
[27] Ian Robinson, Jim Webber, and Emil Eifrem. 2015. Graph Databases: New Oppor-

tunities for Connected Data (2nd ed.). O’Reilly Media, Inc.
[28] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M Tamer

Özsu. 2020. The ubiquity of large graphs and surprising challenges of graph
processing: extended survey. VLDBJ 29, 2 (2020).

[29] Todd L. Veldhuizen. 2012. Leapfrog Triejoin: a Worst-Case Optimal Join Algo-
rithm. CoRR abs/1210.0481 (2012).

8

https://duckdb.org
https://www.mindspore.cn/graphlearning/docs/en/master/index.html
https://www.mindspore.cn/graphlearning/docs/en/master/index.html
https://www.sqlite.org/index.html
http://snap.stanford.edu/data
https://networkx.org/
https://www.opencypher.org

	Abstract
	1 Introduction
	2 Kùzu Overview
	3 Factorized Query Processor
	3.1 Background: Factorized Vectors
	3.2 Design Goals for m-n Join Operators
	3.3 S-Join
	3.4 Binary ASP-Join
	3.5 Multiway WCO ASP Join
	3.6 Further Details

	4 Evaluations
	4.1 End-to-end Comparisons.
	4.2 Acyclic Query Microbenchmarks
	4.3 Cyclic Query Microbenchmarks

	5 Related Work
	6 Conclusions
	7 Acknowledgements
	References

