
Towards UnifyingQuery Interpretation and Compilation
Philipp M. Grulich1 Aljoscha Lepping1 Dwi Prasetyo Adi Nugroho1 Bonaventura Del Monte1

Varun Pandey1 Steffen Zeuch1,2 Volker Markl1,2
1Technische Universitat Berlin, Germany 2DFKI GmbH, Germany

Engineering high-performance query execution engines is a very
challenging task as system engineers have to balance performance
and productivity. On the one hand, engines have to provide high per-
formance across diverse data processing workloads [1]. These may
gobeyondpurely relational operators and involve streamprocessing,
machine learning, and user-defined functions. On the other hand,
engines have to provide high productivity for system engineers to
enable the timely integration of new features. To this end, execution
engines have to be easy to modify, test, and debug [1]. As a result, it
is crucial to choose a suitable query execution engine architecture.

Over the last decade, vectorized query interpretation [2] and query
compilation [7] have emerged as state-of-the-art architectures for
high-performance query execution engines. Vectorized query in-
terpretation extends the traditional Volcano processing model and
passes vectors of records between precompiled operators that can be
developed inordinary imperativecode. Incontrast,querycompilation
translates queries into specialized code at runtime. This improves
data/code locality and enables optimal query execution performance
but introduces ahighquery startup timeand systemcomplexity. This
is particularly evident from recent commercial systems, like Photon,
Firebolt, and Velox, which tend to neglect this architecture. They
argue that interpretation-based engines are much easier to develop,
test, and debug [1, 8]. In the following, we discuss two fundamental
challenges that hinder the adoption of query compilation in detail.

Challenge 1: Managing high engineering effort. As with
any other software artifact, developing, debugging, and maintain-
ing query execution engines requires developer time and costs. In
contrast to interpretation-based engines, query compilers generate
operator codeafterquerysubmission, i.e., at runtime.This introduces
a gap between implementation and execution, which makes the en-
gines hard to build, debug, and maintain. For instance, the engineers
atDatabricks reported that developing aquery compiler caused eight
times higher engineering costs compared to an interpretation-based
engine [1]. Furthermore, state-of-the-art query compilers use code
generation frameworks such as LLVM [7] or build custom compil-
ers [3, 6]. Using these compiler frameworks in an engine requires
a deep understanding of compiler technology. In particular, they use
internal representations that are close to assembly, which are, even
for experienced engineers, cumbersome to analyze and debug. As
a result, it becomes challenging to find suitable engineers that have
expertise in both compiler technology and data management [8].

Challenge 2: Navigating a large design space.Modern data
processing systems support an increasingly diverse set of data pro-
cessingworkloads.To thisend, research introducedspecializedquery
compilers for short-running queries [3, 6], stream processing [4], or

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution and repro-
duction in anymedium aswell as allowing derivative works, provided that you attribute
the originalwork to the author(s) andCIDR2023. 13thAnnual Conference on Innovative
Data Systems Research (CIDR 2023). January 8-11, 2023, Amsterdam, The Netherlands.

user-defined functions [5]. These compilers followdifferent software
architectures that make different trade-offs between compilation
time, execution performance, and developer experience. However,
there is currently no query compiler available that is suitable for
a wide range of workloads. As a result, engineers must develop
compilation-based engines from scratch and reinvent solutions for
reoccurring tasks like the integration of compiler frameworks. Fur-
thermore, system engineers must develop and maintain different
query compilation backends to efficiently support diverseworkloads.
As a result, the selection of a suitable query compilation approach
depends on specificworkload requirements and remains challenging.
Due tobothchallenges, recent commercial systemsoften followinter-
pretation-based architectures to reducedevelopment costs. Similarly,
most research groups cannot afford such engineering efforts. As a re-
sult, the consensus seems toemerge that althoughcompilation-based
engines offer optimal execution performance, vectorized-based en-
gines are easier to adopt as they are easier to develop and maintain.

Totackle thechallenges,wecurrently investigatenovelapproaches
for the development of execution engines that provide the advan-
tages of query compilation without sacrificing developer produc-
tivity. In particular, we focus our research on three aspects: First,
we plan to revisit the implementation interface for data processing
operators in query-compilation-based engines. Such an interface
has to hide the complexity of code generation and enable engineers
towrite imperative code that is easy to develop, debug, andmaintain.
Second, we plan to investigate compiler techniques, such as tracing
and partial evaluation, to translate imperative operators to a unified
intermediate representation. This enables the engine to specialize
query execution towards particular workload requirements, e.g.,
minimizing startup latency or maximizing execution performance.
Third, we plan to provide the components of our query execution
engine as extendable and composable modules. This will enable
to build or extend data processing systems with our research out-
come. Finally, we intend to use the resulting query compiler as the
foundation for our data processing system NebulaStream [9].

REFERENCES
[1] Alexander Behm et al. 2022. Photon: A Fast Query Engine for Lakehouse Systems.

In SIGMOD.
[2] Peter A Boncz et al. 2005. MonetDB/X100: Hyper-Pipelining Query Execution..

In CIDR.
[3] Henning Funke et al. 2022. Low-latency query compilation. The VLDB Journal

(2022).
[4] PhilippM. Grulich et al. 2020. Grizzly: Efficient stream processing through adaptive

query compilation. In SIGMOD.
[5] Philipp M. Grulich et al. 2021. Babelfish: Efficient execution of polyglot queries.

VLDB.
[6] Timo Kersten et al. 2021. Tidy Tuples and Flying Start: fast compilation and fast

execution of relational queries in Umbra. The VLDB Journal (2021).
[7] Thomas Neumann. 2011. Efficiently compiling efficient query plans for modern

hardware. VLDB.
[8] Mosha Pasumansky et al. 2022. Assembling a Query Engine From Spare Parts.

VLDB (2022).
[9] Steffen Zeuch et al. 2019. The NebulaStream Platform: Data and Application

Management for the Internet of Things. In CIDR.


	References

