
Is Scalable OLTP in the Cloud a Solved Problem?
Analyzing Data Access for Distributed OLTP Architectures

Tobias Ziegler
tobias.ziegler@cs.tu-

darmstadt.de
Technische Universität

Darmstadt

Philip A. Bernstein
philbe@microsoft.com
Microsoft Research

Viktor Leis
leis@in.tum.de

Technische Universität
München

Carsten Binnig
carsten.binnig@cs.tu-

darmstadt.de
Technische Universität
Darmstadt & DFKI

Abstract
Many distributed cloud OLTP databases have settled on a shared-
storage design coupled with a single-writer. This design choice is
remarkable since conventional wisdom promotes using a shared-
nothing architecture for building scalable systems. In this paper, we
revisit the question of what a scalable OLTP design for the cloud
should look like by analyzing the data access behavior of differ-
ent systems. We find that a shared-storage design that supports
multiple writers, combined with a coherent cache, has desirable
properties for building scalable OLTP systems. For instance, this de-
sign provides scalability of writes and skewed reads by caching hot
tuples on demand. At the same time, this design does not require
user-defined partitioning and two-phase commit in contrast to a
shared-nothing design. We present the lessons learned from build-
ing a multiple-writer cache-coherent cloud OLTP DBMS to show
this architecture’s merits and present open research challenges.

1 Introduction
The Cloud is Taking Over. The DBMS market has shifted signifi-
cantly from on-premise to the cloud in the last few years. According
to a recent market report1, in 2021 DBMS revenue in the cloud was
on par with the on-premise market. Given current growth rates,
the cloud DBMS market will be substantially larger by CIDR 2023.
Consequently, classical DBMS vendors such as IBM and Oracle
have been or are about to be overtaken by hyperscalers such as
AWS, Microsoft, and Google, which have heavily invested in their
cloud-native DBMSs.
Cloud-Native OLTP. Looking at cloud-native OLTP DBMSs, we
see an interesting trend: Many commercially-available systems
such as Amazon Aurora [53] and Microsoft Socrates [2], use a
disaggregated design (shared-storage) coupled with the primary-
secondary paradigm. In this design, all write transactions go to
the primary node, which sends its write-ahead log to the shared
storage so that secondary nodes can access it. The storage nodes
use the log to reconstruct the data pages in the background. Those
reconstructed pages can be read by secondary nodes on demand
and thus be spawned at any time with low overhead. While this
design provides important features such as hot fail-over as well
as elasticity and load-balancing for read-dominated workloads, it

1https://blogs.gartner.com/merv-adrian/2022/04/16/dbms-market-transformation-2021-the-big-picture/

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2023. 13th Annual Conference on
Innovative Data Systems Research (CIDR ’23). January 8-11, 2023, Amsterdam, The
Netherlands.

is limited by the capacity of the primary node – particularly for
write-intensive workloads, which are common in OLTP [9].
Decades of OLTP Research. The design choice of using a shared-
storage architecture with a single writer node is remarkable since
decades of research proposed different designs for building scalable
distributed systems [21, 24, 34, 41]. For example, many early OLTP
systems promoted the use of the shared-nothing architecture for
scaling OLTP beyond the capacity of a single machine [21, 37]. An
alternative is a shared-storage architecture with multiple read-write
nodes, which has been used successfully since the 1980s. It is imple-
mented in on-premise systems such as IBM DB2 Data Sharing [20],
DEC’s Rdb/VMS for VAXcluster [30], and Oracle RAC [7].
Research Question. Why have modern commercial cloud DBMSs
not adopted these scalable designs? We believe there are several
reasons: First, despite the substantial body of research, the rise
of the cloud has disrupted our understanding of the landscape
and tradeoffs of different DBMS designs. For example, it was of-
ten thought that the shared-nothing architecture is preferable for
building distributed DBMSs. However, this is no longer so clear
with cloud DBMSs that use shared storage. Second, even though
promising shared-storage designs have been proposed and used in
on-premise DBMSs, many of their core aspects crucial for a truly
scalable cloud OLTP DBMS have yet to be fully explored. Third,
some of the techniques for scalable OLTP are quite complex and
may be risky to deploy at cloud scale. Simpler and more robust
techniques are needed.
Mapping the OLTP Landscape. In this paper, we explore the
design space of distributed OLTP DBMSs to help system developers
to understand their fundamental differences for the cloud. More
specifically, we analyze the data access path of distributed OLTP
systems to understand their scalability properties. We observe that
the old taxonomy of shared-storage and shared-nothing does not
fully capture the scalability properties of modern cloud DBMSs.
For instance, it was usually assumed that a shared-storage system
allows many machines to perform updates. However, many cloud
DBMSs today only allow a single read-write node, which limits
the system’s scalability. Therefore, as the first contribution in this
paper, we distill the data access behavior of distributed OLTP DBMS
designs that have been proposed over several decades. We organize
the design space into three data access archetypes with different
features and scalability behaviors.
Towards a Scalable Cloud OLTP DBMS. As a main result, by
analyzing the different OLTP archetypes, we show theoretically and
experimentally that a shared-storage design supporting multiple
writers, combined with a coherent cache, has desirable properties
for building scalable OLTP systems. We advocate that future cloud

1

https://blogs.gartner.com/merv-adrian/2022/04/16/dbms-market-transformation-2021-the-big-picture/


Table 1: Data Access Archetypes for Analyzing the Asymptotic Scalability of Cloud OLTP DBMSs.

Single-Writer Partitioned-Writer Shared-Writer
No Coherent Cache Coherent Cache

Systems based
on Archetypes

AWS Aurora [53],
Azure SQL HyperScale [2],
PolarDB [28], AlloyDB [14]

System R* [37], Spanner [8],
YugabyteDB [18], H-Store [21]
CockroachDB [50]

NAM-DB [58],
Sherman [54]

ScaleStore [60], Oracle RAC [40],
IBM DB2 Data Sharing [20],
GAM [5], DEC VAXcluster [30]

Q
ua
lit
.

Fe
at
ur
es Data Access Path Single-writer, multiple readers One writer per partition Writers update (remote)

shared storage
Writers update cache-local data
governed by coherence protocol

System Complexity Low Medium Medium High
Elasticity† Only Reads Limited Yes Yes

A
sy
m
pt
ot
ic

Sc
al
ab
ili
ty

Uniform Reads Yes†† Yes Yes Yes
Uniform Writes No Yes Yes Yes
Skewed Reads Yes†† Yes†† Yes†† Yes
Skewed Writes No No No No

(†) Elasticity w.r.t. compute and storage separately (††) Only with the number of secondaries, i.e., replicas.

DBMSs be based on this archetype. However, many challenges exist,
and building blocks still need to be added to enable a full cloud
DBMS based on a shared-caching design. As a second contribution,
we discuss lessons learned from building such a cloud-native system
and present research opportunities for the community.

2 OLTP Data Access Archetypes
Four decades of OLTP research have led to a plethora of distributed
OLTP DBMS designs. In 1985, Stonebraker provided a taxonomy
for distributed DBMSs with the famous categorization into shared-
nothing and shared-storage architectures that can be found in many
DBMS textbooks today [48]. In a shared-nothing architecture, each
node has private storage that is not accessible to other nodes. In a
shared-storage architecture, all nodes have access to a single stored
copy of the database.
Revisiting the Old Taxonomy. Although these designs are still
relevant, changes in the system landscape make it worth revisiting
the categorization. The reason is that many of today’s systems are
hard to characterize with the traditional taxonomy. For instance,
many cloud-based shared-storage systems, such as Aurora single
master and Azure SQL Hyperscale, only permit one update node to
avoid the problem of coordinating multiple writers for buffer cache
coherence. By contrast, the classical taxonomy assumed shared-
storage systems allow many update nodes.

Conversely, in the classical taxonomy, it is assumed that a shared-
nothing system allows only one node to update a given data item.
However, many shared-nothing database systems today allow mul-
tiple nodes to update node-private replicas of the same data item.
This is commonly called multi-master, which leads to entirely dif-
ferent scalability properties. Another shared-nothing design allows
multiple nodes to accept update requests on a given data item and
forward them to the one-and-only node that is allowed to process
updates on that data item.We call this pseudo multi-master. The con-
ventional taxonomy does not highlight such differences, which are
important for differentiating the scalability properties of systems.
A New Taxonomy for OLTP DBMSs. Therefore, we propose a
taxonomy that focuses on the data access path, which is another
useful basis for capturing the scalability properties of systems. Our
taxonomy allows us to analyze asymptotic scalability, that is, how
well a system scales w.r.t the number of nodes for basic data access

operations when increasing the load in the system. As shown in
Table 1, we look at fundamental operations for OLTP, namely key-
based reads and writes for uniform and skewed key distributions.

The old taxonomy focused heavily on transaction synchroniza-
tion problems that arise in each design, e.g., whether it requires
two-phase commit for transaction atomicity or global lock manage-
ment to synchronize buffer caches. In our taxonomy, we instead
mainly focus on the storage layer, i.e., the data access path, since it is
fundamental for any OLTP DBMS to execute reads/writes scalably.
In our discussions, we omit logging, recovery, and concurrency
control [3, 32, 57] that are thoroughly investigated by Harding
et al. [16], and Bernstein and Goodman [4]. We also omit deter-
ministic databases [13, 31, 51]. Although they have some desirable
properties, major cloud service providers do not offer them today.

We map the design space into the three data access archetypes
shown in Table 1. An archetype can be considered the “phenotype
of a DBMS” that determines its observable asymptotic scalability
independent of its implementation details. Sections 2.1 - 2.3 describe
the data access archetypes and their asymptotic scalability in more
detail. Section 2.4 shows how our taxonomy is more descriptive for
modern cloud DBMSs and highlights where the previous classifica-
tion did not convey the data access properties. Section 2.5 discusses
the effect of storage latency on the behavior of different archetypes.

2.1 Archetype: Single-Writer
In the Single-Writer archetype, a single read-write node (RW-node)
processes update transactions, and multiple read-only nodes (RO-
nodes) can handle read-only transactions. We depict the basic archi-
tecture of systems that implement this archetype in Figure 1. Many
modern cloud DBMSs, such as AWS Aurora (single-master), Azure
SQL Hyperscale, PolarDB, and AlloyDB use shared-storage. They
support multiple nodes accessing a single stored database copy, but
only one dedicated RW-node can execute updates. We classify such
systems as Single-Writer systems.

While Figure 1 shows a Single-Writer with shared-storage, many
DBMSs with private storage also fall into this category. For example,
a MySQL instance in which the primary node executes reads and
writes and replicates writes to read-only replicas is also categorized
as Single-Writer even though the primary and replicas have node-
private storage. The strictly separated data access permission is the
distinguishing feature, not whether the storage is shared or private.

2



RW Node R Node R Node

Shared-
Storage

Figure 1: Archetype Single-Writer

Asymptotic Scalability. The asymptotic scalability of this arche-
type can be summarized as follows: Writes in this archetype are
limited by the capacity of the single RW-node. By contrast, read
throughput can scale well by spawning more RO-nodes.

Still, the concrete performance characteristics of systems can
vary due to other design decisions. For instance, cloud DBMSs with
a replicated shared-storage can spawn RO-nodes very fast and react
to an increase in read-only transactions. On the other hand, a mir-
rored instance may take longer to deploy an additional RO-node,
since it requires creating another copy of the database. Further-
more, some Single-Writer systems can attain high throughput on
large multi-core processors. However, their asymptotic scalability
remains bounded by their limitation of a single RW-node.
Qualitative Features. This design provides important features for
the cloud, such as fast failover and elasticity for read-dominated
workloads. Similarly, the separation of compute and storage allows
cloud vendors to handle growing data sets. At the same time, the
systems’ complexity is often lower since they only need to support
a single-writer.

2.2 Archetype: Partitioned-Writer
In the Partitioned-Writer archetype, the database is split into par-
titions, each of which can be updated by only one RW-node. As
shown in Figure 2, this archetype exploits data partitioning to
spread the data across several nodes that are responsible for exe-
cuting read-write operations on their local partition.

Like the Single-Writer design, the Partitioned-Writer archetype
is a popular one for commercial cloud DBMSs. Examples include
CockroachDB [25], AWS DynamoDB [45], Azure CosmosDB [33],
and Spanner [8]. Most of these systems implement a coordination
protocol, such as two-phase commit, to ensure atomicity of cross-
partition transactions.

In our taxonomy, the data access path is the distinguishing fea-
ture, not whether the system uses instance local storage or (par-
titioned) disaggregated storage. The latter is commonly used in
the cloud since a single partition can be dispersed to multiple stor-
age nodes. In contrast, instance local storage typically offers lower
latency albeit with a fixed storage capacity (see Section 2.5). Regard-
less of these implementation details, Partitioned-Writer systems
provide the same asymptotic scalability as discussed next.
Asymptotic Scalability. In contrast to the Single-Writer design,
DBMSs that implement the Partitioned-Writer archetype can han-
dle uniform reads and writes in a scalable manner since they can
process each partition’s workload independently. However, skewed
workloads can be challenging, since requests for hot keys are always
processed by the same RW-node.

RW NodeRW Node RW Node

Partition 3Partition 2Partition 1

Figure 2: Archetype Partitioned-Writer

One technique to handle read-skew is to couple this archetype
with additional RO-nodes (e.g., per partition) similar to Single-
Writer systems. However, this needs more resources for database
copies and requires propagating updates to RO-nodes to keep them
in sync. Since adding RO-nodes is an orthogonal mechanism that
can be used for any archetype, in the rest of the paper, we dis-
cuss each archetype in its pure form. This way, we can identify
archetypes that provide scalability under read-skew without need-
ing additional resources.
Qualitative Features. Classical partitioned systems offered lim-
ited elasticity since adding new nodes typically called for a full
repartitioning of the database. Modern cloud DBMSs have added
several optimizations to address this issue, e.g., consistent hash-
ing or fine-grained range partitioning. For example, CockroachDB
uses a fine-grained range partitioning of data chunks, which avoids
a complete repartitioning and improves elasticity. However, fine-
grained partitioning can add complexity and overhead to locating
data. To address this, CockroachDB stores data in a monolithic
sorted map of key-value pairs and uses it to route queries to the
responsible RW-node of a partition. Overall, the elasticity of a
Partitioned-Writer system depends on the workload characteristics
and the system’s ability to repartition the data efficiently.

Although this archetype sounds very similar to the shared-no-
thing architecture, many shared-nothing DBMSs can not be clas-
sified as Partitioned-Writer, and thus, their asymptotic scalability
is different. For instance, some shared-nothing systems are multi-
master. While they still use partitioned storage the data is replicated
and can be modified by multiple RW-nodes leading to a different
scalability behavior. The next archetype Shared-Writer captures
this data access pattern.

2.3 Archetype: Shared-Writer
The Shared-Writer archetype allows multiple RW-nodes to modify
data items – typically by utilizing shared-storage. Several recent re-
search OLTP systems, such as NAM-DB [58], and a few established
systems, such as Oracle RAC, can be classified as Shared-Writer
systems. Because data must be kept consistent across writers, these
systems must address the buffer-cache coherence problem [38, 44].
There are two ways of doing this: nodes always write and read from
the shared storage to get the ground truth (No Coherent Cache),
or the nodes participate in a cache coherence protocol (Coherent
Cache). In the following, we will drill into these two cases.

2.3.1 Shared Writer with no Coherent Caches

First, we consider Shared-Writer systems without coherent caches.
As shown in Figure 3, these systems support multiple RW-nodes
that write to and read from the storage layer.

3



RW NodeRW NodeRW Node

Shared-
Storage

Figure 3: Archetype Shared-Writer without Coherent Cache

Asymptotic Scalability. In contrast to the Partitioned-Writer
archetype in which only one RW-node writes to a partition, the
Shared-Writer design allows every compute node to be an RW-
node and to access every data item. Nevertheless, the Shared-Writer
archetype has the same asymptotic overall scalability. For exam-
ple, under access skew, the storage layer might receive requests
from multiple RW-nodes and become a bottleneck, limiting the
scalability of both writes and reads.
Qualitative Features. In the Partitioned-Writer design, compute
and storage resources are usually scaled together. This is inflexible
because the need to store more data or do more computation may
change at different rates. Using a Shared-Writer design, we can
scale compute and storage resources independently depending on
the demand. This enables better data scalability and elasticity since
any compute node can access any data item which is a desired
property in the cloud.

However, one major challenge in this design is locating the data
items in the storage layer. Like modern Partitioned-Writer DBMSs,
modern disaggregated OLTP DBMSs use an index to locate items.
The index resides remotely in storage and is accessed by compute
nodes to find relevant data items. This additional requirement for
indexes increases system complexity as shown in Table 1.

2.3.2 Shared-Writer with Coherent Caches

The main downside of the previous sub-archetype (No Coherent
Cache) is that every data access involves a network round trip to the
storage layer, even for repeated access. Caching can considerably
reduce that latency by keeping recently accessed data items in the
compute nodes’ memory. In this archetype, we specifically consider
coherent caches. These caches support shared writers and allow
caching read-only data locally while keeping the data coherent (i.e.,
data does not become stale). Shared-Writer with coherent caches is
similar to Single-Writer and Partitioned-Writer with synchronous
or eager asynchronous replication since the replicas are essentially
caches for reads. The difference is that the caches in this archetype
are updatable.

Figure 4 shows that this archetype is, at first glance, similar to
the previous Shared-Writer design. However, the coherent caches
impact the asymptotic scalability as discussed in the following.
Asymptotic Scalability. This archetype has the best asymptotic
scalability of all archetypes. The benefit of coherent caches is that
they allow replicating frequently accessed (i.e., hot) data items
on demand across multiple nodes. This workload-driven approach
differs from the classical replication used in the previous archetypes.
Using the coherent cache, systems of this archetype can handle
read skew efficiently, as shown in Table 1.

RW NodeRW NodeRW Node

Shared-
Storage

Coherent Cache

Figure 4: Archetype Shared-Writer with Coherent Cache

Unfortunately, skewed writes can also not be processed in a
scalable manner. This is no different than the other archetypes
since each update must be exclusively handled by a single node to
keep the data consistent. However, the cache coherence protocol
may lead to the write privilege bouncing between compute nodes
since all compute nodes can modify all data items. Solving this
requires complex synchronization, a challenging problem.
Qualitative Features.While coherence protocols are non-trivial
to implement efficiently, they provide many benefits. Compared
to operating directly on the shared-storage, shared-caching makes
accessing and maintaining remote indexes easier since index nodes
are cached on demand. For instance, when an index node is updated,
e.g., a B-Tree leaf, the cache-coherence protocol invalidates other
copies of the index node and delivers the newest data version when
the leaf is re-accessed.

Furthermore, the caching-based design provides good elasticity.
Admittedly, this is more complicated than in the previous archetype
without a cache since the coherence protocol must be designed ac-
cordingly (see Section 3.3). A new compute node can be added at
any time, incrementally filling its cache as data items are accessed.
In addition, these systems can handle easy- and hard-to-partition
workloads. They do not require user-defined partitioning but still
profit from partitionable workloads. Moreover, they have the flexi-
bility to react to changes in workload distribution.

The lesson from our analysis is that a caching-based design is
very promising for cloud DBMSs. Compared to the other archetypes,
it has the best asymptotic scalability and provides data scalability
and elasticity.

2.4 Categorizing Systems with Archetypes
In the following, we discuss how our new taxonomy can be used
for categorizing the scalability properties of existing systems.
New Taxonomy Focuses on Data Access. As mentioned be-
fore, we see the archetypes introduced in our taxonomy as themes
that better help developers understand the scalability properties
of DBMSs. This is in contrast to the old taxonomy, which often
falls short in classifying systems. A good example where the old
taxonomy fails to express the system’s scalability is FaRM [10] from
Microsoft.

With the old taxonomy, this system cannot be easily classified as
a shared-nothing or a shared-storage design rendering the discus-
sion of the scalability properties difficult. FaRM provides a shared-
storage abstraction in which workers can read data from every
other node. Thus, for reads FaRM behaves as a shared-storage sys-
tem. However, updates are shipped to the partition owner as in a

4



shared-nothing. So it is unclear if the scalability characteristics are
inherited from shared-storage or shared-nothing.

Instead, we can categorize FaRM as a Partitioned Writer using
our taxonomy. That is, while every node can read from every other
node, the writes are performed by the RW-nodes, which own the
partition. Therefore, the system’s asymptotic scalability is inherited
from the Partitioned Writer design.
MultipleArchetypes forOne System.Another interestingDBMS
is Aurora multi-master [12, 27, 46], in which all DB nodes can be
writers. This contrasts with Aurora’s single-master, in which only
one DB node can act as a writer. While Aurora single-master fits
our Archetype of a single-writer and has the above-discussed char-
acteristics, Aurora multi-master is a Shared-Writer system since it
allows multiple compute nodes as writers.

Aurora multi-master allows each RW-node to read and write
the whole database. It uses optimistic concurrency control (OCC)
to detect conflicts with operations from other writers. The under-
lying storage system is very similar to Aurora single-master [53],
except that it performs the OCC test. A writer sends each update
to all storage replicas with a copy of the data it wrote. A storage
replica accepts the first write it receives for the latest page version
and rejects ones that arrive later. The write succeeds if a quorum
of storage servers accepts it. Otherwise, the write fails, and the
transaction that issued the write aborts.

Writers send their committed updates to other writers, which the
other writers use to update their cache. This is how Aurora main-
tains a weak form of cache coherence. It is weak in the sense that
stale versions of an updated page are not immediately invalidated
in all caches. It is similar to update propagation on replicas in a
single-writer system, but for a different purpose. Here, update prop-
agation increases the chance that future writes by a node operate
on fresh data and, hence, will be accepted by the OCC check.
Caching in Single-Writer Systems. A third interesting system
is PolarDB Serverless [6]. While traditional PolarDB is very simi-
lar to AWS Aurora due to using log servers and log replay on the
RO-nodes, PolarDB Serverless uses a cache-coherence protocol to
update the RO-nodes. Yet, the fact that they use a cache coher-
ence protocol does not turn PolarDB Severless into a shared-writer
system since the data access path only allows a single RW-node.
Optimizations for Partitioned-Writer. A further relevant re-
search direction is shared-nothing databases that dynamically repar-
tition data. Several papers repartition the shards online when (se-
vere) workload imbalances are detected [11, 23, 29, 42, 49, 55]. This
process balances the load at runtime while minimizing the impact
on running transactions. This allows Partitioned-Writer databases
to behave similarly to the shared-writer archetype with a coherent
cache in that they can scale better than Single-Writer under skew.
However, the fundamental difference is that only one RW-node can
process operations on a given partition; thus, adapting to changing
workloads requires expensive repartitioning. As such, very skewed
workloads can still overload a partition and limit scalability.

2.5 The Importance of Latency
So far, our discussion of scalability has focused exclusively on
throughput. However, latency is also an important factor for OLTP
performance since it influences lock holding times and other factors

that can affect the throughput of an OLTP DBMS. In the following,
we first discuss factors that influence latency and ways it affects
throughput. We then discuss considerations on how to reduce it.
The Importance of Latency to Throughput. Latency in an OLTP
DBMS depends very much on workload characteristics. Transac-
tions that need to navigate the relationships between tuples of
different tables can require many storage accesses. Tuples have
complex and sometimes subtle relationship graphs in the form of
joins, foreign keys, being modified by the same transaction, being
part of the same group by clause, matching the same filters, etc. Eval-
uating those relationships and maintaining their integrity typically
requires many separate sequential memory accesses, which drives
up response and lock holding time, which reduces throughput.

Transaction latency could be seen as independent of throughput
scalability. But in practice higher transaction latency is quite prob-
lematic at scale. For example, many distributed relational DBMSs
adopt the protocol of an existing relational DBMS, such as Post-
greSQL, to support existing libraries and tools. These protocols are
typically synchronous and interactive, which effectively bounds
achievable throughput to the number of sessions divided by aver-
age response time. Increasing the number of sessions to achieve
higher throughput is not always practical and generally has ad-
verse effects such as increasing memory pressure and resource
contention. Higher response time also leads to longer lock holding
time, which further limits achievable concurrency and throughput.
Finally, tools and libraries built for a single-node relational DBMS
rarely anticipate high response times. For instance, web develop-
ment frameworks routinely do a dozen sequential queries for a
single page load because they expect queries to return in less than
a millisecond. In the cloud, that can take much longer. Custom li-
braries and protocols could help achieve scalability in the presence
of high response times, but that limits applicability. Thus, even
if throughput is a more important user requirement than latency,
optimizing latency is essential to reach the throughput goal.
Cutting Latency by Push-down. Storage latency contributes
to transaction latency and hence can limit throughput scalability.
Storage latency in the cloud is relatively high, since there is rarely
enough capacity to have all servers in close proximity, e.g., in the
same rack. Moreover, close proximity might be undesirable since it
degrades availability due to correlated failures. One way to reduce
storage latency is by using node-local storage instead of disaggre-
gated storage. However, this is typically not desirable in the cloud
since this prevents not only independent scalability of the storage
but also hinders other properties, such as elasticity. A technique
that helps to reduce latency in systems that use a disaggregated
(shared) storage design is to push down the access to storage servers.
While this is harder to do in a shared-storage DBMS that uses a
simple file system, it is conceivable with a shared-storage DBMS
with a custom-built storage system, such as Aurora and SQL Server
Hyperscale. However, computation push-down risks consuming
too much of the storage system’s limited compute capacity, thereby
increasing the latency of simple storage accesses. Exploring query
and update push-down to the storage layer of OLTP systems is thus
potentially an interesting research opportunity.
Cutting Latency by Caching. Another direction in a shared-
storage system that can mitigate the impact of storage latency is
keeping the working set in a node-local cache which is possible for

5



all archetypes as discussed before. This cache can avoid distributed
processing of transactions and thus remote data accesses. Moreover,
caching can be used by both RW-nodes and RO-nodes. However,
caching designs come with their own challenges. For example, to
ensure that read-only replicas remain fresh, they need to apply
the log of committed updates to their cached data. Hence, cutting
down the latency of log replay is one interesting challenge. Another
research opportunity in disaggregated (shared-storage) designs is
to find efficient ways to mitigate storage latency when the working
set does not fit in the cache.
Latency and Throughput are Important. In summary, our anal-
ysis of the throughput scalability of archetypes is only part of the
story. When latency is taken into account, the tradeoffs can be
even more complex. This is also reflected in the discussions of the
following section.

3 Towards a Scalable Cloud OLTP DBMS
Section 2 showed that a design with shared-writers and coherent
caches, in the following called shared-cache systems, provide the
best asymptotic scalability and are a solid foundation for modern
cloud OLTP DBMSs. This section delves deeper into that design.

Therewas a large body of research on shared-cache DBMSs in the
early 1990’s [19, 26, 38, 39, 47]. Several commercial OLTP DBMSs
of that era used that design, such as IBM DB2 Data Sharing [20],
DEC’s Rdb/VMS for VAXcluster [30], and Oracle RAC [7]. However,
these approaches were not designed for the cloud. Some systems
relied on proprietary hardware, such as the coupling facility of IBM,
that limit multi-cloud support since the custom interconnection
hardware is unlikely to be supported in other vendors’ clouds.

Meanwhile hardware has been evolving. Today, we rely on data
center networks and large multicore servers. Customizable pro-
cessors, such as FPGAs and ASICs, are becoming commonplace.
To minimize cost, multitenancy is usually needed. And although
Oracle is actively working on optimizing Oracle RAC for the cloud2,
the research community has not been focusing on shared-cache
DBMSs for some years. Given these trends, we believe it is time
to revisit, adapt, and improve upon existing research to design a
cloud-native DBMS. We are not the only researchers with this sen-
timent. Mohan pointed out in his keynote that much of the work
done in this area can now be reused in cloud DBMSs [35].

In the past year, some of us have started to build a new cloud
shared-caching OLTP DBMS called ScaleStore3[60]. In the follow-
ing, we first discuss ScaleStore’s design and then present research
opportunities.

3.1 A Blueprint for a Shared-Caching DBMS
A key feature of shared-caching systems is that they do not rely on
statically partitioned data. Instead, compute nodes cache data dy-
namically based on the access patterns of a workload. For instance,
consider the index shown in Figure 5(i), which consists of pages
P1-P5. We can see that the three compute nodes can cache different
index pages depending on their workload.

2https://www.oracle.com/technetwork/database/options/clustering/overview/new-
generation-oracle-rac-5975370.pdf
3https://github.com/DataManagementLab/ScaleStore

P1

P2 P3 P4 P5C
om

pu
te

St
or

ag
e

P1 P2 P1 P2 P4 P1

P5P4

P1 P4 P2 P3

Node0 Node1 Node2

Node3 Node4 Node5

Directory: Directory:

P3

N3

N3
N5

N4
N4

(a-b) (c-d) (e-f) (g-h)

ii) Consistent Hashing Sec. 3.3

P1

P2

P4

P5

P3

i) Blueprint Design

P5
Directory:

Figure 5: Shared-Cache Design of ScaleStore

Invalidation-based Coherence Protocol. Because an index page
can be cached on multiple nodes (e.g., the root of the index P1),
a coherence protocol is necessary. Thus, modifying a page in one
node makes all copies of that page in other nodes obsolete. The
coherence protocol has to ensure that these changes are detected
so that nodes can access the most recent page. ScaleStore uses a
directory-based invalidation-based protocol which provides sequen-
tial consistency at page-granularity. Thus, whenever a node plans
to modify a page, other nodes must invalidate the page. However,
instead of broadcasting the modification intent to all nodes, we
use directories to track nodes that currently cache the page. Conse-
quently, we send the invalidations only to the required nodes. Note
that recently proposed memory coherence protocols [56, 59] are
attractive alternatives to a directory coherence protocol and need
to be evaluated in a distributed DBMS.
Directory per Storage Node. Every storage node is a directory for
some of the pages as shown in Figure 5(i). Storage nodes keep track
of those pages that are stored on them. For instance, Node 3 is the
directory of P1 and P4. The directories are mainly responsible for
managing the metadata for the invalidation-based cache coherence
protocol. In Figure 5(i) this metadata is depicted in the tables on
the storage nodes and reflects the state of the compute caches. For
instance, P5 is held in exclusive-mode by Node 2 whereas P1 is
cached on all compute nodes in shared-mode. Since tracking on a
per-tuple granularity would be prohibitively expensive, we organize
multiple tuples in fixed-size pages to amortize the bookkeeping
overhead. These pages (e.g., 4 KB) are kept coherent across all nodes.
Supporting Arbitrary OLTP Workloads. For cloud DBMSs one
important requirement is that they can support arbitrary (and po-
tentially changing) workloads in a scalable manner. The page-based
organization of data is a perfect fit for supporting primary and
secondary indexes to access data efficiently. Those indexes allow
the user to perform lookups, updates, and short-range scans very
efficiently. Furthermore, the beauty of a page-based index organi-
zation is that every node of a distributed B-Tree is automatically
backed by the coherence protocol. Thus, all participating compute
nodes that currently cache a page observe changes to this page.
In addition, the coherence protocol allows compute resources to
dynamically cache the hot parts of the index (such as the inner
B-Tree nodes). As a result, if the workload changes, the cache will
adapt automatically.

6

https://www.oracle.com/technetwork/database/options/clustering/overview/new-generation-oracle-rac-5975370.pdf
https://www.oracle.com/technetwork/database/options/clustering/overview/new-generation-oracle-rac-5975370.pdf
https://github.com/DataManagementLab/ScaleStore


●

●

●

●

0.0M

0.5M

1.0M

1.5M

2.0M

1 2 3 4
number of compute nodes

T
P

C
−

C
 tx

ns
/s

ec

Figure 6: TPC-C Scale-Out Performance of ScaleStore with 4
Compute and Storage Nodes all Connected with RDMA. We
use 20Warehouses per Compute Node. Every Compute Node
uses 20 Threads.

Proof of Concept.With the current design ScaleStore can already
execute arbitrary OLTP workloads. We implemented a full-fledged
TPC-C benchmark using our B-Trees as primary and secondary
indexes. All experiments are run in read uncommitted mode, since
ScaleStore does not yet implement full transaction semantics. The
invalidation-based coherence protocol as described above only pro-
vides sequential consistency on a page-level. Figure 6 shows the
results for a setup with 4 compute and 4 storage nodes connected
with RDMA. We use 20 warehouses and threads per compute node.
As we can observe, the throughput of ScaleStore scales with the
number of nodes for the write-heavy TPC-C benchmark. This un-
derlines the asymptotic scalability of the storage engine as discussed
in Section 2.

3.2 Caching and Eviction Go Hand in Hand
Modern cloud data center networks are fast – whichmeans that new
pages may be added to the caches of compute nodes at very high
rates. Thus, shared-cache systems need to evict cold, i.e., unused,
pages quickly while making sure that hot pages remain in the
cache. Otherwise, the performance may be impaired significantly.
Although many good page replacement algorithms are known for
single-node systems, optimal performance in a distributed setting
of a shared caching system requires different algorithms.
Why is this hard? Consider an example in which a working set
of 150GB is processed on 4 nodes with a capacity of 50GB each
(total aggregated 200GB). For the sake of simplicity, assume that
we perform uniform point lookups. Clearly, the working set should
fit in the aggregated cache of the compute nodes. Consequently,
no eviction to the secondary storage (i.e., storage nodes) should be
triggered – in theory.

However, when every node only uses a local eviction strategy,
latencies will increase, which affects the performance as illustrated
in Figure 7. The main reason for this non-obvious behavior lies in
the egoistic caching strategy of each node. For instance, if page
𝐴 is cached on all 4 nodes, four slots are used instead of just one.
In the extreme, if every page was cached 4 times, we could only
effectively store 50 GB. This means that the nodes cannot cache
all the data and thus pages may be evicted to secondary storage
instead of simply dropping the cached copies. Note that the nodes
do not know which copies are cached on other nodes as they only
have their local view. The next time a node reads such a page from
secondary storage the latency is much higher than expected. After

Data size

Th
ro

ug
hp

ut

smaller than
aggregated cache

AltruisticEgoistic

Figure 7: Effect of Egoistic vs. Altruistic Eviction when the
Working Set is Smaller than the Aggregated Memory of Com-
pute Nodes.

all, it would be much faster to read from the remote caches than
from secondary storage.
Research Opportunity: Altruistic Eviction. A theoretical so-
lution was proposed 30 years ago [26, 47]. However, we are not
aware of any system that implements these ideas. Even commercial
systems such as Oracle RAC use a sub-optimal local strategy [7].
The main roadblock is that the proposed altruistic approaches rely
on global knowledge, such as page access frequencies and the num-
ber of cached copies of each page. However, global knowledge is
too expensive to maintain in high-performance distributed sys-
tems. Hence, designing a robust and adaptive heuristic could be an
interesting research opportunity.

3.3 Elasticity
Pay-as-you-go pricing is the de-facto standard in the cloud. There-
fore, support for compute and storage elasticity is a major competi-
tive and operational advantage. Scaling the compute layer comes
naturally in a shared-caching system since new compute nodes can
join any time. However, achieving elasticity of the storage layer
needs a more careful design. In the following, we sketch ideas on
how to achieve elasticity in order to scale the storage layer up and
down at runtime.
Research Opportunity: Elastic Storage & Caching. To achieve
elasticity on the storage layer of ScaleStore, some of the state must
be moved whenever a new storage node joins or old one leaves. To
relocate pages in storage, consistent hashing [22] can be used. In
consistent hashing, all nodes are organized in a hash ring which
represents hash-ranges as illustrated in Figure 5(ii). Every node in
the ring is assigned to a specific range, based on the hash of the
page identifiers. The key idea is to leverage the storage layer in
a way such that every physical storage node is placed randomly
multiple times on this ring and thereby responsible for multiple
of those ranges. In our example from Figure 5 we can see that
Node 3 is placed twice on the ring and manages P1 and P4. Once
a storage node leaves the cluster, all its pages are moved to the
neighbors in the ring. For instance, when Node 3 leaves, P1 needs
to be moved to Node 4 and P4 to Node 5. Conversely, whenever
a new node joins it gets some of the pages from its neighbors.
Clearly, using a consistent-hashing scheme provides elasticity and
has been used in the past. However, while the data pages can be
moved asynchronously in the background, moving the directory
(and its tracking data) requires more attention. For example, an

7



inconsistency can arise if two directories manage access to the
same page and they grant exclusive access to different nodes. An
open question is thus how to update the directory state at run-time.

3.4 ACID Guarantees
Currently, ScaleStore is merely a distributed storage engine that
provides page-level sequential consistency but without transac-
tion support. Therefore, let us next discuss how to support ACID
transactions on top of an elastic caching-based DBMS.
Built-In Atomicity and Consistency. A key challenge of dis-
tributed DBMSs is to ensure all nodes agree on whether a particular
transaction commits. In shared-nothing systems, this is achieved
using a two-phase commit protocol (2PC) [15]. In a shared-caching
system, every transaction becomes a local transaction since all of
the transaction’s data can be cached at one node. Thus, 2PC is not
required [23]. Consistency is straightforward too since every com-
pute node can validate declarative constraints locally by simply
loading and accessing the data from the cache/remote nodes.
Research Opportunity: Isolation. There is a rich literature on
locking-based concurrency control in shared-cache systems such
as [19, 39, 43]. For instance, DEC’s Rdb/VMS [19] uses a distributed
lock manager with techniques to reduce the number of network
messages. It uses lock de-escalationwhichmeans that processes will
first acquire a lock on a large granule (e.g., a table) so as to permit
operation on pages or records without additional lock requests.

Along the same lines, Rahm’s Primary Copy Locking scheme [43]
reduces network messages by integrating the concurrency control
with an on-request invalidation coherence scheme. In contrast to
our scheme, which invalidates as soon as they are outdated, on-
request invalidation leaves outdated pages in the cache. Thus every
page access must validate that the page is still up-to-date. This is
achieved by comparing a cached page’s version number with its
version number on the storage node, and incrementing the version
number on updates. Naturally, a lock request can be piggy-backed
with the required validation message. E.g., when a node wants to
read P1 in the cache, it sends a message with the page version and
the shared-lock request to the storage node.

Mohan and Narang [39] describe LP-Locking, a technique that
avoids this piggybacked message altogether by granting local lock
requests as long as the page is cached on the compute node. This
approach is a good fit for ScaleStore’s modus operandi as pages are
cached as long as there is no conflict (i.e., invalidation). However,
their design works at page-granularity, not record-level, which may
impair concurrency in highly parallel systems. We see two possible
approaches to address this difficulty: investigate new techniques
such as contention split [1], which splits pages at contention points
to achieve higher concurrency despite page-level locking; or use
more involved schemes based on record-level locking [38] which,
however, require more network messages and may increase latency.
We think an evaluation-based comparison of these approaches on
modern hardware is an interesting avenue for future work.

The previous schemes rely on pessimistic CC. Another direction
is to evaluate modern optimistic CC schemes [52]. Especially for
ScaleStore, such schemes are interesting as they avoid all shared-
memory writes for read operations. That is, no pages must be
invalidated and thus no network messages must be sent at all. AWS

Aurora uses an optimistic scheme where conflicts are detected
during log replay on storage servers. This solution is simpler than
pessimistic lock protocols. However, the delay in detecting conflicts
significantly limits throughput of transactions on write-hot data,
since it leads to many aborts.
Research Opportunity: Durability & Recovery. Since Scale-
Store organizes data in pages, the standard ARIES-style logging
and recovery mechanism [36] of disk-based DBMSs is applicable.
Typically, this involves a single sequential log for all concurrent
transactions. Having all nodes write sequentially to a central log is
clearly not scalable. A scalable alternative is decentralized logging,
where every node writes its private log file. Since every compute
node can potentially touch any page, the changes for a single-page
can be dispersed across multiple local logs. Consequently, in case of
a failure, those log files must be merged in the storage layer, either
during recovery or online at run-time. Mohan and Narang [38]
describe this approach and provide ARIES-style logging for shared-
cache systems. As shown by Haubenschild et al. [17], single-node
ARIES performance and scalability can be improved with tech-
niques like Remote Flush Avoidance (RFA). Therefore, we believe
that existing schemes [38] should be revisited to further improve
performance and scalability in a modern shared-cache system.

3.5 Cloud Infrastructure and Services
There are also many challenges and opportunities when building
an OLTP DBMS that arise from the fact that come with modern
cloud infrastructures and services.
Cloud Services. So far, we have assumed that the compute and
storage layers are under the control of the DBMS. However, there
are nowmany opportunities to utilize off-the-shelf cloud services in-
stead. Those services may be more cost-effective than hand-rolled
solutions and often come with high availability guarantees. For
instance, AWS’s object store S3 offers built-in replication. A shared-
caching DBMS could use such a storage service to replace the stor-
age layer. Of course, S3 does not offer the directory functionality,
which then must be moved to the compute node or even decoupled
completely into its own layer. Unfortunately, using such a propri-
etary service comes with its own technical challenges. For instance,
S3’s latency is in the tens of milliseconds which is unacceptable in
latency-critical workloads such as OLTP. One could circumvent this
by equipping the compute nodes with SSDs having microsecond
latency to store warm data and only use S3 to read cold data or
save checkpoints/log asynchronously.
Multi-Cloud Support. A further complication is that customers
want multi-cloud support. Thus, when using a storage service, a
DBMS must support the storage services of multiple vendors such
as AWS, Microsoft, and Google. This adds code complexity not
only due to different APIs but also due to different performance,
availability, and cost characteristics. Another challenge is that data
center network latency varies across cloud vendors. RDMA offers
single-digit microseconds latency but it is only available in Mi-
crosoft Azure and only for certain virtual machine types. EFA is
AWS’s low-latency network offering, which has 10× higher latency
than RDMA [61]. Therefore, a latency-adaptive coherence and evic-
tion protocol is required. That is, buffer-to-buffer communication
may not be faster than reading from a VM’s local SSD, which means

8



that the coherence protocol should load and cache pages to local
SSD. Conversely, the eviction should adapt for the use of the egois-
tic variant (cf. Section 3.2), which is inefficient if buffer-to-buffer
communication is fast, but preferable if remote accesses are costly.
Hyperscaler Opportunities. Hyperscalers have many possibil-
ities to co-design services and infrastructure. For instance, Mi-
crosoft rolled their own internal low-latency logging service called
XLOG [2]. Another trend is that data center networks are equipped
with programmable switches and network cards. This opens the
possibility to embed the coherence protocol and conflict resolution
inside the network. For instance, the directory can be placed inside
the switches and thus be completely transparent to the DBMS.
Multitenancy and Workload Placement. Another exciting av-
enue of work is multitenancy and workload placement. A scalable
system allows multiple tenants to execute their workload in the
same instance, necessitating fairness in resource allocation and
isolation between tenants. Of course, this is a challenging task
that requires policies and strategies but enables better resource uti-
lization. Especially coupled with workload placement which could
allow pairing customer workloads that are more CPU intensive with
other customer workloads which require more I/O. The flexibility
of shared-caching systems allows to provision additional compute
instances to avoid SLA violations. Therefore, such a system is pre-
destined to run autonomously in the cloud, e.g., as a backend for
Database-as-a-Service.

4 Summary
The title of this paper asked if scalable OLTP in the cloud is a
solved problem. To approach this question, we analyzed the data
access path of different distributed OLTP systems and devised a
taxonomy that helps to characterize their asymptotic scalability.
We found that most modern cloud systems are either based on the
single-writer or the partitioned-writer paradigm. While these archi-
tectures certainly have their merits, we believe that the elasticity
and scalability properties of a shared-cache design (shared-writer
with coherent caches) is a better foundation for building cloud-
native OLTP DBMSs. In this paper, we presented our findings and
lessons learned from building such a DBMS. However, as we out-
lined in this paper, many interesting research opportunities must
be solved to build a full-fledged shared-cache DBMS for the cloud.

Acknowledgments
This workwas partially funded by the German Research Foundation
priority program 2037 (DFG) under the grants BI2011/1 & BI2011/2,
the DFG Collaborative Research Center 1053 (MAKI), the BMBF
and the state of Hesse as part of the NHR Program. We also thank
hessian.AI and DFKI for the support.

We thank Marco Slot for insights about the importance of low
latency access, and the anonymous CIDR reviewers for many ex-
cellent suggestions on improving our original submission.

References
[1] Adnan Alhomssi and Viktor Leis. 2021. Contention and Space Management in

B-Trees. In CIDR.
[2] Panagiotis Antonopoulos, Alex Budovski, Cristian Diaconu, Alejandro Hernandez

Saenz, Jack Hu, Hanuma Kodavalla, Donald Kossmann, Sandeep Lingam, Umar Fa-
rooq Minhas, Naveen Prakash, Vijendra Purohit, Hugh Qu, Chaitanya Sreenivas

Ravella, Krystyna Reisteter, Sheetal Shrotri, Dixin Tang, and Vikram Wakade.
2019. Socrates: The New SQL Server in the Cloud. In SIGMOD.

[3] Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan Prab-
hakaran, Michael Wei, John D. Davis, Sriram Rao, Tao Zou, and Aviad Zuck. 2013.
Tango: distributed data structures over a shared log. In SOSP.

[4] Philip A. Bernstein and Nathan Goodman. 1981. Concurrency Control in Dis-
tributed Database Systems. Computing Surveys (1981).

[5] Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant Agrawal, Gang Chen,
Beng Chin Ooi, Kian-Lee Tan, Yong Meng Teo, and Sheng Wang. 2018. Ef-
ficient Distributed Memory Management with RDMA and Caching. PVLDB
(2018).

[6] Wei Cao, Yingqiang Zhang, Xinjun Yang, Feifei Li, Sheng Wang, Qingda Hu,
Xuntao Cheng, Zongzhi Chen, Zhenjun Liu, Jing Fang, Bo Wang, Yuhui Wang,
Haiqing Sun, Ze Yang, Zhushi Cheng, Sen Chen, Jian Wu, Wei Hu, Jianwei Zhao,
Yusong Gao, Songlu Cai, Yunyang Zhang, and Jiawang Tong. 2021. PolarDB
Serverless: A Cloud Native Database for Disaggregated Data Centers. In SIGMOD.

[7] Sashikanth Chandrasekaran and Roger Bamford. 2003. Shared Cache - The Future
of Parallel Databases. In ICDE.

[8] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, Wilson C. Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. 2013. Spanner: Google’s Globally Distributed
Database. ACM Trans. Comput. Syst. (2013).

[9] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-
Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking Relational
Databases. VLDB (2013).

[10] Aleksandar Dragojevic, Dushyanth Narayanan, Miguel Castro, and OrionHodson.
2014. FaRM: Fast Remote Memory. In NSDI.

[11] Aaron J. Elmore, Vaibhav Arora, Rebecca Taft, Andrew Pavlo, Divyakant Agrawal,
and Amr El Abbadi. 2015. Squall: Fine-Grained Live Reconfiguration for Parti-
tioned Main Memory Databases. In SIGMOD.

[12] Steve Abraham Eric Boutin. 2019. AWS re:Invent: Amazon Aurora Multi-Master:
Scaling out database write performanc. https://www.youtube.com/watch?v=
p0C0jakzYuc

[13] Jose M. Faleiro, Daniel Abadi, and Joseph M. Hellerstein. 2017. High Performance
Transactions via Early Write Visibility. PVLDB (2017).

[14] Google. 2022. AlloyDB. https://cloud.google.com/alloydb
[15] Jim Gray and Leslie Lamport. 2006. Consensus on transaction commit. TODS

(2006).
[16] Rachael Harding, Dana Van Aken, Andrew Pavlo, and Michael Stonebraker. 2017.

An Evaluation of Distributed Concurrency Control. VLDB (2017).
[17] Michael Haubenschild, Caetano Sauer, Thomas Neumann, and Viktor Leis. 2020.

Rethinking Logging, Checkpoints, and Recovery for High-Performance Storage
Engines. In SIGMOD.

[18] Yugabyte Inc. 2022. YugabyteDB. https://www.yugabyte.com/
[19] Ashok M. Joshi. 1991. Adaptive Locking Strategies in a Multi-node Data Sharing

Environment. In VLDB.
[20] Jeffrey W. Josten, C. Mohan, Inderpal Narang, and James Z. Teng. 1997. DB2’s

Use of the Coupling Facility for Data Sharing. IBM Syst. J. (1997).
[21] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alex Rasin,

Stanley B. Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stonebraker, Yang
Zhang, John Hugg, and Daniel J. Abadi. 2008. H-store: a high-performance,
distributed main memory transaction processing system. VLDB (2008).

[22] David R. Karger, Eric Lehman, Frank Thomson Leighton, Rina Panigrahy,
Matthew S. Levine, and Daniel Lewin. 1997. Consistent Hashing and Random
Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide
Web. In STOC.

[23] Antonios Katsarakis, Yijun Ma, Zhaowei Tan, Andrew Bainbridge, Matthew
Balkwill, Aleksandar Dragojevic, Boris Grot, Bozidar Radunovic, and Yongguang
Zhang. 2021. Zeus: locality-aware distributed transactions. In EuroSys.

[24] Donald Kossmann. 2000. The State of the art in distributed query processing.
ACM Comput. Surv. (2000).

[25] Cockroach Labs. 2022. CockroachDB. https://www.cockroachlabs.com/product/
[26] Avraham Leff, Joel L. Wolf, and Philip S. Yu. 1993. Replication Algorithms in a

Remote Caching Architecture. IEEE Trans. Parallel Distributed Syst. (1993).
[27] Justin Levandoski. 2019. HPTS 2019: Aurora Multi-Master. http://www.hpts.ws/

papers/2019/aurora-multimaster-hpts2019.pdf
[28] Feifei Li. 2019. Cloud native database systems at Alibaba: Opportunities and

Challenges. Proc. VLDB Endow. 12, 12 (2019), 2263–2272. https://doi.org/10.
14778/3352063.3352141

[29] Qian Lin, Pengfei Chang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Zhengkui
Wang. 2016. Towards a Non-2PC Transaction Management in Distributed Data-
base Systems. In SIGMOD.

[30] David Lomet, Rick Anderson, TK Rengarajan, and Peter Spiro. 1992. How the
Rdb/VMS data sharing system became fast. DECCambridge Research Lab Technical
Report CRL (1992).

9

https://www.youtube.com/watch?v=p0C0jakzYuc
https://www.youtube.com/watch?v=p0C0jakzYuc
https://cloud.google.com/alloydb
https://www.yugabyte.com/
https://www.cockroachlabs.com/product/
http://www.hpts.ws/papers/2019/aurora-multimaster-hpts2019.pdf
http://www.hpts.ws/papers/2019/aurora-multimaster-hpts2019.pdf
https://doi.org/10.14778/3352063.3352141
https://doi.org/10.14778/3352063.3352141


[31] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2020. Aria: A Fast and Practical
Deterministic OLTP Database. PVLDB (2020).

[32] Hatem A. Mahmoud, Vaibhav Arora, Faisal Nawab, Divyakant Agrawal, and
Amr El Abbadi. 2014. MaaT: Effective and scalable coordination of distributed
transactions in the cloud. PVLDB (2014).

[33] Microsoft. 2022. Azure Comsmos DB. https://azure.microsoft.com/en-us/
products/cosmos-db/

[34] Umar Farooq Minhas, David B. Lomet, and Chandramohan A. Thekkath. 2011.
Chimera: data sharing flexibility, shared nothing simplicity. In IDEAS.

[35] C. Mohan. 2022. Modern Cloud DBMSs Vindicate Age Old Work on Shared Disk
DBMSs Keynote at SMBDB. https://db.cs.pitt.edu/smdb2022

[36] C. Mohan, Don Haderle, Bruce G. Lindsay, Hamid Pirahesh, and Peter M. Schwarz.
1992. ARIES: A Transaction Recovery Method Supporting Fine-Granularity
Locking and Partial Rollbacks Using Write-Ahead Logging. TODS (1992).

[37] C. Mohan, Bruce G. Lindsay, and Ron Obermarck. 1986. Transaction Management
in the R* Distributed Database Management System. TODS (1986).

[38] C. Mohan and Inderpal Narang. 1991. Recovery and Coherency-Control Protocols
for Fast Intersystem Page Transfer and Fine-Granularity Locking in a Shared
Disks Transaction Environment. In VLDB.

[39] C. Mohan and Inderpal Narang. 1992. Efficient Locking and Caching of Data in
the Multisystem Shared Disks Transaction Environment. In EDBT.

[40] Oracle. 2022. Oracle RAC. https://www.oracle.com/de/database/real-application-
clusters/

[41] M. Tamer Özsu and Patrick Valduriez. 1991. Principles of Distributed Database
Systems.

[42] Andrew Pavlo, Carlo Curino, and Stanley B. Zdonik. 2012. Skew-aware automatic
database partitioning in shared-nothing, parallel OLTP systems. In SIGMOD.

[43] Erhard Rahm. 1986. Primary copy synchronization for DB-Sharing. Inf. Syst.
[44] Erhard Rahm. 1991. Recovery Concepts for Data Sharing Systems. In International

Symposium on Fault-Tolerant Computing.
[45] Amazon Web Services. 2022. Amazon DynamoDB. https://aws.amazon.com/

dynamodb/
[46] Amazon Web Services. 2022. Aurora Multi-Master Documentation.

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-
multi-master.html

[47] Markus Sinnwell and Gerhard Weikum. 1997. A Cost-Model-Based Online
Method for Ditributed Caching. In ICDE, W. A. Gray and Per-Åke Larson (Eds.).

[48] Michael Stonebraker. 1985. The Case for Shared Nothing. In HTPS.

[49] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J. Elmore,
Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker. 2014. E-Store: Fine-
Grained Elastic Partitioning for Distributed Transaction Processing. PVLDB 8
(2014).

[50] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaffray, Lucy Zhang, and Peter
Mattis. 2020. CockroachDB: The Resilient Geo-Distributed SQL Database. In
SIGMOD.

[51] Alexander Thomson, Thaddeus Diamond, Shu-ChunWeng, Kun Ren, Philip Shao,
and Daniel J. Abadi. 2012. Calvin: fast distributed transactions for partitioned
database systems. In SIGMOD.

[52] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy transactions in multicore in-memory databases. In SOSP.

[53] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,
Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora: Design Considerations
for High Throughput Cloud-Native Relational Databases. In SIGMOD.

[54] Qing Wang, Youyou Lu, and Jiwu Shu. 2022. Sherman: A Write-Optimized
Distributed B+Tree Index on Disaggregated Memory. In SIGMOD.

[55] Xingda Wei, Sijie Shen, Rong Chen, and Haibo Chen. 2017. Replication-driven
Live Reconfiguration for Fast Distributed Transaction Processing. In USENIX.

[56] Xiangyao Yu, Hongzhe Liu, Ethan Zou, and Srinivas Devadas. 2016. Tardis 2.0:
Optimized Time Traveling Coherence for Relaxed Consistency Models. In PACT.

[57] Xiangyao Yu, Yu Xia, Andrew Pavlo, Daniel Sánchez, Larry Rudolph, and Srinivas
Devadas. 2018. Sundial: Harmonizing Concurrency Control and Caching in a
Distributed OLTP Database Management System. PVLDB (2018).

[58] Erfan Zamanian, Carsten Binnig, Tim Kraska, and Tim Harris. 2017. The End of
a Myth: Distributed Transaction Can Scale. PVLDB (2017).

[59] Jin Zhang, Xiangyao Yu, Zhengwei Qi, and Haibing Guan. 2022. Falcon: A
Timestamp-based Protocol to Maximize the Cache Efficiency in the Distributed
Shared Memory. In IPDPS.

[60] Tobias Ziegler, Carsten Binnig, and Viktor Leis. 2022. ScaleStore: A Fast and
Cost-Efficient Storage Engine using DRAM, NVMe, and RDMA. In SIGMOD.

[61] Tobias Ziegler, Dwarakanandan Bindiganavile Mohan, Viktor Leis, and Carsten
Binnig. 2022. EFA: A Viable Alternative to RDMA over InfiniBand for DBMSs?.
In DaMoN.

10

https://azure.microsoft.com/en-us/products/cosmos-db/
https://azure.microsoft.com/en-us/products/cosmos-db/
https://db.cs.pitt.edu/smdb2022
https://www.oracle.com/de/database/real-application-clusters/
https://www.oracle.com/de/database/real-application-clusters/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-multi-master.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-multi-master.html

	Abstract
	1 Introduction
	2 OLTP Data Access Archetypes
	2.1 Archetype: Single-Writer
	2.2 Archetype: Partitioned-Writer
	2.3 Archetype: Shared-Writer
	2.4 Categorizing Systems with Archetypes
	2.5 The Importance of Latency

	3 Towards a Scalable Cloud OLTP DBMS
	3.1 A Blueprint for a Shared-Caching DBMS
	3.2 Caching and Eviction Go Hand in Hand
	3.3 Elasticity
	3.4 ACID Guarantees
	3.5 Cloud Infrastructure and Services

	4 Summary
	Acknowledgments
	References

