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ABSTRACT

Wouldn’t it be great if we could query large, diverse data lakes
of tables, text, and databases as easily as using Siri or Alexa? The
problem is hard from two perspectives: integrating data lakes re-
quires data normalization/transformation, schema matching, and
entity resolution and is notoriously hard, with high human cost.
Even if successful, such integration efforts typically do not support
arbitrary SQL queries over the integrated data set.

In this paper, we propose Symphony, a novel system that en-
ables users to easily query complex, multi-modal data lakes with-
out performing upfront integration. For ease of use, Symphony
adopts a natural language (NL) interface. To avoid integration, it
employs a unified representation for multi-modal datasets, called
cross-modality representation learning. When a user poses an NL
query, Symphony discovers which tables or textual data should
be retrieved based on the learned cross-modal representations, de-
composes a complicated NL query into NL sub-queries on-demand,
evaluates each sub-query on one data source and combines the
results from these sub-queries. A preliminary evaluation shows
that the resulting system is able to effectively answer questions
over tables and text extracted from Wikipedia.

1 INTRODUCTION

Modern organizations often need to manage a huge volume of data
with different modalities, including relational databases, spread-
sheets, documentation, messages (e.g., email, Slack), log files, and
domain-specific sources such as sensor data, web pages, or knowl-
edge graphs. We call such collections of diverse types of datamulti-

modal data lakes.
Data lakes are mostly intermediate repositories for data [5]. Tra-

ditional wisdom for data lake management requires to go through
a civilization process [3, 13] including extraction, transformation,
integration, linking, and so on, as depicted in Fig. 1(a). However, the
data civilization problem is notoriously hard and labor intensive.
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Figure 1: The Vision of Symphony.

An oft-cited statistic is that data scientists spend 80% of their time
on it. Not many enterprises can afford such costs.

Recently, giant language models (or foundation models) have
been used to learn from data lakes and encode everything they
learnt in their model parameters (see Fig. 1(b)), e.g., GPT-3 [1]. Al-
though they have shown exciting results for many natural language
tasks and image generation, they are inefficient to reason about
complicated (e.g., analytical) queries over data lakes.
The Symphony Vision.We propose Symphony, a novel system
that enables non-expert users to query multi-modal data lakes.
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Figure 2: An Overview of Symphony.

Symphony simply indexes data lakes without any civilization oper-
ations, as shown in Fig. 1(c). At query time, Symphonywill discover
datasets-on-demand relevant to a given 𝑄 , and then reason about
how to evaluate the query𝑄 over the discovered datasets using e.g.,
language models for natural language question answering (QA) or
database engines for analytical queries over tables or databases.

More specifically, Symphony allows the users to pose natural
language (NL) queries, such as queryQ in Fig. 3. Unlike SQL queries,
users do not have to specify the datasets on which the NL queries
run. Instead, Symphony will discover the datasets – which could
be in different files or even modalities – and then decompose the
NL query into NL sub-queries (only when needed) that can be
effectively executed on individual datasets.

Symphony consists of four key components (see Fig. 2): cross-
modal representation learning, modal-agnostic data discovery, on-
demand query decomposition, and optimized query execution. We
use item to refer to one table or a textual document. We illustrate
each component with a running example shown in Fig. 3
• Cross-modal Representations Learning. Symphony learns

a cross-modal representation model that encodes the items in the
data lake, whatever their modality might be, into the same high-
dimensional embedding space. The key idea is to first convert the
items in different modalities into sequences of words and pre-train
a Transformer-based language model (LM) to encode them. Rather
than use the existing pre-training methods to train the model, we
propose a new pre-training method customized to data lakes. It
ensures that the embedding with respect to each itemwell preserves
its vital features. Symphony then uses the learned representations
in data discovery and query execution. (Section 3)
• Modal-agnostic Data Discovery. Given an NL query, Sym-

phony discovers the datasets that should be used to answer this
query. Unlike the traditional data discovery tools that typically
search over the table title, column names, or metadata through
keyword search or pattern matching (e.g., regex), Symphony di-
rectly takes the content of the datasets into consideration, thus
more effective. It achieves so by first using the learned cross-modal
representation model to transform each upcoming NL query into
an embedding vector, and then discovering the relevant data items
based on their similarity to the query embedding. Moreover, search-
ing over unified embedding space makes data discovery modal

Modal-agnostic Data Discovery with Learned Cross-modality Representations

      Which songs appeared in a film produced by Alankar Chitra and directed by Shanker Mukherjee?Q

Faraar (transl. Absconding) is a 1975 Bollywood 
crime film drama. The film is produced by 
Alankar Chitra and directed by Shanker 
Mukherjee. The film stars Amitabh Bachchan, 
Sharmila Tagore, Sanjeev Kumar, Sulochna, 
Sajjan, Agha and Bhagwan Dada…

Source: https://en.wikipedia.org/wiki/Faraar Source: https://en.wikipedia.org/wiki/Kishore_Kumar

On-demand Natural Language Query Decomposition with GPT-3

Q1: The passage P1 has the following content: Faraar (transl. Absconding) is a 1975 Bollywood 
crime film drama. The film is produced by Alankar Chitra and directed by Shanker Mukherjee. The 
film stars Amitabh Bachchan, Sharmila Tagore, Sanjeev Kumar, Sulochna, Sajjan, Agha and 
Bhagwan Dada…
The table T1 has the following columns: Year, Song, Film, Music Director, Lyricist. 
Based on P1 and T1, the question is “Which songs appeared in a film produced by Alankar Chitra 
and directed by Shanker Mukherjee?”.
What sub-questions can it be broken down into? 

GPT-3:               What is the name of the film produced by Alankar Chitra and directed by Shanker 
Mukherjee. It can be answered by P1.

Q2: The first sub-question is “What is the name of the film produced by Alankar Chitra and directed 
by Shanker Mukherjee?”, it can be answered by P1.

GPT-3:                the second sub-question is “What is the name of the song in the film?”, it can be 
answered by T1. 

Optimized Query Execution

P1 T1

“Faraar”

res(       ) over P1 res(       ) over T1 res(     ) Q

“Main Pyaasa tum”

q1

q2

q1 q2
with NLP Question Answering with NL2SQL

Figure 3: A Running Example of Symphony.

agnostic. Therefore, Symphony is able to discover datasets in differ-
ent modalities to answer one query, e.g., the text data P1 and table
T1 in Fig. 3 (Section 4)
• On-demand Query Decomposition. Symphony decides

whether and how to decompose an NL query into a set of NL
sub-queries, such that each sub-query can be executed on one data
source1. In this way, without having to go through the painful data
integration process, Symphony uses multiple data sources in differ-
ent modalities to answer one single query. For example, in Fig. 3,
the query Q is decomposed into two sub-queries q1 and q2 using
GPT-3, based on the text P1 and table T1. (Section 5)
• Optimized Query Execution. Symphony features a multi-

objective optimizer that takes both the accuracy and efficiency
objectives into consideration, automatically selects the optimal exe-
cution plan for each (sub-)query, and aggregates the partial results
in an appropriate order to produce the final answer. As shown in
the bottom of Fig. 3, Symphony first evaluates q1 on text item P1
and gets the result “Faraar”, which is then used as input to evaluate
q2 on table item T1. Finally Symphony gets the result ofQ as “Main
Pyaasa tum”. (Section 6)

Different from the existing efforts that leverage large language
models (LMs) to invent new data preparation (i.e., civilization) tools

1A data source is a database of multiple tables, a silo-ed table, or a textual document.
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such as Ditto [10] and RPT [15], Symphony solves the data prob-
lems in a fundamentally different direction, which for the first time
allows the users to directly query a poorly maintained data lake,
without needing data civilization efforts. Our initial experiments
(Section 7) confirms that a preliminary implementation of Sym-
phony already demonstrates promising results and thus validates
our idea.

Enterprises can use Symphony in different scenarios. For exam-
ple, the users could use the data discovery component of Symphony
to better organize their data which is maintained poorly in their
data lake, e.g., by finding and annotating the tables that are relevant
to the export business of the company at a low cost. Or they could
use Symphony to understand how the sale of a specific product in
this season improves compared to last season or if the labor costs
of the company increase this year.

2 PRELIMINARIES

Transformer-based Encoders. Transformer-based language mod-
els (LMs) have achieved tremendous success for textual data. Pre-
trained on a massive amount of text corpora, LMs like BERT, BART,
T5, GPT-3, etc., can effectively learn common sense knowledge.
Transformer-based encoders are widely used for representation learn-
ing. They convert an input object 𝑥 into an embedding represen-
tation as a high-dimensional vector x, i.e., x = 𝑓 (𝑥), where 𝑓 (·) is
the encoding function represented by the LM encoder.
Pre-training. LMs are usually pre-trained on large corpora to learn
general knowledge. One popular strategy is self-supervised pre-

training that does not require manual annotations. For example,
masked language modeling [4] creates training data by masking or
replacing certain tokens (words) in the original data, and then the
LMs are trained to restore the original data given the corrupted data.
Another common strategy is multi-task pre-training that trains the
LMs on multiple existing tasks or datasets with annotations.
Fine-tuning. Fine-tuning effectively adapts pre-trained LMs to
downstream tasks using task-specific objective functions and
datasets. For example, Ditto [10] fine-tunes pre-trained BERT using
entity resolution (ER) benchmarks and well serves ER tasks.
Prompt Learning. Recent research has shown that the “pre-train,
fine-tune” paradigm can not fully explore the knowledge learned
in pre-training due to the gap between the pre-training objective
and the fine-tuning objective. To solve this problem, the “pre-train,
prompt, predict” paradigm (i.e., prompt learning) [11] instead refor-
mulates the downstream task into a form similar to pre-training
tasks with the aid of a textual prompt. A prompt corresponds to
a natural language question template submitted to the LM. For
example, two prompts “Answer the following query:”
and “Translate the following query to SQL:” spec-
ify two different tasks and thus expect different answers from the
LM. An LM is more likely to produce the correct answer if the
prompt makes it easy for the LM to answer the question. Hence,
it is important to provide appropriate prompts to effectively guide
LMs.

3CROSS-MODAL REPRESENTATION LEARNING

The cross-modal representation learning component of Symphony
encodes items in the data lake into the same high-dimensional
embedding space even if they are in different modalities.

To learn a cross-modal representation model, the most intuitive
way is to first convert the items in different modalities into se-
quences of words and then directly train an LM on these sequences
using the traditional self-supervised or multi-task methods. Taking
tables, for example, one way to serialize a table is to concatenate
its rows cell by cell, e.g., the table T1 in Fig. 3 can be serialized as:

Year | Song | Film | ... || 1971 | Zindagi Ek

Safer | ... || 1971 | Yeh Jo Mohabbat | ... ||

However, directly using the existing pre-training methods to
learn an LM is not effective in encoding a multi-modal data lake.
Although the self-supervised pre-trainingmethod is good at produc-
ing embedding for each token, it simply aggregates the token level
embeddings to produce a sequence level embedding which does
not necessarily well represent the whole input sequence. On the
other hand, the embeddings produced bymulti-task pre-training are
tightly-coupled with the specific queries or task objectives, because
the pre-trained models tend to only extract the features that are
sufficient to support these queries. This results in information loss
because supporting these queries usually does not need to extract
all information that perfectly represents the original input. There-
fore, the learned representations tend to be ineffective at supporting
new queries.
Self-supervised Information Compression. To solve the above
problems, Symphony introduces self-supervised information com-

pression as a new pre-training task to produce query-agnostic repre-
sentations that preserve as much vital information of the data items
as possible. Symphony thus only needs to pre-compute the query-
agnostic representations once rather than re-computing them for
every incoming query 𝑄 .

To achieve this goal, the encoder model has to be able to gener-
ate fixed-size embeddings that are sufficient to restore the original
inputs. Because AutoEncoders [14] are remarkably successful in
compressing vital information for the restoration of original data,
self-supervised information compression trains an LM in the Au-
toEncoder fashion. More specifically, in the LM, the output of the
encoder is constrained to a fixed-size embedding before sending
it to the decoder, while the decoder is required to regenerate the
entire input relying only on this embedding. This strategy lever-
ages the information compression ability of AutoEncoder, while
still preserving the power of the Transformer architecture. After
pre-training, Symphony uses the encoder as the cross-modal repre-
sentation model, which is query-agnostic.

Symphony also builds an index upon the embeddings to speed
up similarity search.

4 MODAL-AGNOSTIC DATA DISCOVERY

Given a natural language query 𝑄 , Symphony automatically dis-
covers a set of data items that are most relevant to 𝑄 at online
query time. Combining traditional data discovery methods and the
representation learning-based method, Symphony offers a system-
atic and unified approach to effectively and efficiently discover
relevant items from multi-modal data lakes. It consists of three key
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Figure 4: Modal-agnostic Data Discovery.

steps: rule-based filtering, embedding-based similarity search, and
human-in-the-loop selection, as shown in Fig. 4.
1. Rule-based Filtering. Given a query 𝑄 , Symphony first uses
traditional rule-based methods such as keyword search to quickly
exclude data items that are clearly irrelevant. For example, tables
can be filtered by keyword search on table names, column names,
or metadata. Only a small set of candidate items will go to the next
step for further examination.
2. Embedding-based Similarity Search. Symphony encodes the
query𝑄 into the same high-dimensional space as the pre-processed
multi-modal data lake representations. It then discovers the most
relevant items from the candidate items based on the similarity
between the query embedding and the item embeddings learned
using the representation learning approach in Section 3, which can
be efficiently computed via dot product when an index is avail-
able. For each modality Symphony returns the top-𝑘 items whose
embeddings are most similar to the query embedding.
3. Human-in-the-loop Selection. Finally, human interactions are
introduced to select the most relevant items among the candidate
items returned from the last step. Using the manual selection results
as annotation, potentially Symphony can improve the cross-modal
representation such that the similarity search results are better
aligned with the human preference. Further, we believe Symphony
can train a few-shot meta-scoring system that takes over the role
of the human in the future, automatically ranks the candidates,
and produces the final discovery results. The feedback of choosing
from a few suggested candidates only requires a limited amount
of human interactions, thus is much less labor intensive and more
user-friendly than manual annotating the entire data lakes.

5 ON-DEMAND QUERY DECOMPOSITION

Given an NL query 𝑄 and a set of discovered datasets 𝐷 =

{𝑑1, 𝑑2, . . . , 𝑑𝑛} (each 𝑑𝑖 is either a table or a text passage), Sym-
phony first decides whether it is necessary to decompose 𝑄 (Sec-
tion 5.1). If so, Symphony decomposes the query based on the
objective defined in Section 5.2. We then introduce a method that
uses GPT-3 to decompose an NL query in Section 5.3.

5.1 To Decompose or Not?

If two tables𝑑𝑖 and𝑑 𝑗 have pre-defined PKFK relationship, e.g., from
the same database, we treat them as from the same data source and
merge them into 𝑑𝑘 . Recall that we use a data source to refer to
either a silo-ed table, a database, or a text passage. This will convert
the discovered items𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑛} into𝐷 ′ = {𝑑 ′1, 𝑑

′
2, . . . , 𝑑

′
𝑚}

Initial

Prompt prompt0

''
(𝑄,𝐷′) // Prompt

Generation

66

))

GPT-3
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Figure 5: Template-based Automatic Prompt Generation.

prompt0 = Serialize(𝑑′1); Serialize(𝑑
′
2); . . . Serialize(𝑑

′
𝑚 )

Based on 𝑑′1, 𝑑
′
2, . . . and 𝑑

′
𝑚 , the question is𝑄 ,

what sub-questions can it be broken down into?
prompt𝑖 = The [N] sub-query is [Q], it can be answered by

[D]

Figure 6: Templates for Prompts.

Data Source Serialization Template

Database The database [DB_name] has the following tables:
The first table [Tab_name] has the following columns:
[Col_name], [Col_name], . . . , [Col_name]; The second
table [Tab_name] has the following columns: . . .

Table The table [Tab_name] has the following columns:
[Col_name], [Col_name], . . . , [Col_name].

Text The passage has the following content: Text

Figure 7: Templates for Data Source Serialization.

where𝑚 ≤ 𝑛, each 𝑑𝑖 ∈ 𝐷 ′ represents one data source, and any
two 𝑑𝑖 , 𝑑 𝑗 ∈ 𝐷 ′ do not belong to the same data source.

Intuitively, if m = 1, there is only one data source, thus no need
for query decomposition. Otherwise, Symphony uses multiple data
sources to evaluate query 𝑄 . In this case, we choose to decompose
𝑄 (see Fig. 3), instead of “integrating” these data sources.

5.2 Data Source-aware NL Query Decomposition

The problem of data source-aware NL query decomposition is
to decompose an NL𝑄 into a set of NL sub-queries {𝑞1, . . . , 𝑞𝑘 } such
that each sub-query is evaluated using at most one data source 𝑑 ′

𝑖
.

The sub-queries have partial order (“≺”), deciding which sub-query
should be executed first. In Fig. 3, the decomposed sub-queries are
{q1, q2}. The sub-queries and their corresponding data sources are
paired as (q1, P1) and (q2,T1), and the partial order is {q1 ≺ q2}.

To tackle the query decomposition problem in Symphony, one
option is to use traditional NLP methods to convert an NLP query
𝑄 into a parse tree that captures dependency of words/phrases and
then devise new algorithms to decompose 𝑄 , taking the needed
data items 𝐷 ′ into consideration.

The other option is to leverage the power of giant LMs such as
GPT-3. Next, we will describe our design of prompt-based query
decomposition using GPT-3 (Section 5.3), which demonstrates su-
perior empirical result (Section 7).

5.3 Query Decomposition with GPT-3

GPT-3. The OpenAI’s Generative Pre-trained Transformer version
3 (GPT-3) [1] is an autoregressive language model with 175-billion
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parameters, pre-trained on a large text corpus. GPT-3 has shown
to be able to adapt to new tasks based on task descriptions (i.e.,
prompts) alone, with little to no labeled data [1, 12, 17].
Prompts on GPT-3.We can ask GPT-3 “any” single question (or
prompt), such as prompt1: “who is Michael Jordan”. We can also
ask GPT-3 a sequence of questions in a conversational fashion, such
as appending to the last question prompt2: “where is he living
now”, and prompt3: “what is the population there”.

For Symphony, in order to decompose an NL query𝑄 w.r.t. the set
of data sources𝐷 ′, we need to automatically generate prompts such
that GPT-3 can decompose the query 𝑄 into a set of sub-queries,
each of which is executed on one single data source.
Prompt-based Query Decomposition on GPT-3 (Fig. 5). Given
𝑄 and 𝐷 ′ = {𝑑 ′1, . . . , 𝑑

′
𝑚}, we propose automatic template-based

prompt generation as depicted in Fig. 5. Initially, we use the Initial
Prompt ( prompt0 ) function to generate the first prompt and feed
it to GPT-3 which returns as the answer a sub-query and the data
source on which it should run. Based on the returned sub-query and
the data source, it iteratively invokes the Next Prompt ( prompt𝑖 ,
𝑖 > 0) function to generate the next sub-query, until GPT-3 decides
to terminate, i.e., no more sub-query needs to be generated. The
two functions are discussed as follows.
Initial Prompt: Symphony generates the initial prompt using the
prompt0 template in Fig. 6. It first serializes each data source 𝑑 ′

𝑖

in 𝐷 ′, where the methods for database/table/text serialization are
provided in Fig. 7. It then adds the NL query 𝑄 the user posed into
the prompt and appends a fixed sentence “what sub-queries
can it be broken down into?” at the end.
Next Prompt: Symphony then iteratively invokes the prompt𝑖
template in Fig. 6. It needs to fill three blanks [N], [Q] and [D]
based on the previously produced sub-queries. [N] indicates the
order of the sub-queries (e.g., [N] could be set to “first”, indicating
the first generated sub-query), [Q] is the previous sub-query gen-
erated by GPT-3, and [D] is the data source used by the previously
generated sub-query.

Next, we use an example to illustrate how to generate prompts.
Example 1. Consider the query 𝑄 and two discovered datasets,

text P1 and table T1, as shown in Fig. 3.

[Initial Prompt.] After serializing the two datasets based on the

rules defined in Table 7 Symphony produces the initial prompt using

the prompt template in Fig. 6:

prompt0 = The passage P1 has the following content: Faraar

(transl.Absconding) is . . . . The table T1 has the following

columns: Year, Song, . . . . Based on P1 and T1, the question

is “Which songs appeared in a film produced by Alankar Chi-

tra and directed by Shanker Mukherjee?”. What sub-questions

can it be broken down into?

Symphony sends the prompt prompt0 to GPT-3, and GPT-3 will

generate a sub-query q1 as well as the data source on which it should

be evaluated, e.g., P1, as shown in Fig. 3.

[Next Prompt.] Based the first sub-query q1 and the data source P1,

it will use the next prompt template to generate:

prompt1 = The first sub-query is “what is the name of the

film produced by Alankar Chitra and directed by Shanker

Mukherjee?”, it can be answered by P1.

Given prompt1, GPT-3 will generate sub-query q2 and specify the

table T1 as its data source (see Fig. 3). Afterwards, GPT-3 decides to

stop because it considers the original query 𝑄 has been answered.

With regards to the scalability issue that it is hard to serialize
a large table or database, we sample a few rows per table to learn
from big tables with Transformer-based models [18].

6 OPTIMIZED QUERY EXECUTION

Note that on-demand query decomposition may result in either
one NL query (i.e., no decomposition) on one data source or de-
composed multiple NL sub-queries. The query execution engine
of Symphony executes each (sub-)query on one data source with
optimized efficiency and accuracy, and then combines the results
from multiple (sub-)queries if needed. Symphony leverages existing
techniques as well as inventing highly performant new querying
techniques over text, a table, or a database.

6.1 Question Answering Over Text

In NLP, question answering (QA) has made significant progress, but
they are still limited in supporting queries that aggregate textual
facts, and problems in processing noisy data and numerical oper-
ations, the existing works are insufficient in supporting database
style [16] queries which require reasoning over sets of relevant
facts with operations such as filtering, aggregation, and join. An
example of such a query is “Count all female database researchers
who were born in the 1990s”.

To solve this problem, Symphony offers techniques to support
database reasoning over text. Similar to NLDBs [16], Symphony
first discovers a set of relevant facts, runs neural SPJ operators on
each relevant fact in parallel, and aggregates the results. The neural
SPJ operator is trained as a Seq2Seq model to generate intermediate
results from each relevant fact and a given query.

6.2 Querying a Single Table or a Database

Table QA. Table QA using neural models has been widely studied
but existing table QA techniques are not scalable to big tables. To
address this efficiency issue, we design a new technique that learns
query-independent representation by introducing self-supervised
information compression as a new pretraining task. In this way, all
queries share the same table representation and Symphony only
needs to conduct efficient inner product operation to produce an-
swers, thus eliminating the performance bottleneck of table QA.
NL2SQL. Symphony offers NL2SQL as another way to support
queries over a single table or a database in case the users require
the exact answers which table QA cannot deliver. In addition to the
existing NL2SQL techniques [6, 9], Symphony leverages the base
foundation model, in particular GPT-3, as well as the prompting
techniques to convert NL queries to SQL queries, using similar ideas
we introduced in query decomposition.

6.3 The Query Optimizer

We propose to design a multi-objective optimizer that given a (sub-
)query, automatically produces an optimal execution plan, taking
both the accuracy and efficiency objectives into consideration.

Symphony optimizer combines cost models and rule-based op-
timizations to meet the accuracy requirement of the users, while
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minimizing the execution costs. For example, given an NL (sub-
)query over a table, Symphony will use NL2SQL to execute this
query if this table is indexed. Otherwise, if the users do not have a
strong demand in accuracy, Symphony will select the most efficient
execution plan, using the cost models to determine if the table QA
operator we offer is quicker than the SQL operator on this table. If
the users require exact results, Symphony will execute the query
with NL2SQL without worrying about the execution costs.

6.4 Sub-Query Aggregation

After getting the sub-answer to each sub-query, the next chal-
lenge is how to aggregate the sub-answers to produce the final
answer. We propose to again leverage GPT-3 to aggregate the
sub-answers. Specifically, we reformulate the problem of aggre-
gating sub-answers as a text QA problem, which can be effec-
tively solved by gigantic foundation models [7]. Given a set of
sub-queries {𝑞1, 𝑞2, . . . , 𝑞𝑛} and their corresponding sub-answers
{𝑎1, 𝑎2, . . . , 𝑎𝑛}, Symphony concatenates the sub-queries and sub-
answers sequentially as the prompt of the QA task, and then asks
GPT-3 to answer the original query 𝑄 based on the prompt. Note
that the sub-answer 𝑎𝑖 can be a single token, a short multi-token
span, or even a list containing multiple values. Example 2 shows
how Symphony handles a real-world case.

Example 2. Consider the following query that involves a sum

operation: “How many representatives were elected in the 2014 United

States house of representatives elections in Rhode Island and South

Carolina?”. We use GPT-3 to aggregate the sub-answers without any

manual rules.

Input = The answer to “Howmany representatives were elected

in the 2014 United States house of representatives elections in

Rhode Island?” is 2, the answer to “How many representatives

were elected in the 2014 United States house of representatives

elections in South Carolina?” is 7, How many representatives

were elected in the 2014 United States house of representatives

elections in Rhode Island and South Carolina?

Output = 9

7 INITIAL EXPERIMENT RESULTS

7.1 Experimental Setup

We conduct experiments on a dataset consisting of two types of
data items, tables and texts, extracted from Wikipedia [2]. It covers
400𝐾 web tables. Each table has its page title and section title. It
also includes 6𝑀 English passages. We manually design 18 user
queries to query the dataset. Each has ground truth annotations
regarding the related data items to be discovered, the sub-queries
to be decomposed, and the final answers to the user queries.

7.2 Evaluation on Data Discovery

Initial Implementation. As discussed in Section 4, for each query,
Symphony first uses 𝑛-gram similarity and noun phrase similarity
to generate candidates from all the items. It then uses an LM to
transform each data item into a vector embedding and selects from
each modality the top-𝐾 items with the largest similarity to the
query embedding.

Instance 1:𝑄 : Did the 2014 United States house of representatives elec-
tions take place on the same day in Rhode Island, South Carolina and
Louisiana? 𝐸 = {𝑃1, 𝑃2, 𝑃3 }
→ 𝑞1: Did the 2014 United States House of Representatives elections
take place on November 4, 2014 in Rhode Island? 𝑒1 = 𝑃1; 𝑞2: Did the
2014 United States House of Representatives elections take place on
November 4, 2014 in South Carolina? 𝑒2 = 𝑃2; 𝑞3: Did the 2014 United
States House of Representatives elections take place on November 4,
2014 in Louisiana? 𝑒3 = 𝑃3
⋆ Score: 2
Instance 2: 𝑄 : How many representatives were elected in the 2014
United States house of representatives elections in Rhode Island and
South Carolina? 𝐸 = {𝑃1, 𝑃2 }
→𝑞1: Howmany representatives were elected in the 2014 United States
house of representatives elections in Rhode Island? 𝑒1 = 𝑃1; 𝑞2: How
many representatives were elected in the 2014 United States house of
representatives elections in South Carolina? 𝑒2 = 𝑃2
⋆ Score: 2
Instance 3: 𝑄 : Which number is larger, the number of living former
primeministers of Tunisia or the number of former presidents of Ghana?
𝐸 = {𝑇1, 𝑃1 }
→ 𝑞1: What is the number of living former prime ministers of Tunisia?
𝑒1 = 𝑃1; 𝑞2: What is the number of former presidents of Ghana? 𝑒2 = 𝑇1
⋆ Score: 2
Instance 4:𝑄 : What year was the first German film that won the Acad-
emy Award for Best Foreign Language Film released? 𝐸 = {𝑇1, 𝑃1 }
→ 𝑞1: What year was the film The Tin Drum released? 𝑒1 = 𝑇1; 𝑞2:
What was the first German film that won the Academy Award for Best
Foreign Language Film? 𝑒2 = 𝑇1; 𝑞3: What year was the first Academy
Award for Best Foreign Language Film given out? 𝑒3 = 𝑇1
⋆ Score: 0
Instance 5: 𝑄 : Did The Tin Drum and Kolya both win the Academy
Awards for Best Foreign Language Film? 𝐸 = {𝑃1, 𝑃2 }
→ 𝑞1: whether The Tin Drum has ever won the Academy Award for
Best Foreign Language Film? 𝑒1 = 𝑃1; 𝑞2: whether Kolya has ever won
the Academy Award for Best Foreign Language Film? 𝑒2 = 𝑃2
⋆ Score: 2
Instance 6:𝑄 : How many years elapsed between the premiere of season
10 and the premiere of season 5 of Law & Order : Special Victims Unit?
𝐸 = {𝑇1,𝑇2 }
→ 𝑞1: What is the premiere date of season 10 of Law & Order : Special
Victims Unit? 𝑒1 = 𝑇2; 𝑞2: What is the premiere date of season 5 of Law
& Order : Special Victims Unit? 𝑒1 = 𝑇1
⋆ Score: 2
Instance 7:𝑄 : Did You Let Me Walk Alone participate in the Eurovision
Song Contest in 1996? 𝐸 = {𝑇1, 𝑃1 }
→ 𝑞1: What year was the Eurovision Song Contest held in Lisbon,
Portugal? 𝑒1 = 𝑇1; 𝑞2: What year was You Let Me Walk Alone released?
𝑒2 = 𝑃1
⋆ Score: 1
Instance 8: 𝑄 : Are the tallest building in the united kingdom and the
tallest building in poland above 200 meters? 𝐸 = {𝑇1,𝑇2 }
→ 𝑞1: What is the height of the tallest building in the United Kingdom?
𝑒1 = 𝑇1; 𝑞2: What is the height of the tallest building in Poland? 𝑒2 = 𝑇2
⋆ Score: 2

Table 1: Example sub-queries generated by Symphony. 𝑞𝑖
and 𝑒𝑖 represent the 𝑖𝑡ℎ sub-query and its corresponding data

item. 𝑇𝑖 represents a table and 𝑃𝑖 represents a text.
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Evaluation Results. We use the recall at 𝐾 (𝑅@𝐾) metric to mea-
sure our data discovery results. 𝑅@𝐾 is the proportion of the rele-
vant data items found in the top-𝐾 recommendations. The experi-
mental results show that, when 𝐾 = 5, 10, 15 and 20, the values of
𝑅@𝐾 are 40.8%, 46.3%, 59.3% and 77.8%, respectively.

Next, we further analyze the case of𝐾 ≤ 20, because it represents
an acceptable amount of manual annotation effort. In the future,
such manual inspection will be replaced by a meta-scoring system,
as introduced in Sec. 4. For 12 out of the 18 queries, Symphony
correctly discovers all the related items required to answer the
queries. For 4 queries, it discovers part of the required items. Among
a total of 38 items related to all the queries, 30 items are correctly
discovered. Note we believe the results are encouraging because the
current implementation is still preliminary and thus has large room
to improve. This indicates that the new data discovery methodology
we propose is promising.

7.3 Evaluation on Query Decomposition

Implementation Details. As introduced in Section 5, for each
query, Symphony serializes the data items discovered in Section 7.2
and then combines it with prompt as the input of GPT-3. The out-
put of GPT-3 is the generated sub-queries and the data item ID
corresponding to each sub-query. We use the OpenAI API to run
the experiments with GPT-3.
HumanEvaluationResults. Similar to [8], we evaluate the quality
of the query decomposition result based on two criteria: (1) if each
sub-query is useful for solving the original complex query; (2)
if the sub-query can be correctly answered on the selected data
item. For each query, if both criteria are met, the score is 2; if only
the first criterion is met, the score is 1; otherwise, the score is 0.
Based on the above criteria, in all queries, 77.8% scored 2, 16.7%
scored 1, and the remaining 5.5% scored 0. Table 1 shows the results
of 8 instances. Symphony is able to handle different aggregation
operations, such as sum (Instance 2) and comparison (Instance
3). Further, it correctly understands long sentences (Instance 1).
However, Symphony has difficulty in dealing with sentences with
complex syntactic structures (e.g., in Instance 4, GPT-3 mistakenly
generates 𝑞3 because it takes the subject of “released” as “Academy
Award for Best Foreign Language Film”.). This is a direction worth
exploring and optimizing in the future.

8 CONCLUSIONS

In this paper, we presented Symphony, a novel system towards sup-
porting NL queries over multi-modal data lakes. The key difference
between Symphony and existing data lake management systems is
that Symphony supports on-demand query answering over mas-
sive collections of datasets with different modalities, without using
the expensive data integration/cleaning operations to civilize data
lakes beforehand. To support complicated NL queries Symphony
discovers relevant multi-modal datasets, decomposes the query
into a sequence of sub-queries, and evaluates each sub-query ef-
fectively and efficiently. In addition to presenting our vision and
early achievement of Symphony, we also identify several promising
research directions, such as better cross-modal representation learn-
ing, query decomposition, and optimization on top of the discovered
multiple data sources.
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