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ABSTRACT

Real-world data sets almost always exhibit skew, i.e., a majority
of the accesses go to a minority of the records. Obviously, Smith
and Brown are more popular names than Stonebraker and Graefe.
Traditional block-oriented index structures such as B-trees are sub-
optimal for skewed data because an index block often has a small
number of hot records and a larger number of cold ones. This results
in poor main memory utilization and increased cost.

To alleviate this problem, we propose a 2-Tree architecture,
where hot index records are in one tree and cold ones are in a second
tree. Hot tree blocks are frequently accessed and likely to remain in
main memory, resulting in improved main memory utilization. Our
core idea is to employ a lightweight general migration protocol to
move records between trees in both directions when appropriate
and to maintain access statistics at low cost.

In addition, the two trees can be configured separately for hard-
ware differences. One tree can be optimized for main memory while
the second exploits secondary storage. Obviously, the 2-Tree idea
can also be generalized to multiple storage levels and/or devices.
We show how the 2-Tree idea and record migration can be applied
to both B+trees and LSM-trees to improve their memory utilization
significantly (by 15× and 20× respectively) on a highly skewed
workload. We also observed up to 1.7× throughput improvement
on a Zipfian-skewed IO-bound workload compared to traditional
single B+tree or LSM-tree using the same amount of main memory.
Unlike existing solutions for improving memory utilization at the
cost of inferior range scan performance, 2-Tree refuses to make
such a compromise.

1 INTRODUCTION

Real-world keyed data is invariably highly skewed. A subset (the
working set) of the data has a much higher access frequency than
the rest [3, 6, 7, 33, 39]. For example, celebrities on social media
get orders of magnitude more page views than average users. On
the NYSE 40 stocks account for 60 percent of the daily transaction
volume. Generally, the hot records are spread across the entire
key space [8] rather than clustered in a few subranges. Lastly, this
working set is often not static [4]. For example, trending tweets
and breaking news change over time.

The traditional approach to indexing keyed data sets is to employ
a homogeneous data structure such as B+tree with a main memory
buffer pool. In this way, hot blocks are cached in the main memory
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buffer pool and cold blocks reside on secondary storage. This ap-
proach manages and migrates both main memory and disk-resident
data at block granularity. On skewed data sets main memory blocks
might have only one hot record in a block containing hundreds
of cold records. This results in poor memory utilization and sub-
optimal performance.

In this paper, we advocate migrating data at the record-level.
We study a 2-Tree architecture in which there are two separate
tree data structures, one (top tree) for the hot records and a second
(bottom tree) for the cold ones. When a hot record becomes cold,
it is migrated from one tree to the other. Likewise, records can
move in the other direction. At the core of this architecture is a
general-purpose migration protocol, which can accurately detect
and maintain hot records at low cost. It adds 3 bits per hot record
and works with any tree data structures. With this clustering of
hot records, 2-Tree significantly increases memory utilization on
skewed data.

Another advantage of this architecture is that the two data struc-
tures can be optimized separately for their underlying storage
medium. The hot structure can be optimized for main memory,
while the cold structure can be optimized for secondary storage.
Therefore, 2-Tree can be used as an indexing architecture for main-
memory database indexing that extends to workloads larger than
memory [11, 13].

We can also generalize 2-Tree architecture to an N-Tree archi-
tecture to adapt to systems with more than two distinct storage
levels and/or devices. While this is somewhat similar to a well-
known multi-tree structure, LSM-tree [28], N-Tree moves data
upwards upon read as well. Such upward migration can help im-
prove memory utilization under read-heavy workloads for which
LSM-tree is not optimized.

In this paper, we present three case studies of applying 2-Tree
architecture and record-level migration. First, we study an applica-
tion of 2-Tree for indexing in main-memory database in a larger-
than-memory setting [11, 13] and show that it can outperform
the Anti-Caching [11] approach significantly. Second, we show
that two buffer-managed B+trees combined with record migration
can significantly outperform a state-of-the-art single B+tree im-
plementation [19] by improving buffer pool memory utilization
using the same amount of main memory. Lastly, we show a prelimi-
nary N-Tree implementation by simply augmenting LSM-tree with
record-level upward migration. This improves their performance
significantly versus vanilla LSM-trees on read-heavy workloads.

We summarize our contributions as follows:

• We propose the 2-Tree architecture to address the limi-
tations of existing approaches for managing larger-than-
memory indexes.

• We propose an efficient record migration protocol that works
between any two tree structures.
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• We experimentally show that the 2-Tree approach can out-
perform existing single-structured B+tree as well as Anti-
Caching.

• We present a preliminary N-Tree implementation by aug-
menting LSM-tree with upward migration and show that it
delivers higher memory utilization across all workloads.

• We describe several future research directions.

2 Related Research

There have been many previous works on heterogeneous index
structures. We discuss a few representative ones in both disk-based
systems and main-memory-based systems.

LSM-tree. One well-known example of heterogeneous tree struc-
tures is the log-structured merge-tree (LSM-tree) [29]. The original
proposal is a hierarchy of on-disk B+trees with exponentially in-
creasing capacities. Writes are buffered in an in-memory B+tree. A
rolling merge operation is used to batch-propagate updates from
higher-level trees to lower-level ones. Due to the complexity of the
rolling merge to B+trees, modern LSM-tree implementations [10,
34] replaced the B+tree for each on-disk level with an immutable
block-based sorted-string-table (SST). A similar merge procedure
called compaction is used to merge SST files with overlapping key
ranges to produce a new SST file. To speed up reads, modern im-
plementations typically cache blocks from SST files in memory. In
a sense, LSM-tree is similar to N-Tree in that there are multiple
tree structures. Records frequently written in the working set are
naturally clustered on higher levels SSTs, resulting in good memory
utilization for these records. However, records only receiving reads
can still be scattered among levels, resulting in low utilization for
the block cache. The key difference between an LSM-tree and the
N-Tree architecture is that data only moves from higher levels to
lower levels upon write in an LSM tree. On the other hand, the
N-Tree architecture actively moves data in both directions upon
read and write. Therefore, it can handle read-heavy workloads as
well. Nevertheless, we show that 2-Tree migration protocol can
be applied to a vanilla LSM-tree to increase memory utilization for
read-heavy workloads.

Record Caching. One general approach for improving memory
utilization of page-based storage engines is maintaining separate
in-memory caches for hot records[23, 34, 40] extracted from the
on-disk pages or blocks. The cache in these approaches is typi-
cally for serving read-only queries. To support modifications to
an in-memory record cache, one needs to devise a new recovery
mechanism that both handles the record cache and page-based stor-
age manager [40]. 2-Tree, on the other hand, can operate through
page-oriented access only. Therefore, it can easily reuse existing
page-based recovery mechanisms, such as ARIES [27]. This simpli-
fies system design and implementation.

The second issue with record caching is that it is not as versatile
as block caching [38]. Record caching is only able to serve point
queries. For example, RocksDB [34] features a read-only global
row cache that keeps frequently-accessed records of SST files in an
in-memory hash table. Hot records can be served from the global
row cache, avoiding accessing SST files and increasing memory
utilization. However, the row cache is not helpful to other important
operations such as range queries and compactions that require
scanning data in blocks. Moreover, record caching takes away the

memory budget from block cache that could otherwise be used to
accelerate range queries. As we will show in the experiments, the
row cache in RocksDB enables high memory utilization for point
reads at the cost of reducing the performance of other operations.
Our proposal, LSM-tree with upward migration, caches only data
blocks with high utilization and maintains competitive range scan
performance.

Anti-Caching. Another example that follows a heterogeneous
design philosophy is Anti-Caching [11], whichmanages hotmemory-
resident data at tuple-granularity without using a buffer pool inter-
face to maximize memory utilization and keeps the cold data on
disk at page granularity. However, Anti-Caching keeps metadata
for every evicted record in main memory and requires all secondary
indexes to be memory-resident, which could take up a large portion
of the memory [41]. In fact, the memory overhead of Anti-Caching
is 𝑂 (𝑁 ), where 𝑁 is the number of evicted records. In contrast,
2-Tree has a constant memory overhead for evicted records, which
results in a more scalable system. Another major limitation is that
Anti-Caching is unable to handle range scans efficiently. This is be-
cause the Anti-Caching architecture keeps evicted tuples unordered
on disk. 2-Tree, on the other hand, maintains key order for evicted
data. Therefore, 2-Tree can support efficient range scan.

Siberia. Another system related to 2-Tree is Siberia [13], a part
of Hekaton [12]. Siberia indexes hot tuples in a memory-optimized
data store (hot store) and cold data in a traditional page-based stor-
age manager (cold store). 2-Tree differs from Siberia in two major
ways. First, Siberia does not migrate data from the cold store to the
hot store upon read. This is sub-optimal for read-only or changing
workloads. Second, the hot data identification mechanism in Siberia
is offline through analyzing access logs. In contrast, 2-Tree’s light-
weight online approach requires fewer computing resources and
results in more timely adaptation to workload changes.

3 2-Tree Design

In this section, we describe the 2-Tree architecture in detail. We
start with an overview of the architecture in Section 3.1 followed
by a discussion of the design principles of record migration in Sec-
tion 3.2. We then describe how each basic tree operation works and
how migration works in detail in Section 3.3. We end this section
with a brief discussion of the durability and recovery in Section 3.4.
For convenience, we use record throughout the rest of the paper in
multiple contexts. In a relational database setting, we use record to
represent a keyed database tuple or a secondary index entry that
stores the primary key of the tuple it points to. In a key-value store
setting record refers to a keyed binary payload.

3.1 Overview

The core idea of the architecture is physically separating hot records
from cold ones. Figure 1 illustrates the three cases we consider. Fig-
ure 1a shows a 2-Tree version of the Anti-Caching architecture.
Note that the data of the hot tree is kept in memory completely
and indexed at record granularity without using a buffer pool. Data
evicted are stored in an on-disk tree structure that is accessed
through a small buffer pool. The migration works at record-level
between the in-memory hot tree and the on-disk tree. Figure 1b
gives the two B-tree architecture using a shared buffer pool. The
same record migration is used. Lastly, Figure 1c shows an LSM-tree
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Figure 1: Applications of 2-Tree Architecture
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ref: reference bit
dirty: whether the record has been modified
deleted: whether the record has been deleted

Payload
dirty

(1 bit)

Figure 2: Top Tree Record Format

augmented with upwardmigration protocol. Note Figure 1b and Fig-
ure 1c are disk-based systems. Therefore, data is still stored on disk.
However, pages or blocks stored at higher levels of the hierarchy
are expected to be accessed more likely, taking a larger portion of
the buffer pool which results in better memory utilization.

3.2 Migration Design Principles

In this section, we present the design principles for recordmigration
in 2-Tree.

Downward Migration. When the allowable memory budget is
exhausted, we must decide what records to evict from the top tree.
A classic approach is to choose the least recently used (LRU) records
for eviction. However, the classic LRU algorithm must maintain
an ordered list of records, and the resulting per-record memory
overhead is high. Instead, we exploit the range scan operation com-
monly supported by tree data structures to devise a variant of the
clock replacement algorithm [9], which approximates LRU. Shown
in Figure 2, a record in the top tree is extended with metadata con-
taining a reference bit which is set upon record access. A clock
handle, i.e., a key value indicating the current progress of the evic-
tion scan, is maintained in memory. When eviction is needed, the
system cycles through every record starting after the clock handle.
It collects records with the reference bit off for eviction. It also
clears the reference bit of records examined. The scan stops when
the desired number of records has been collected.

Probabilistically Deferred Upward Migration. The next de-
cision to make is when to move data upwards. A simple policy is
to always move data upwards upon reading from the bottom tree.
However, such an approach might promote cold data that forces
the eviction of hot data in the top tree. A classic example of this
effect is a sequential scan that accesses all data exactly once. There
have been many proposed caching strategies that guard against
such thrashing. These strategies typically employ some form of

cache partitioning and/or frequency tracking that incur non-trivial
per-record bookkeeping.

Instead, we adopt a sampling-based approach where we move
only a sample of accessed records upwards. We define a sampling
rate as𝐷 (0 < 𝐷 ≤ 1). For data that is becoming hot, its frequency of
access increases, and therefore it will be more likely to end up in the
sample set. Hence, our approach provides a tunable level of thrash
resistance with minimal memory and CPU overhead. Our approach
also presents a trade-off between the cache warm-up rate and the
level of thrash resistance. A large sampling rate warms up the
cache quickly while providing little thrash resistance. In contrast,
a small sampling rate delivers thrash resistance by sacrificing the
warm-up rate. Notice that with sampling rate 𝐷 = 1, our approach
is identical to "always move upward on access". Finding the best
sampling rate is a typical knob-tuning task, and there are many
automatic techniques [35, 36, 42] available. For simplicity, in this
paper, we manually find the sampling rate that works well in our
evaluation. We leave systematic tuning of such parameter as future
work.

Inclusive versus Exclusive Migration Policy. Another impor-
tant decision to make when migrating records is how many copies
of a record to keep in the system. In an exclusive policy, the system
only keeps one copy of the record in either the top or bottom tree.
When migrating data from the bottom tree upwards, the record is
erased from the bottom tree. In an inclusive policy, the record is
retained in the bottom tree when it is copied to the top tree. An
inclusive policy avoids modifying the bottom tree during migration,
which is beneficial for IO-bound workloads. However, an inclusive
policy results in a larger overall tree size as duplication increases.
In this paper, we focus on an inclusive migration policy. For com-
pleteness, we cover both inclusive and exclusive in the description
of algorithms. However, we leave the experimental exploration of
exclusive policy as future work.

3.3 Base Operations

We next describe specific tree operations under the 2-Tree archi-
tecture with record migration, adhering to the principles described
above. We assume that all the records are uniquely identified by a
key.

Lookup Operation. As shown in Figure 4, the lookup operation
first searches for the key in the top tree. If the record found in the
top tree is undergoing migration, the operation is retried (Line 4
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1 UPMIGRATION Input: key, op, new_value
2 # record does not exist in the top tree
3 record = find key in bottom tree
4 if record exists:
5 if op == OP::UPDATE:
6 record.payload = new_value
7 update record in bottom tree
8 if random(0, 1) <= D: # Lazy Upward Migration
9 insert record into top tree
10 if exclusive policy:
11 delete record from bottom tree
12 return (SUCCEEDED, record)
13 return (NON_EXISTENT, null)

Figure 3: Upward Migration Procedure

1 LOOKUP Input: key
2 record = find key in top tree
3 if record exists:
4 if record.deleted: return null
5 if record.ref == false:
6 set record.ref to true in top tree # retain hotness
7 return record.payload
8
9 # record does not exist in the top tree
10 status, record = UPMIGRATION(key, OP::LOOKUP, null)
11
12 if status == NON_EXISTENT: return null
13 else: return record.payload

Figure 4: Lookup Procedure

1 UPDATE Input: key, new_value
2 record = find key in top tree for write
3 if record exists:
4 if record.deleted: return false
5 update record with reference = true, dirty = true, payload = new_value

in top tree↩→
6 return true
7
8 status, record = UPMIGRATION(key, OP::UPDATE, new_value)
9
10 if status == NON_EXISTENT: return false
11 else: return true

Figure 5: Update Procedure

of Figure 4). Otherwise, we update the reference bit of the record to
retain hotness and return the value (Line 5 of Figure 4). If not found
in the top tree, the search continues in the bottom tree. If found,
the upward migration (Figure 3) algorithm is performed, which
probabilistically moves the record to the top tree. In addition, the
record is erased from the bottom tree if the system is configured
with an exclusive policy. The value found in the bottom tree is
returned to the user.

Update Operation. Similar to Lookup operation, shown in Fig-
ure 5, the update operation first searches for the key in the top tree.
If the key is found, we update the reference bit, dirty bit, and con-
tents of the record. The update operation continues to bottom tree
if the key is not found in the top tree. A similar upward migration
mechanism is performed.

Put Operation. A put operation performs an upsert that does
not check the existence of the record in both tree structures. This is
useful when loading data or performing blind writes. Put operation
always inserts records first in the top tree with the reference bit
and dirty bit set. They get migrated down to the bottom tree via
eviction as the top tree fills up.

Insert Operation An insertion operation first checks the ex-
istence of a keyed record by using the Lookup operation. This is

1 EVICTION Input:

2 victims = {}
3 for record in range(clock_hand, ∞) of top tree for write:
4 record.ref == true: # toggle reference bit
5 record.ref = false
6 else:
7 victims = victims ∪ record
8 if victims set is large enough:
9 break
10 update clock_hand
11
12 for record in victims:
13 if record.deleted: # apply the deletion to the bottom tree
14 delete record from bottom tree
15 elif record.dirty: # write back the latest copy of the record
16 upsert record into bottom tree
17 else: # not dirty
18 if exclusive policy:
19 insert record into bottom tree
20 delete record from top tree

Figure 6: Eviction Procedure

useful for implementing the primary key in relational databases. If
the record does not exist, it inserts a record into the top tree. If the
system is employed with inclusive policy, both reference and dirty
bit are set. Otherwise, only the reference bit will be set.

Delete Operation. A delete operation first searches the top tree
for the key. If the record is found, its deleted bit is set. If the record
is not found, we insert a placeholder record with an empty payload
and the deleted bit set. The delete is only applied to the bottom tree
when the record is evicted. Note that we do not update the reference
bit so that the record will be evicted with a higher probability.

Range Scan Operation. The scan of a 2-Tree structure merges
the scans of the individual trees. This has been done in many LSM-
tree implementations. When merging results, we need to handle
two cases. Case #1: a record exists in only one tree. In this case, the
system returns the record. Case #2: the record is in both trees. In
this case, the system returns the record in the top tree as it reflects
the latest version.

Eviction. We trigger eviction by periodically checking if the
memory consumption of the system has exceeded a threshold. As
shown in Figure 6, the eviction process starts with a range scan
of the top tree starting after the clock handle. The process iter-
ates through every record. If the reference bit of a record is on, it
is toggled off. Otherwise, it is added to the eviction set. We end
the scan operation after the eviction set has collected the desired
number of records. We first apply deletions to the bottom tree for
those delete-marked records. Then, all dirty records are upserted
into the bottom tree. For non-dirty records, they get inserted into
the bottom if the system is configured with an exclusive migration
policy. Lastly, we erase records in the eviction set from top tree.

3.4 Durability and Recovery

We notice that migration does not change logical user content. It
merely changes the representation of the physical data structures.
Therefore, we use system transactions [15] as a general approach
to ensure the atomicity and durability of migration. System trans-
actions are lightweight as they do not need to force log records
to stable storage upon commit. A system transaction could con-
sist of migrating a single record during normal tree operation or
multiple records during the eviction. For disk-resident page-based
2-Tree systems (Figure 1b), ARIES [27] is employed for durability
and recovery. For each migration system transaction, we record
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redo and undo log records of pages changed by the transaction
to log file. When a system transaction commits, it also records a
commit record. However, these log records are not forced to disk
upon commit. Instead, the hardening of these records is implicitly
carried out by later user transactions that force its log records to
stable storage. For 2-Tree for Anti-Caching (Figure 1a), the durabil-
ity and recovery mechanism described in the original paper [11]
is compatible with 2-Tree. Therefore, we omit the discussion. For
LSM-tree with upward migration (Figure 1c), we can apply the
same system transaction idea to guarantee the durability and re-
coverability of the upward migration operation at low-cost. Since
modern LSM-tree implementations performwrites out-of-place and
employ write-ahead-log for its memory-resident write buffer, we
may represent the upward migration as a normal write operation.
Similarly, such a write operation is lightweight as it does not need
to guarantee durability.

4 Implementations

We present four implementations following the principles of 2-Tree
ranging from on-disk to in-memory structures.1

4.1 Disk-Based Structures

2B+tree. We use two on-disk LeanStore B+trees [19] sharing a
single buffer pool with record migration. The eviction process is
activated when the hot B+tree consumes more than 90% of the
buffer pool capacity. We chose this threshold to make sure the
index nodes of the cold B+tree are memory-resident [16]. We found
that the replacement policy in LeanStore randomly picks a page
as eviction candidate, which is undesirable as we want to keep
hot tree pages in memory. Although LeanStore gives each eviction
candidate a grace period before real eviction, hot tree pages will still
often be chosen for eviction because they take up the vast majority
of the buffer pool frames. We fix this problem by ensuring pages
from the cold tree are 10× more likely to be chosen for eviction
than the hot-tree ones.

UpLSM-tree. As discussed in Section 2, vanilla LSM-tree suffers
from low memory utilization when the workload on the working
set is read-only. We leave existing downward migration in LSM-tree
as is and apply the upward migration from 2-Tree to address this
problem. Specifically, we consider migrating a record upwards to
the highest level (C0). This happens when a point read operation
incurs a miss in the block cache. This suggests that the I/O likely
occurred in the lower levels as higher levels are typically small
and cached by block cache. Therefore, migrating such a record
upwards helps cluster records frequently read. We apply the same
probabilistic approach to ensure only warm records get migrated
and to reduce excessive writes.

4.2 Memory-Optimized Structures

IM-2B+tree. We use a memory-optimized B+tree [5] as the top tree
that eschews buffer pool interface and a LeanStore B+tree as the
bottom tree. We dedicate 90% of the available memory to the top
tree that stores data directly in memory and 10% of the memory to
the LeanStore buffer pool. The eviction process is activated when
the top tree exceeds its memory budget. We chose this threshold to

1Source code: https://github.com/zxjcarrot/2-Tree

make sure there is enough memory to cache the index nodes of the
cold B+tree on-disk.

Trie+B+tree. This is similar to IM-2B+tree, except that the top
tree is indexed using the adaptive radix tree [20].

5 EXPERIMENTAL RESULTS

In this section, we conduct preliminary experiments with a single
worker aimed to answer the following questions:

• How effective is the 2-Tree concept at improving state-of-
the-art disk-based indexing schemes, namely LeanStore for
B-trees and RocksDB for LSM trees, in terms of buffer pool
memory utilization under point operations?

• How does 2-Tree compare to Anti-Caching in terms of data
set scalability?

• Howmuch overhead does 2-Tree approach impose on range
scan operations?

5.1 Baselines

We compare our proposals against the following baselines:
B+tree. For a single-structured B+tree, we use LeanStore [19]

as the baseline, which is a state-of-the-art B+tree implementation
backed by a fast buffer manager.

LSM-tree. For an LSM-tree, we use RocksDB as the baseline,
which is a popular production-grade implementation.

LSM-tree with Row Cache. RocksDB comes with Row Cache
feature that keeps frequently-accessed records of SST files in an in-
memory global cache. The RocksDB lookup procedure consults the
global cache before searching each file, thereby increasing memory
utilization. For a given memory budget, we configure 90% of the
budget to row cache. We then leave the rest of the 10% budget to
Block Cache to make sure that all blocks containing fence pointers
and bloom filters are cached in memory. Therefore, this allows at
most one I/O per SST file.

Anti-Caching. We implemented Anti-Caching [11] for main-
memoryDBMS.We use the samemain-memory optimized B+tree [5]
for indexing records, which are also chained in a doubly-linked
LRU list. We use a similar sampling-based approach to reduce the
maintenance overhead of the LRU list introduced in the original
paper [11]. When memory is exhausted, we assemble a 1KB block
consisting of the coldest records taken from the LRU list. We use
another in-memory B+tree to index the metadata of each evicted
tuple. The metadata includes block id and record offset within a
block. We store blocks in a LeanStore B+tree on-disk keyed by
block id. Upon access to an evicted block, all records in the block
are attached to the LRU list in memory as the coldest.

5.2 Experimental Setup

Workload. We use the Yahoo! Cloud Serving Benchmark (YCSB)
as our main workload. Specifically, we use a 5GB data set with
20 million records, each with an 8-byte key and 248 random bytes
of payload. Records are clustered within each index, except for
trie, which stores pointers to the record in-memory. We evaluated
2-Tree under the following access distributions:

Hotspot. This distribution has a fixed working set with ran-
domly chosen records. Each record in the working set is accessed
uniformly. This measures how big a working set each of the ap-
proaches can maintain in-memory.

https://github.com/zxjcarrot/2-Tree
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Hotspot Request Distribution with Varying Working Set Size.

Zipfian. We also evaluated a Zipfian access distribution that is
typically seen in real-world workloads.

All experiments are conducted on a Google Cloud instance with
16 2.30 GHz virtual CPUs and 14.8 GB RAM. The instance has a
local SSD with a read latency of around 250 us. To focus solely on
buffer pool memory utilization, we disable write-ahead logging and
the Linux page cache for all experiments. Therefore, the only I/O
are the misses in the buffer pool for the B+tree and compactions
for the LSM-tree.

To highlight the importance of memory utilization, we fixed the
memory budget to be 1GB which is about 20% of the raw data set
size. In such a memory-constrained setting, an improvement in
utilization translates to better performance. We use a page size of
16 KB for LeanStore and 32KB for RocksDB. For all experiments,
we first sequentially load the data set and then warm up the systems
by running the target workload until the system throughput stabi-
lizes before measuring the average throughput. By default, 2-Tree
variations are configured with inclusive policy and lazy upward
migration with a sampling rate 𝐷 of 0.5, which we found performs
reasonably well. All experiments were run with a single worker
thread that performs normal operations as well as migration. We
leave concurrent migrations as future work.

5.3 Point Operations

We first evaluate 2-Tree architecture with point operations includ-
ing lookup and read-modify-write (update). We ran the experiments
under Hotspot and Zipfian access distribution separately.

5.3.1 Hotspot Results In this experiment, we vary the working
set size from 0.1% to 30% of the entire data set. All accesses go to
the working set uniformly.

B+tree.With the read-onlyworkload shown in Figure 7a, 2B+tree
can keep a working set of up to 15% of the data set in memory. For
traditional B+tree, the throughput plummeted after the working
set reaches 1% of the data set. For this workload, 2B+tree can suc-
cessfully manage a working set more than 15× bigger than on a
B+tree. Even when the working set is 0.1% of the date set and all
approaches can maintain the working set in main memory, 2B+tree
still outperforms B+tree by 1.6×. The reason concerns the capacity
of the top tree which is capped by the memory budget (20% of the
data set). Therefore its index nodes are much smaller than that of
single B+tree, resulting in improved CPU cache efficiency. We ob-
serve similar improvements for 2B+tree over B+tree on the update
workload in Figure 7b.

LSM-tree. Similarly, UpLSM-tree and LSM-tree with row cache
can keep a much bigger (up to 20× bigger) working set in memory
than vanilla LSM-tree on the read-onlyworkload shown in Figure 8a.
However, for update workload shown in Figure 8b, we observe no
significant memory utilization difference between UpLSM-tree and
vanilla LSM-tree. This is because an update workload naturally
clusters records in the working set at the top levels of an LSM-tree,
resulting in high memory utilization. Surprisingly, LSM-tree with
row cache was outperformed by vanilla LSM-tree and UpLSM-tree
by up to 9×. The reason is as follows. An update operation con-
sists of a read followed by a write on the same key. Since RocksDB
performs writes out-of-place, each write will effectively invalidate
the record in the row cache which likely results in an I/O for the
following read on the same key. Therefore, there is effectively no
reuse for a record in the row cache. In contrast, a bigger block cache,
as in the case with UpLSM-tree and vanilla LSM-tree, can help re-
duce I/Os by caching more SST files which explain the performance
difference.

Anti-Caching. The results of the comparison of 2-Tree against
Anti-Caching are shown in Figures 9a and 9b. All systems have
similar throughput when the working set can be kept in memory.
However, Anti-Caching is only able to keep a working set up to 3%
of the data set. Whereas all 2-Tree variations can cache up to 17%
of the working set. This is because the in-memory eviction table
in Anti-Caching takes too much memory (54%) for indexing the
evicted data.

5.3.2 Zipfian Results We next evaluate the 2-Tree architecture
for a Zipfian distribution, varying the skew factor from 0.7 to 0.9.
For a skew factor of 0.8, 80% of the accesses go to 32% of the records.

B+tree. The results comparing 2-Tree against single B+tree
structures are shown in Figures 10a and 10b. For 2B+tree versus
B+tree, we observed 1.54× throughput increase for a read only
workload at skew factor 0.9. This is due to the increased buffer
pool memory utilization when clustering hot records in the top tree
compared to a single B+tree. For the update workload, we observed
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Figure 11: Throughput of UpLSM-tree and LSM-tree Variations on

Zipfian Request Distribution.
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Figure 12: Throughput for 2-Tree Variations and Anti-Caching on

Zipfian Request Distribution

up to 1.7× throughput improvement. This is because 2B+tree helps
reduce write amplification. Therefore, it pays lower disk write
overhead per operation compared to a single B+tree.

LSM-tree. The results comparing LSM-tree variations are shown
in Figures 11a and 11b. UpLSM-tree outperformed vanilla LSM-tree
by up to 1.73× on read-onlyworkload thanks to the increased utiliza-
tion of the block cache. UpLSM-tree is competitive against LSM-tree
with row cache on read-only workload. On update workload, we
did not observe improvements over LSM-tree using UpLSM-tree
because such a workload already maintains high memory utiliza-
tion for a vanilla LSM-tree. However, UpLSM-tree outperformed
LSM-tree with row cache by 1.6× for the same reasoning explained
in Section 5.3.1.

Anti-Caching. The results of comparison of 2-Tree against
Anti-Caching are shown in Figures 12a and 12b. Anti-Caching is
consistently outperformed by other 2-Tree variations by up to 4×
and 3.1× respectively for read-only and update workloads. This is
mainly because the evicted table in Anti-Caching occupies 54% of
the memory budget, leaving little memory for hot records. Whereas
2-Tree variations do not keep metadata for the evicted record.
Hence, they can keep more hot records in memory. The difference
between Trie+B+tree and IM-2B+tree is not significant (within 10%)
because the performance gain from in-memory indexing is dwarfed
by I/O latency in this workload.
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5.3.3 Summary To summarize, we showed that 2B+tree signifi-
cantly increased the buffer pool memory utilization over a single
B+tree. We also showed UpLSM-tree increased the block cache
memory utilization for read-only workloads over vanilla LSM-tree
without hurting the performance of update-heavyworkloads. Lastly,
2-Tree variations can keep a working set much larger than Anti-
Caching in memory.

5.4 Range Scan Operations

We next evaluate 2-Tree architecture under range scan operations.
We ran a workload with a mixture of point lookup and range scan
operations. We vary the percentage of range scan operations from
25% to 100%. The scan operation examines 100 consecutive records
starting at a specific key. We use a Zipfian access distribution with
the skew factor set to 0.8.

B+tree. As shown in Figure 13a, 2B+tree performs similarly
compare to a single B+tree as we increase the percentage of scan
operations. This is because the top tree in 2B+tree is mostly cached
in the buffer pool. Therefore, most of the I/Os for scans are from
the bottom B+tree which has a similar number of leaves compared
to that of single B+tree.

LSM-tree. For LSM-tree variations shown in Figure 13b, LSM-
tree and UpLSM-tree preform indistinguishably as we increase the
percentage of scan operations since they have the same amount of
block cache. However, we observe 83% lower throughput for LSM-
tree with Row Cache (LSM-tree with RC). This is because a range
scan operation in LSM-tree requires scanning blocks in SST files.
The block cache can help with reducing I/Os in such case whereas
the row cache cannot. Therefore, caching at the block-level is more
versatile than caching at the record-level.

Anti-Caching. The results are shown in Figure 14. IM-2B+tree
significantly outperforms Anti-Caching by up to 35× because IM-
2B+tree keeps evicted data ordered on disk. However, the Anti-
Caching design optimizes for eviction and keeps evicted data un-
ordered on disk. This results in many random I/O operations per
scan. Therefore, it cannot support efficient scan over data on disk.



CIDR’23, January 8-11, 2023, Amsterdam, The Netherlands Xinjing Zhou, Xiangyao Yu, Goetz Graefe, and Michael Stonebraker

6 FUTURE DIRECTIONS

We also see at least five promising future research directions related
to 2-Tree:

Physical Concurrency Control. This paper only covers the
case where there is only one thread accessing a 2-Tree data struc-
ture. This only works well in single-threaded architecture such as
H-Store/VoltDB [17, 31, 32] and Redis [30]. In future work, we plan
to address the problem of coordinating concurrencywithin a 2-Tree
structure. Specifically, we need to guarantee that data structures
stay consistent in the face of concurrent migrations and normal ac-
cesses. We will leverage fruitful research results in concurrent tree
data structures [22, 26] and synchronization techniques [2, 18, 21].

Adapting to Non-tree-based Structures. There is no funda-
mental reason why we cannot extend this architecture to more
data structures to optimize for skews. For example, widely-used
structures such as extendible/linear [14, 25] hashing and heap file
fit easily in this architecture by having two structures instead of
one. As a future work, we plan to generalize 2-Tree to handle
non-tree-based database index and storage structures.

Applications in Cloud-Native Databases. 2-Tree architecture
can be directly applied to modern cloud-native databases where
storage is disaggregated from compute [1, 24, 37]. This can help
increase the memory utilization of the buffer pool on the compute
node, reducing round trips to the storage node which is typically
more costly than accessing local storage devices. Furthermore, 2-
Tree architecture and the fact that storage nodes can do compu-
tation open up more optimizations. For example, we can migrate
data at record granularity instead of page between compute and
storage, reducing network traffic.

Multi-Tier Memory Hierarchies. Several multi-tier solutions
have been proposed, ranging from local memory (Persistent Mem-
ory) to remote memory (memory expansion and pooling using
Compute Express Link and/or RDMA) with varying performance
and cost characteristics. We expect to extend the 2-Tree architec-
ture to multiple levels. New caching and data migration techniques
are likely needed in such a diverse design space.

Compressed DRAM. Compression is a promising approach to
keeping more data in DRAM. For example, the latency of decom-
pressing a B+tree leaf page of 4 KB filled with random data in main
memory using LZ4 is 5-50× lower than reading the same 4KB block
from several NVMe SSDs we tested. Hence, we expect to explore
this optimization tactic. Besides using compressed DRAM as the top
tier, it could also form a newmiddle tier of block storage in between
uncompressed DRAM and compressed SSD. Open questions include
how to properly manage, provision, and index compressed DRAM
and how to identify non-compressible data and avoid placing them
in compressed DRAM; and the possible role of 2-Tree for these
open questions.

7 CONCLUSION

In this paper, we proposed the 2-Tree architecture for improving
memory utilization in skewed working sets. The core idea is to
maintain two trees and migrate records between them: in both
directions, based on hotness, and at low cost. Our results show that
for skewed data, 2-Tree significantly increases buffer pool memory
utilization for B+trees while maintaining competitive range scan

performance. We also demonstrated that migration can be applied
to LSM-tree to help increase block cache memory utilization for
read-heavy workloads without hurting the performance of range
scan and update operations. 2-Tree is also very competitive for
indexing in Anti-Caching architecture as it significantly improves
data set scalability and range scan performance. Sinceworkloads are
invariably skewed, we believe 2-Tree is a promising step towards
better memory utilization in database indexing.
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