
Towards Adaptive Storage Views in Virtual Memory
Felix Schuhknecht

Johannes Gutenberg University Mainz
schuhknecht@uni-mainz.de

Justus Henneberg
Johannes Gutenberg University Mainz

henneberg@uni-mainz.de

Traditionally, the storage engine of a DBMS exposes its entire
database to the surrounding system components. To limit query
processing to parts of interest, additional index structures must
be created on top. While these index structures certainly speed
up query processing in a large variety of situations, unfortunately,
they add a level of physical indirection to query execution. This
indirection must be resolved at runtime, which causes unpleasant
overhead. Therefore, in this abstract, we present a way to naturally
fuse indexing and storage: The storage engine maintains multiple
coarse-granular views for all tables, each covering a subset of the
database with a certain property of interest. By realizing views
through the virtual memory management subsystem of the OS, they
cause zero overhead at access time, and do not require the table to be
physically replicated. Our prototype creates views adaptively to best
fit the overall query workload, and routes each query automatically
to the best fitting views for scanning during query processing.
Adaptive Virtual Views. Figure 1 visualizes the concept for one
full view (indexing all data) and two partial views indexing only
portions of the data with certain properties (indexing only blue
shapes, or only circles, respectively). All views map to (portions of)
the very same physical memory area, in which the entire dataset
is materialized. If we wanted to find only purple circles, we would
scan the partial view indexing circles instead of the full view, as it
matches our request best.

■ ●▲ ● ● ● ■ ■ ● ▲

● ● ● ● ●▲ ● ■ ●■ ●▲ ● ● ● ■ ■ ● ▲
Full view (covering the entire column)

physical memory

● ●

Scan

Partial view
(blue shapes)

Query Routing

Partial view
(purple circles)

create new
partial view

virtual memory

Partial view
(circles)

best view

View Manager

Figure 1: Visualization of the architecture of our storage
layer at an example: In addition to the full virtual view, each
column provides two partial views indexing only subsets of
the data.

As a side-product of query answering, we build a new partial
view that now indexes only purple circles. On Linux, views can
be created in virtual memory via mmap in combination with main-
memory files: Each memory page containing a purple circle will
be referenced by a newly created contiguous virtual memory re-
gion. Since mmap calls are expensive, we perform all calls from a
concurrent mapping thread, and collect adjacent relevant pages
into a single mmap invocation.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2023. 13th Annual Conference on
Innovative Data Systems Research (CIDR ’23). January 8-11, 2023, Amsterdam, The
Netherlands.

The newly created view can then be utilized for future query
processing. Note that newly created partial views are only retained
by the view manager if they improve the current indexing situa-
tion. For example, if the new partial view 𝑣𝑛 covers a subset of an
existing partial view 𝑣𝑒 , but references a similar amount of physical
memory pages, then 𝑣𝑒 can be used to answer more queries than
𝑣𝑛 with comparable scanning effort. Therefore, the view manager
will discard 𝑣𝑛 to keep the number of indexes to maintain low.
Query Routing. To answer an incoming query using the existing
views, we support two modes of operation: In single-view mode,
we use exactly one view to answer the query, where this view must
fully cover the predicates of the query. If there are multiple views
available that fulfill this property, we pick the view that indexes
the smallest amount of physical pages to minimize the scanning
effort. In multi-view mode, we potentially use multiple views to
answer a single query, provided that these multiple views fully
cover the requested range in conjunction. As physical pages might
be shared between multiple partial views, we additionally keep
track of processed physical pages to avoid scanning a page twice,
as this would lead to incorrect results.
Handling Updates. If updates happen through the full views, these
updates must be reflected by all existing partial views to ensure
correctness. This involves potentially adding and removing pages
from each partial view that covers a value range affected by an up-
date using repetitive mmap-calls. As this process can become costly
when being performed for each update individually, we support up-
dating partial views with respect to an adjustable batch of updates.
If too many pages of a partial view would be changed by a batch of
updates, the view is rebuild from scratch instead.
Performance. Figure 2 shows how our adaptive partial views im-
prove the individual query response times over fully scanning all
data under a sequence of 250 range queries with varying selectivity.

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250

R
un
tim
e
[m
s]

Query sequence

Scanning Views
Fullscan

Figure 2: Performance

We test a clustered data
distribution that follows
a sine curve. We can
see that already early
on in the sequence, the
adaptively created partial
views are used by the
query processing to sig-
nificantly speed up scans.
Extended Version. For a
detailed presentation, discussion, and evaluation of virtual stor-
age views, please refer to the extended version of the paper [2]. All
code of this project is freely available under [1].

REFERENCES
[1] 2022. https://gitlab.rlp.net/fschuhkn/adaptive-virtual-storage-views
[2] Felix Martin Schuhknecht and Justus Henneberg. 2022. Towards Adaptive Storage

Views in Virtual Memory. CoRR abs/2209.01635 (2022). arXiv:2209.01635

https://gitlab.rlp.net/fschuhkn/adaptive-virtual-storage-views
https://arxiv.org/abs/2209.01635

	Abstract
	References

