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ABSTRACT
In the past decade, property graph databases have emerged as a
growing niche in data management. Many native graph systems
and query languages have been created, but the functionality and
performance still leave much room for improvement. The upcoming
SQL:2023 will introduce the Property Graph Queries (SQL/PGQ)
sub-language, giving relational systems the opportunity to standard-
ize graph queries, and provide mature graph query functionality.

We argue that (i) competent graph data systems must build on
all technology that makes up a state-of-the-art relational system,
(ii) the graph use case requires the addition to that of a many-
source/destination path-finding algorithm and compact graph rep-
resentation, and (iii) incites research in practical worst-case-optimal
joins and factorized query processing techniques.

We outline our design of DuckPGQ that follows this recipe,
by adding efficient SQL/PGQ support to the popular open-source
“embeddable analytics” relational database system DuckDB, also
originally developed at CWI. Our design aims at minimizing techni-
cal debt using an approach that relies on efficient vectorized UDFs.
We benchmark DuckPGQ showing encouraging performance and
scalability on large graph data sets, but also reinforcing the need
for future research under (iii).

1 INTRODUCTION
Graph Database systems have emerged as a growing niche in data
management, with many property graph systems [7] such as Neo4j,
TigerGraph, Dgraph, Titan and AWS Neptune becoming available,
all using different query languages (i.e., Cypher, GSQL, GraphQL,
Gremlin, SPARQL [2]). Property Graphs are directed graphs consist-
ing of vertex and edge elements; where elements may have labels
and associated key/value properties. Property graph systems are
quite young, and performance of analytical queries on large graphs
has been observed to be significantly lower than relational database
systems, on graph queries that can also be formulated as SQL [16].

Modern analytical systems such as Snowflake and Databricks
have adopted principles like skippable columnar storage with light-
weight compression [24] (also popular in open-source formats such
as Parquet and ORC), efficient load-balanced multi-core parallelism
using “morsel-driven” scheduling [15] and efficient query execu-
tion techniques [14]: either using vectorized query execution or
Just-In-Time query compilation.
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The upcoming SQL:2023 introduces the SQL/PGQ (Property
Graph Queries) sub-language [8], which allows (1) to define graph
views over relational tables and (2) to formulate graph pattern
matching and path-finding operations using a SQL syntax. These
features narrow the functionality gap between RDBMSs and native
graph systems, and unify the feature space with a common graph
query sub-language, as PGQ is also a subset of the upcoming ISO
Graph Query Language GQL [8] that native graph systems intend
to adopt. GQL will add graph updates, querying multiple graphs
and queries that return a graph result, rather than a binding table.

SQL/PGQ by example. If we have relational tables Student and
College and connecting tables know and enrol, we can define a prop-
erty graph pg consisting of Person vertexes connected to each other
by edges with label know and to College vertexes via studiesAt edges:1

CREATE PROPERTY GRAPH pg
VERTEX TABLES(
Student PROPERTIES(id,name ,birthDate) LABEL Person ,
College PROPERTIES(id,college))

EDGE TABLES(
know SOURCE KEY(src) REFERENCES Student(id)

DESTINATION KEY(dst) REFERENCES Student(id)
PROPERTIES(createDate ,msgCount),

enrol SOURCE KEY(studentID) REFERENCES Student(id)
DESTINATION KEY(collegeID) REFERENCES College(id)
PROPERTIES(classYear) LABEL studiesAt)

In the below SELECT query the MATCH will bind variable a to all
vertexes that satisfy a label-test :Person and have property name=

'Ana'. The comma separating the two pattern expressions implies a
conjunction2 with matching variable bindings: it requires a to also
have an edge labeled studiesAt towards a College c:
SELECT study.college , study.pid FROM GRAPH_TABLE (pg,

MATCH (a:Person WHERE a.name='Ana'),
(a) -[:studiesAt]->(c:College)

COLUMNS (c.college , ELEMENT_ID(a) AS pid)) study

The MATCH clause produces a conceptual binding table with each
row holding matched bindings and one column for each variable.
These bindings denote elements (e.g., a vertex or edge); the COLUMNS

clause retrieves scalar values from those. The example retrieves the
property c.college and the implicit element identifier3 of a, as the
columns of a temporary GRAPH_TABLE named study in the FROM clause.

1The table name is the default label. DuckPGQ allows an additional LABEL list of max
length 64, and a BIGINT LABEL FROM col specifier column. Elements only have a
label from the list if their corresponding bit is set. This allows e.g., to express class
membership with inheritance in labels. DuckPGQ will not support having the same
label in multiple tables, as element patterns must always bind to a single table.
2Inside path expressions, the | will UNION pattern bindings, and |+| stands for UNION
ALL; though neither is supported initially in DuckPGQ.

3ELEMENT_ID() is implementation-dependent; in DuckPGQ it returns a rowid.
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Graph queries in PGQ are more concise than in pure SQL, with
clear element syntax: () is a vertex and [] an edge. Inside element
patterns one finds, in this order (all optionally): a variable, a : label-
test – which can be grouped with () and composed using & (and), |
(or) and ! (not) – and a filtering WHERE clause. The edge requirement
is also visual (<-[]- left, -[]-> right, <-[]-> both, -[]- any).

SQL/PGQ can match multi-step paths using a {,} quantifier (be-
low: between 2 and 4 edges), and can also bind paths to variables
(p), where a path is a list of alternating vertexes and edges, always
starting and ending in a vertex. The below shows the simplified
syntax of -[:know]->{2,4}. This compactly denotes a multi-edge path
as a sequence of labels, inside slashes, with any quantifiers inline.

MATCH p=(a:Person)-/know{2,4}/->(b:Person)

A pure SQL version of this query would require to UNION 3 sub-
queries, each joining resp. 2, 3 and 4 aliases of the edge table in their
FROM clauses. A quantifier {x,} without upper is bound is known as
Kleene*. PGQ has shorthands * for {0,}, + for {1,} and ? for {0,1}.
In pure SQL, Kleene* requires a RECURSIVE query, which quickly
becomes hard to write, read, and inefficient to execute.

MATCH ANY SHORTEST PATH p=(a:Person WHERE a.name='Ana')
-[ e:know COST age(e.createDate)/max(1,e.msgCount) ]->*

(b:Person WHERE b.name='Bo')

ANY SHORTEST PATHwas added to the path expression above (it binds
p to 1 path of lowest cost); as PGQ Kleene* must have a finite result.

The cost of a path is the sum of the cost of its elements – with
vertex cost 0 and edge cost 1 (i.e., cost=length), but element specifi-
cations can get an optional COST expression, allowing to search for
weighted shortest paths.4 The example above looks for the fastest
messaging path between Ana and Bo. PGQ also can find ANY k short-
est paths, i.e., k=1 is default. Note that ANY is non-deterministic, as
there may be more than k paths with equal cost. A deterministic al-
ternative is looking for ALL SHORTEST PATHS. Paths can also be grouped
in equivalence classes regarding their cost by using the GROUPS key-
word, and then ALL paths belonging to the k-shortest classes can
be deterministically returned. ALL Kleene* can also be made finite
by constraining to TRAIL (no edge repeats), ACYCLIC (no vertex re-
peats) or SIMPLE (similar, but allows start=end). Finally, paths can be
segmented using [] or (), allowing to bind variables to sub-paths,
impose extra constraints, and express Regular Path Queries [23]
by using quantifiers. Let’s find all paths from Ana to Bo without
vertex repeats (except maybe the last), over adults, that have the 5
shortest lengths, and bind s to those with the last hop cut off:

MATCH ALL 5 SHORTEST TRAIL GROUPS
[ SIMPLE s=(a:Person WHERE a.name='Ana')
[-/know/->(p:Person WHERE p.birthDate <'2004 -01 -01')]*]
-/know/->(b:Person WHERE b.name='Bo')

Outline. In Section 2 we will outline our vision on how to create
competent graph database systems, and in Section 3 bring this to
bear in the blueprint of DuckPGQ: an extension module that sup-
ports most of SQL/PGQ in the open-source “embeddable analytics”

4This is a “language opportunity” in SQL:2023, but DuckPGQ supports it, allowing
COST(p) in the COLUMNS clause to return path cost, as well as ELEMENT_ID(p) to return
paths as a SQL list of BIGINT (rowids). DuckPGQ will not support ALL Kleene* path-
finding, and initially only ANY SHORTEST single-edge Kleene* and no path grouping.

database system DuckDB [21], originally developed at CWI. Specifi-
cally, this system allows for on-the-fly creation of CSR (Compressed
Sparse Row) in-memory graph representations, made highly effi-
cient by introducing a number of generic relational optimizations.
We describe a minimal set of vectorized scalar user-defined func-
tions (UDFs) that form the backbone of the graph-specific func-
tionality for CSR creation and path-finding. The reliance on UDFs
minimizes the impact on the mainline DuckDB code base, making
DuckPGQ maintainable going forward.

In Section 4 we evaluate the performance of DuckPGQ, compar-
ing it with property graph and purely relational systems, before
outlining future research and conclusions in Section 5.

2 COMPETENT GRAPH SYSTEM DESIGN
We shortly outline 8 core features of competent analytical data sys-
tems design (c1–8) and then add 4 graph-specific features (g1–4).

c1: fast scans on elements with schema.Graph systems typically
do not require upfront schema design. This is convenient for users,
e.g., for quick prototyping and for evolving data mashups, but
regrettably graph systems internally also tend to stay unaware of
label and property structure of the elements they store. Systems
that are unaware of structure, such as RDF systems, will turn a fast
multi-column/property scan into many expensive joins between
selections on a big table that stores all elements mixed together.
Significantly increasing the amount of joins, in turn, exponentially
increases the query optimization search space, leading to a more
scant exploration when optimizing large queries and therefore
worse query plans. Further, these avoidable joins often harbor (hard
to detect) correlations that will throw off join cardinality estimates,
further deteriorating plan quality. We argue that systems should
detect the regularities of the data they store automatically [19]
and exploit these for storage and query processing [20]. Note that
SQL/PGQ systems are schema-aware by definition.

c2: skippable compressed columnar storage. Fast columnar
scans, and table clustering and partitioning that allows data skip-
ping based on pushed-down scan predicates using cheap min/-
max statistics are a cornerstone of raw analytical performance [1].
Further, as columnar data has lower entropy than row data, com-
pression tends to work well, reducing data volume, and hence I/O,
network bandwidth, and RAM use – typically by a factor 3-4 [24].

c3: vectorized or data-centric execution.Analytical performance
has been shown to improve by a factor 10–100× using either vec-
torized query processing or JIT code generation over traditional
tuple-at-a-time interpreted execution [14]. Graph query processing
subsumes relational functionality: scans, filters, grouping/aggrega-
tion and value-based joins are also functionalities of graph query
languages, and such operations must be executed efficiently.

c4: morsel-driven multi-core. Modern hardware will often have
tens of cores and a single heavy analytical query should benefit from
near-linear scaling on these. This means that graph query languages
should parallelizewell and the state-of-the art here is flexiblemorsel-
driven scheduling where a fixed number of threads pinned to the
cores steal morsels of work (typically 10-100K data items) from a
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queue, and exploit the scheduling flexibility provided by shared
data structures (e.g., hash tables), for good load balancing [15].

c5: state-of-the-art query optimization. To get efficient query
plans, one needs dynamic-programming-based query optimization,
informed by good statistics: typically a combination of table sam-
ples (that allow to detect correlated predicates within a table) and
hyperloglogs on most data to estimate distinct counts [17].

c6: bulk APIs/algebras. The interface between query operators
should not be a single-value-at-a-time; but rather be framed in
terms of sets. The popular TinkerPop is a key-value API: a graph
navigation pattern containing 4 edges easily can lead to a million
navigations, and thus API calls. In contrast, relational algebra is
a good example of a bulk API. Bulk APIs amortize call overhead,
provide opportunity for parallel IO and for parallel memory access
(e.g., in vectorized hash-table or CSR lookups).

c7: out-of-core buffer manager. NVMe flash memory provides
high bandwidth and low latency, allowing systems to reach almost-
RAM performance on out-of-core data sizes. The Umbra approach
(originating in LeanStore) [17] with low-overhead swizzling of disk
references into memory pointers achieves this aim.

c8: explicit control over memory locality. Implementing graph
storage using separate memory objects pointing to each other not
only stands in the way of compressed columnar storage and leads
to a bloated memory footprint, but also causes the system to lose
control over physical memory locality as allocated objects are un-
likely to be adjacent in physical memory (and this leads to increased
CPU cache misses). This is compounded by working in so-called
“managed” memory runtimes, such as in Julia or the JVM, where
memory fragmentation and garbage collection will cause additional
performance havoc over time. As such, we think a scalable graph
system should be programmed in a language with explicit memory
control and specifically optimize for memory locality.

The above principles are followed by modern analytical database
systems such as Snowflake, Databricks Photon, ClickHouse and
the academically developed Umbra, as well as our DuckDB. We
argue that systems that follow these principles form a solid base
for competent graph database systems, provided they add certain
functionalities, important for graph workloads:

g1: fast CSR creation. The creation of a compact graph represen-
tation such as a CSR data structure is in itself a frequently desired
functionality, e.g., exporting tabular data as a base for training
Graph Neural Networks (GNNs). In addition, such a compact repre-
sentation can be key to supporting efficient path-finding and worst
case-optimal joins (see also g2-3). The ability to create it quickly
on-the-fly has the additional advantage that one does not need to
maintain this very write-unfriendly structure under updates.

g2: bulk path-finding. SQL/PGQ in the general case must perform
path-finding between sets of source vertexes and sets of destina-
tion vertexes; yielding a multi-source multi-destination problem
Such bulk path-finding provides opportunities for synergy between
the individual (src, dst) path-finding tasks that a competent graph
system must leverage. Bulk path-finding also provides a way to
parallelize graph search over multiple cores (more on that later).

g3: worst-case-optimal joins (WCOJs). Multi-join algorithms
can have provably better worst-case complexity than standard bi-
nary joins (between two tables) [18], e.g., WCOJs are O(𝑛1.5) on
triangle queries, whereas plans with binary joins are O(𝑛2). The
benefits of WCOJs are strongest in queries where binary joins gen-
erate spurious intermediate results (i.e., much larger than the final
result): when the joins are n:m and when the join graph has a
cycle, since closing the cycle typically eliminates intermediates.
This tends to occur in graph pattern matching, as edge-joins are
n:m (explosive) and graph patterns often have cycles. Both efficient
WCOJ algorithms [11], that e.g., fit the vectorized query execution
model, as well as optimizer integration still require more research.

g4: factorized query processing. Materialization of explosive
n:m joins can sometimes be postponed, by factorizing out the re-
dundancies in such an exploded result [5]. This postponement can
turn into largely avoiding the explosion, e.g., if a filter or an aggre-
gation follows the joins. Integrating factorized query processing in
data systems is relatively under-explored, has not been achieved in
practical systems and should be on the research agenda.

We will now discuss the design and performance of DuckPGQ,
that starts from the state-of-the-art analytical DuckDB system [21]
that embraced c1–8, and adds g1–2; leaving g3–4 for future work.

3 DESIGN AND IMPLEMENTATION
Since DuckDB is a popular system that is fast evolving, it is difficult
to keep a fork in sync. Therefore, we made a design effort to imple-
ment PGQ as an extension module. DuckDB extensions can provide
scalar UDFs. Scalar UDFs are as fast as builtin functions can be, and
get invoked during vectorized expression evaluation, and thereby
automatically profit from morsel-driven parallelism. DuckDB also
allows extension modules to register parser extensions that are
triggered by unknown SQL. Our DuckPGQ extension parses textual
SQL:2023 queries with PGQ clauses – which is not understood by
stock DuckDB, and translates this into a pure SQL query plan which
gets executed by DuckDB as a normal query (with some UDF calls).

All SQL/PGQ pattern matching functionality, with filters, label
tests etc. are trivially translated into equi-joins, unions, and filters.
We also prefer to represent PGQ as normal SQL join plans, because
we believe that relational and graph systems should not be sepa-
rated: opportunities for WCOJ [11] (g3) and factorization [9] (g4)
apply equally to tabular queries as to SQL/PGQ. The proper way is
therefore to include those algorithms and optimization rules in the
main relational engine [12].

The exception is Kleene*: we could translate it to RECURSIVE SQL,
but it would be hard to express efficient shortest path-finding al-
gorithms in that way. We chose to use Multi-Source (MS) BFS and
Bellman-Ford algorithms [22] to support ANY SHORTEST path-finding,
because in the general case, the start and end variables of a PGQ
Kleene* get bound to sets (in its extreme, to all vertexes; so it would
become an all-pairs problem), and these algorithms [22] get synergy
out of resolving many shortest-path-finding problems. In order to
efficiently execute these algorithms that need potentially very many
navigational iterations (joins) we efficiently build a CSR on-the-fly
(Listing 1), a functionality that is also useful for GNN data export.
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Figure 1: Example of a CSR data structure representing a directed graph and the workflow of evaluating a SQL/PGQ query
using shortest path-finding in DuckPGQ. The SQL:1999 queries use the udf_create_* and udf_ms_bfs functions.

1 // done at udf_create_vertex CSR lookup (by the first
thread to touch the CSR)

2 for (auto i = 0; i < csr_v_size +2; i++)
3 csr_v[i] = 0; // init csr_v[] to zero
4
5 // vectorized create_vertex(int vid , int outdegree)
6 void udf_create_vertex(int64 csr_v[], int vectorsize ,

int64 vid[], int64 outdegree []) {
7 for (auto i = 0; i < vectorsize; i++)
8 csr_v[vid[i]+2] = outdegree; // +2 is double sentinel
9 }
10
11 // done at udf_create_edge CSR lookup (by the first

thread to touch the CSR)
12 for (auto i = 0; i < csr_v_size +2; i++)
13 csr_v[i+1] += csr_v[i]; // running sum
14
15 // vectorized create_edge(int src , int dst)
16 void udf_create_edge(atomic <int64 > csr_v[], int64

csr_e[], int vectorsize , int64 src[], int64 dst[]) {
17 for (auto i = 0; i < vectorsize; i++) {
18 int pos = ++csr_v[src[i]+1]; // move write offset
19 csr_e[pos -1] = dst[i]; // store dst at write offset
20 }
21 }

Listing 1: Scalar UDFs that power parallel CSR creation

The execution starts (step 2 in Figure 1) by generating sub-
query (step 3 ) that counts the out-degree of all vertexes that are in
play and obtains dense vertex numbers. Here we leverage DuckDB’s
rowids, which are almost-dense numbers, where the only possible
holes are caused by tuple deletions. They are stable while the query
runs and across queries as long as the table is not checkpointed.
The renumbered vertexes are streamed into the udf_create_vertex(),
which puts the degree in the csr_v[] array at the vertex number.
These degrees get converted into offsets into csr_e[] by a running
sum, with an extra leading zero, when udf_create_edge() initializes.
The sub-query then also scans the relevant edges, converts logical
keys to dense vertex numbers using two joins (that collect vertex
rowids for src and dst) and streams that data into udf_create_edge().
This function adds the edge destinations at the proper place in the
csr_e[] array. Because all of these UDF invocations happen in a
parallelized query plan, it makes use of an atomic to increase the
offset (the write position).

On the created CSR, a top-level sub-query in step 4 runs a UDF
doing MS-BFS (Listing 2) or MS-BellmanFord. The gist is to execute
a batch of path searches at the same time, using SIMD instructions.

1 void udf_reachability(int vectorsize , int64 src[], int64
dst[], bool result []) {

2 for (auto i = 0; i < vectorsize; i += 512)
3 do512(min(512, vectorsize -i), src+i, dst+i, result+i);
4 }
5 void do512(int n, int64 src[], int64 dst[], bool res[]) {
6 int512 visit[csr_v_size] = {0}, seen[csr_v_size] = {0};
7 int512 next[csr_v_size], *x = next , *v = visit , *tmp;
8 for (auto i = 0; i < n; i++) // visit sources
9 visit[src[i]] |= (1 << i);
10 while (ms_bfs(seen , v, x)) { tmp = x; x = v; v = tmp; }
11 for (auto i = 0; i < n; i++) // reached dst?
12 res[i] = (seen[dst[i]] >> i) & 1;
13 }
14 bool ms_bfs(int512 *seen , int512 *visit , int512 *next) {
15 int512 active = 0;
16 for (auto v = 0; v < csr_v_size; v++) // init
17 { seen[v] |= visit[v]; next[v] = 0; }
18 for (auto v = 0; v < csr_v_size; v++)
19 if (visit[v]) // follow the edges of all active nodes
20 for (auto e = csr_v[v]; e < csr_v[v+1]; e++) {
21 int512 unseen = visit[v] & ~seen[csr_e[e]];
22 if (unseen) next[csr_e[e]] |= unseen;
23 active |= unseen;
24 }
25 return active != 0;
26 }

Listing 2: Scalar UDF implementing the MS-BFS algorithm

As DuckDB is vectorized, a call to e.g., udf_reachability()which uses
MS-BFS, provides a vector (i.e., 1024) of such search pairs. Its state
arrays seen, visit and next – denoting resp. already seen nodes, the
current and next BFS frontier – hold one large integer for each
vertex. Each large integer is a bitset, keeping one bit of state per
search. The basic operations needed are OR, AND, NOT and zero-
test; which AVX-512 can do for 512 bits in one CPU instruction.
The algorithms thus create synergy between 512 searches computa-
tionally, but also because they share memory access (as sequential
access to the CSR, and random access to the state arrays are done
to benefit up to active 512 searches).

We also identified a number of generic SQL query optimizations
(beyond g3–4, which are future work) that our use case can exploit.
First: good-quality join order optimization is very important for
graph pattern matching. DuckDB’s 0.5.0 release introduces a major
upgrade of its statistics, introducing hyperloglog statistics and better
estimate propagation. This makes a large difference in DuckDB per-
formance on TPC-H, TPC-DS, and LSQB [16]. Second, we note that
we need to perform multiple identical joins, as the vertex table is
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Figure 2: Pattern matching performance on the LSQB

joined three times. Therefore, we developed a generic optimization
in DuckDB that shares a built hash-table in these cases. Third, we
profit from the “perfect join”: an optimization that changes a hash-
join at run-time into an array-based lookup if during hash-build the
keys turn out to be from an almost-dense numeric domain (rowids
trigger this). We also profit from a similar “perfect” aggregation
optimization in DuckDB, when computing the vertex degrees.

SF Path-finding LSQB
|Pers. | |knows | |𝑉 | |𝐸 |

10 70k 2M 35M 217M
30 175k 6M 103M 650M
100 487k 23M 326M 2B
300 1M 68M n/a n/a

1 000 3M 227M n/a n/a
3 000 9M 670M n/a n/a

Table 1: Statistics of the graphs
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performance

4 EVALUATION
We conduct an evaluation of path-finding and pattern matching
performance on DuckPGQ, Umbra [11], and Neo4j, using data sets
based on LDBC Social Network Benchmark social graphs [4].
Benchmark setup.We ran our experiments on a cloud instance
running Fedora 36, equipped with 48 Intel Xeon Platinum 8375C
vCPU cores, 248 GB RAM, and 2 NVMe SSDs in RAID-0 configu-
ration. DuckPGQ ran embedded in a Python 3.10 process, while
Neo4j and Umbra ran in Docker containers. For the path-finding ex-
periments, we used DuckPGQ v0.2.2-dev7058, while for the pattern
matching experiments, we used DuckDB v0.5.0-dev2374. For both
experiments, we used Umbra version bad073541 and Neo4j v4.4.2
Enterprise Edition (which has an experimental parallel runtime).
When performing the benchmarks, we first load the database, and
then execute the queries (on a cold database). The queries are run
sequentially with a timeout of 1 hour for each query.

Path-finding performance. We used the Person–knows–Person
subgraph of the LDBC SNB (Table 1). We defined a query that
searches for shortest paths between a given set of source–destination
pairs (Person ids) and finds paths in the graph between these Per-
sons, returning the shortest path-length for each (src, dst) pair.
We selected the input parameters such that they always result in a
path because the Umbra RECURSIVE formulation of Kleene* crashes
with an OOM for any case where a (short) path cannot be found.
This uses a multi-source/destination bidirectional SQL formulation
based on the SNB Interactive Umbra reference implementation5.

For the system comparison experiment, we ran the query with
16K (src,dst) combinations, selected uniformly from 4M candidates.
Figure 3 shows the results for scale factors 10 to 3 000. Umbra’s
RECURSIVE implementation crashes with OOM. We were able to get
(slow) results with 2K (src,dst) pairs, only on the smallest SF10.
5https://bit.ly/github-snb-umbra-kleene

Neo4j completes the workload on all scale factors, with good perfor-
mance, thanks to its bi-directional path-finding algorithm. For the
moment, the SIMD-friendly MS-BFS in DuckPGQ is uni-directional,
but is able to generally beat Neo4j still.

Pattern matching performance. We used the Labeled Subgraph
Query Benchmark (LSQB) [16] to assess the performance of pattern
matching. The LSQB data set (Table 1) contains labeled graphs based
on the LDBC SNB social network graph [4]. LSQB defines 9 queries,
each counting the occurrences of a given graph pattern using la-
bels such as Person, Tag, knows, and likes. Queries 1–6 are basic
graph patterns [2] which can be expressed by equi-joins: (Q1) long
path, (Q2) simple cycle, (Q3) triangle, (Q4) star, (Q5) low-cardinality
path, (Q6) high-cardinality path. Queries 7–9 extend queries into
complex graph patterns [2] by adding optional and negative edges,
corresponding to outer- and anti-joins, resp.: (Q7) Q4 with optional
edges, (Q8) Q5 and (Q9) Q6 with a negative condition.

Figure 2 has the results for scale factors 10 to 100. The execution
times of Umbra and DuckPGQ are within an order of magnitude for
all queries. The two RDBMSs constantly outperform Neo4j which
is unable to finish 4 queries on SF100.

The results show that Q6 and Q9 are the most difficult queries:
only Umbra was able to complete Q6 on SF100 and Q9 on SF30 –
in this query it uses its WCOJ [11]. No system could run Q9 on
SF100. These queries define long explosive paths, terminating in
an aggregation, that will benefit from factorization techniques [6]
(which are currently not implemented in any practical DBMS).
These results demonstrate the need to research g3-4.

Bulk path-finding performance in DuckPGQ. The bulk path-
finding work performed by MS-BFS and variants for (weighted)
reachability, path length and path retrieval in DuckDB, make use
of UDFs. We are interested in the questions (i) is on-the-fly CSR
creation a bottleneck? and (ii) how well does parallelism work (both
for (a) CSR creation and (b) path-finding)?

Regarding CSR creation and question (iia), parallel scaling works
well. As a result, (i) CSR creation is never a bottleneck if there
is significant path-finding work. However, if there is little path-
finding work, in an extreme case just a single (src,dst) pair of
vertexes, then its overhead can be significant. In Figure 4 we show
results comparing CSR creation overhead comparing 1 morsel (the
minimum) of path-finding work with 16 morsels (the amount of
real cores we have). While the overhead is more significant with
1 morsel, it still does not dominate then. Regarding question (iib)
how well parallelism works for path-finding, there is good and bad
news. In heavy duty scenarios we see parallel scaling, albeit not fully
linear: a factor 6 on 16 threads. This non-linearity is probably related
to multi-core path-finding becoming memory-bound. However, in

https://bit.ly/github-snb-umbra-kleene
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(b) 16K source–destination pairs with 16 morsels

Figure 4: Relative performance of the MS-BFS UDF between using 1 morsel and 16 morsels, executed on 1, 4, and 16 threads

situations where there is just 1 morsel, the expected outcome is
confirmed: there is work for just one core and hence no scalability.

Takeaways for SQL/PGQ. The proposed SQL/PGQ will signifi-
cantly increase the usability of SQL systems on graph use cases.
It has truly been integrated into the SQL syntax, and has been de-
signed by ISO in liasion with LDBC, and is partially founded on
its G-CORE [3] design, but also on formal studies of other graph
query languages [2, 10]. Still, while the SQL/PGQ proposal ensures
finite query results, in our vision a focus on interactive query results
would be most useful. Specifically, ALL ACYCLIC PATHS on a Kleene*
is finite because there are finite vertexes in graph databases; but
in a large connected component there will be typically exponen-
tial amounts of such paths w.r.t. its size, making termination of
such queries on large graphs unlikely, certainly in interactive time.
Features that typically lead to a hanging server or a large cloud
bill will not be appreciated by most users. In the future, DuckPGQ
may support ALL path-finding on TRAIL, SIMPLE and ACYCLIC paths but
only on strongly bounded quantifiers, which can be translated
into plain unions, joins and filters. Another problem apparent in
SQL/PGQ is that SHORTEST TRAIL (a:A)-/e*/-(b:B)-/e*/(c:C) breaks the
quite useful decomposability into SHORTEST PATH (a:A)-/e*/-(b:B) and
SHORTEST PATH (b:B)-/e*/(c:C) present in default WALK semantics. In
other words, we find path constraints that span multiple Kleene*
problematic to support, for only a small functional value-add.

5 CONCLUSION AND FUTUREWORK
We outlined the semantics of the SQL/PGQ, the main novelty in
SQL:2023, and made the case for competently addressing graph
database architecture by building on techniques from analytical
relational technology. Putting these two together, we presented the
design of DuckPGQ, an inobtrusive extension of DuckDB, CWI’s
embeddable analytics system. SQL/PGQ can be largely mapped onto
relational queries, and we identify a number of relational optimiza-
tions that can be useful to such queries. Kleene* path-finding, be it
for reachability or for (weighted) path length or path retrieval can
theoretically be formulated as RECURSIVE queries, as we do in Umbra;
but our experiments show that this is slow and brittle. DuckPGQ in-
troduces bulk path-finding by adopting SIMD-friendly multi-source
algorithms, as well as an on-the-fly compact in-memory graph rep-
resentation (CSR), with an implementation in scalar UDFs. This
system is able to beat the Enterprise version of Neo4j on both pat-
tern matching and path-finding; and is comparable to Umbra on
the former, thanks to recent optimizer improvements.

As for future work, we recommend g3+g4: better integration
of (vectorized) WCOJ and integration of practical factorized query
processing in analytical relational systems. Regarding path-finding
algorithms, we did notice limitations of our parallelism model: it
only works well if there are enough (src,dst) work tuples, because

morsel-driven parallelism is tuple-driven and without tuples there
is not enough parallelism. While it is hard to effectively parallelize
Dijkstra, it is known to be possible to effectively parallelize our
multi-source algorithms, running individual searches in parallel,
by partitioning work on the vertexes [13]. However, it is a research
challenge for database architectures to reconcile this elegantly with
any query-pipeline-driven parallelization method.
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