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ABSTRACT

Database engines have historically absorbedmany of the innovations
in data processing, adding features to process graph data, XML,
objects, and text amongmany others. In this paper, wemake the case
that it is time to do the same for AI—but with a twist! While existing
approaches have tried to achieve this by integrating databases with
external ML tools, in this paper we claim that achieving a truly AI-
centric database requires moving the DBMS engine, at its core, from
a relational to a tensor abstraction. This allows us to: (1) support
multi-modal data processing such as images, videos, audio, text as
well as relational; (2) leverage the wellspring of innovation in HW
and runtimes for tensor computation; and (3) exploit automatic
differentiation to enable a novel class of “trainable” queries that
can learn to perform a task.

To support the above scenarios, we introduce TDP: a system that
builds upon our prior work mapping relational queries to tensors.
Thanks to a tighter integration with the tensor runtime, TDP is able
to provide a broader coverage of new emerging scenarios requiring
access to multi-modal data and automatic differentiation.

1 INTRODUCTION

Relational database engines have dominated the data processing
landscape for almost 50 years, integrating many of the new
ideas in data processing as “features” of the existing core engine.
Though recently, new Machine Learning (ML) systems have
emerged to support processing data that is not as naturally mapped
to the relational model (e.g., video, images, audio, large text,
high-dimensional vector data). Many of these systems support
neural network training and inference and are underpinned by
Tensor Computation Runtimes (TCRs) such as PyTorch [25] and
TensorFlow [2]. Investments in these runtimes and specialized
HW to accelerate them is tracking the insatiable market hunger
for “AI” tech. Venture capitalists alone are pouring $2B/quarter
in special-HW for neural networks [32]. Interestingly, an ever-
growing number of organizations are embracing mixed workloads
that combine multiple such systems into one workflow to satisfy
the requirements of a large class of emerging applications [8, 24,
36]. Specifically prominent are scenarios that combine relational
processing and ML.

The recent heavy investments in ML have led to a thriving
ecosystem of open source TCRs that are leveraged by data scientists
and software developers to implement and run their models
efficiently. These libraries have certain characteristics that make
them appealing as the target for a wide variety of workloads,
namely: (1) they use specialized kernels that run efficiently on
CPU, GPU, but are also capable of leveraging the latest hardware
accelerators such as TPU, Cerebras, and IPU; (2) their data model,
based on the tensor abstraction [19], is flexible enough to represent
multiple data modalities through embeddings, including tables, text,

graphs, images, or videos; (3) they have a rich and composable API
providing a declarative interface enabling complex computations
(while hiding low-level implementation details), as well as novel
features such as automatic differentiation.

Integrating relational and ML workloads has been studied since
the early ’90s [23], leading to numerous works (e.g., [7, 13, 16, 18, 24,
31]) that have proposed different techniques over the years, ranging
from integrating ML as a UDF through an external specialized
system, to expressing ML algorithms directly in SQL. Most of the
proposals follow a common theme: ML is merely a guest in the
relational house owned by the DBMS. This has two fundamental
limitations: (1) it is poorly suited to handle non-relational data, and
(2) it misses out on the virtuous cycle among HW vendors/OSS/ML
academics/app developers that TCR engines enjoy.

In this paper, we argue that an alternative path exists where we
embrace the technologies developed by (and for) theML community
from the ground up, and put them at the core of the database
runtime to unlock new capabilities and synergies. We show that
the resulting systems can handle: (1) legacy relational workloads,
(2) specialized use-cases such as graphs and ML, and (3) emerging
applications such as vector search over images and audio, and
video analytics. Our implementation of one such system, which
we refer to as the Tensor Data Platform (TDP) (§2), leverages
PyTorch to run queries over structured and unstructured data on
a wide range of hardware devices. TDP integrates the flexibility
of PyTorch’s programming model with the declarative power of
SQL (§3), leading to a hybrid ML-SQL experience that is appealing
to database users without forcing data scientists outside of their
comfort zone (e.g., Python). Importantly, the tight integration with
PyTorch allows TDP to support trainable queries (§4) that leverage
automatic differentiation built into the system [25] to train models
embedded in them. Overall, we demonstrate that TDP facilitates
the implementation and efficient execution of a wide variety of
applications, in different domains, using a single unified system (§5).

The Tensor Data Platform is our answer to the observation that
several untapped possibilities lie in the intersection between ML
and database systems. We hope that the community will join us in
the journey of redesigning databases towards an AI-centric system.

2 TDP: AN AI-CENTRIC DATABASE SYSTEM

TDP is a data processing platform implemented on top of the tensor
data structure and TCRs like PyTorch. TDP is completely written
in Python, and includes an integrated query processor (similar
to DuckDB [28]) leveraging PyTorch for hardware acceleration,
automatic differentiation, and support for unstructured data. TDP’s
query processor extends TQP [12, 22], a system that we introduced
previously, to fully leverage PyTorch’s capabilities beyond the
execution of relational queries it originally supported. Finally,
TDP naturally blends with the ML ecosystem and tools such
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as Notebooks, TensorBoard, Pandas, Numpy, etc. [5]. In the
following, we describe three key features of TDP: a generic storage
model for structured and unstructured data; support for data
encoding schemes allowing to seamlessly move across different
data modalities; and a flexible query processor.
Storage Model. TDP stores relational data in a columnar
format, where each column is a PyTorch tensor. Tensors are
multidimensional arrays with an arbitrary numbers of dimensions.
As such, TDP can store tabular data as a collection of 1-d tensors (i.e.,
each column is viewed as a vector), but it also supports columns
containing 2-d tensors (i.e., each row containing a vector), 3-d
tensors (e.g., each row containing a gray scale image), 4-d tensors
(e.g., each row contains an rgb image), etc. Thanks to this design,
TDP can natively store both structured and unstructured data, and
importantly, it can provide a unified view of data such that mixed
scalar-vector queries [35, 36] can be both expressed in a natural
way and executed efficiently. TDP accepts input data in different
formats. When data is registered into TDP, it is first transformed
into tensors and subsequently encoded. Data can be stored both
on CPU and GPU. TDP focuses on analytical workloads, whereby
currently there is no transactional support.
Data Encoding. One of the key features of columnar databases is
the ability to encode data into compressed formats that can both
decrease memory requirements and increase query performance.
Similarly, TDP does not use PyTorch tensors directly, but rather
provides its own encoded tensors abstraction, i.e., tensors with
attached metadata describing how data is stored in them. TDP for
the moment uses plain encoding for numerical data, order-preserving
dictionary encoding for string columns (where the dictionary itself is
a 2-dimensional plain tensor, storing one string-vector per row), and
Probability Encoding (PE) which attaches structured information
to numerical data (more on this in the next sections). Similar to
columnar databases, TDP leverages the metadata information of
encoded tensors to pick the right execution strategy for operators.
TDP provides an encode/decode APIs to easily move back and
forth between the encoded and decoded formats.

Example 2.1 (Ingesting Data). We start by loading some simple
tabular data inTDP. The data is in a Pandas dataframe, and therefore
we can use the register_df API to store it in TDP. Under the
hood, TDP takes care of converting, encoding, and moving the
data to the requested device. Similar APIs exist for registering
multidimensional NumPy arrays, Arrow arrays, Parquet files and,
of course, PyTorch tensors. These APIs are generic enough for
supporting both structured and unstructured data.

Listing 1: Data ingestion in TDP: a Pandas dataframe data is

stored as a numbers table in GPU memory.

tdp.sql.register_df(data,"numbers", device="cuda")

Query Processor. TDP leverages external query parsers and
optimizers for generating physical plans. Currently, TDP can rely on
Spark [4] and Substrait [1] for this purpose. Once the physical plan
is generated, TDP compiles it into a sequence of PyTorch models,
one per operator in the physical plan. TDP contains an internal
dictionary of PyTorch models, each of them implemented using
PyTorch’s tensor API. For each physical operator, we can have more
than one PyTorch implementation, and at compilation time we use

a mix of flags (e.g., Listing 6) and heuristics to pick which one to
use. More details on the compilation phase, supported operators,
and how to express relational operators using the PyTorch’s tensor
API can be found in [12].

Example 2.2 (Query Compilation). We submit an aggregate query
(line 1 in Listing 2) over the previously registered numbers table.

Listing 2: Query definition and compilation in TDP.

1 statement = "SELECT Digits, Sizes, COUNT(*)
FROM numbers GROUP BY Digits, Sizes"

2 compiled_query = tdp.sql.spark.query(statement, device="cuda")

The output of query compilation is a PyTorch model and, as
such, it can be for example: used in a training loop (more on this
in §3), executed on different hardware devices (in the example we
compiled the query for GPU execution), further optimized using
compilers such as TVM, profiled using Tensorboard [5], etc.

Example 2.3 (Query Execution). Now that we have compiled the
query, we can execute it as shown in Listing 3, where we ask TDP
to generate the output in Pandas dataframe format. TDP execution
API is flexible enough to support data modalities beyond tables. For
instance, we can also generate outputs which can be rendered into
images using Matplotlib, or audio using IPython.display.Audio.
Listing 3: Executing the compiled query in GPU and

returning the result into a Pandas dataframe.

result = compiled_query.run(toPandas=True)

3 ML-FIRST USER EXPERIENCE

Since TDP lowers its SQL query execution plan to PyTorch,
a powerful implication is that SQL execution has complete
interoperability with PyTorch. In this section, we provide three
design choices we embraced for surfacing familiar patterns to ML
practitioners, from within the database.
ML within SQL: UDF-based programming model. In TDP,
users can surface custom PyTorch code within a SQL query
through User-Defined and Table-Valued Functions (UDFs/TVFs).
These functions can encapsulate arbitrarily complex ML models,
e.g., to parse unstructured data into a structured representation
on which SQL operators can be applied. Data is passed into
UDFs/TVFs as (encoded) tensors, and TDP expects (encoded)
tensors as results. TDP provides an annotation API simplifying the
process of registering Python functions into the framework. While
UDFs and TVFs have already been explored to add ML features to
SQL systems (e.g., [13]), the novelty of our approach is that we do
not use them for calling into external tools, but rather as a means
to access the underlying TCR API. In the end, UDFs/TVFs and SQL
operators are all compiled down into PyTorch programs.

Example 3.1 (MNISTGrid). We want to extend the SQL query in
Example 2.2 to work over a grid of handwritten digit images rather
than a table. Throughout this example, we use a variant of the
MNIST handwriting digit dataset, which we refer to as MNISTGrid,
containing 9x9 grids of (small/large) resized handwritten digits.
Fig. 1 summarizes the workflow of our approach. TDP allows us to
achieve our goal with little modification to the original query. We
simply call a parse_mnist_grid TVF, shown in Listing 4, to parse
MNISTGrid images to a structured format. Functions are registered
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0.2 0.8
0.83 0.17
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0 Small 1
Large 0

1 Small 1
Large 0

2 Small 0
Large 1

3 Small 0
Large 1

4 Small 0
Large 0

5 Small 0
Large 1

6 Small 0
Large 0

7 Small 2
Large 0

8 Small 0
Large 2

9 Small 0
Large 0

Digit

Size

Digit Parser

Size Parser

Trainable UDF (parse_mnist_grid) Differentiable SQL Operators

SELECT Digit, Size, COUNT(*)

FROM parse_mnist_grid(MNIST_Grid)

GROUP BY Digit, Size

Figure 1: Anatomy of the query execution plan trained on the MNISTGrid dataset.

In yellow: an MNISTGrid image. In green: the trainable TVF generating probability

vectors from the images. In orange: “soft” operators implementing the group by
and count logic. On the right side we show the desired output of the query.

Listing 4: TVF to parse MNISTGrid into the

structured format supported by TDP’s SQL.

1 digit_parser = CNN(num_classes=10)
2 size_parser = CNN(num_classes=2)
3
4 @tdp_udf("Digit float, Size float")
5 def parse_mnist_grid(mnist_grid:

torch.Tensor) -> Tuple[torch.Tensor]:
6 # Break up grid into a batch of 9

tiles/images
7 tiles = einops.rearrange(
8 mnist_grid,
9 "1 (h1 h2) (w1 w2) -> (h1 w1) 1 h2

w2", h1=3, w1=3
10 )
11 # return digit and size classification

outputs
12 return

PEEncoding.encode(digit_parser(tiles)),
PEEncoding.encode(size_parser(tiles))

in TDP using the tdp_udf annotation (line 4). The TVF leverages
two Convolutional Neural Networks (CNNs): one to classify the
digits, and another one to classify the sizes of the digit. For now,
we assume these models are pretrained; in §4 we describe how we
can train them from scratch within the SQL query. The output of
the TVF are two 2d-tensor columns: one for digit and another one
for size. These columns contain the classification probabilities for
each tile in the grid encoded using TDP’s PE API. The PE columns
are then fed into custom implementations of group by and count
operators that are compatible with PE inputs; we describe these
operators in more detail in §4.

SQL within ML: Embedding queries in PyTorch programs. As
described in §2, query compilation in TDP outputs a PyTorch model.
Thus, a compiled query has all the capabilities of PyTorch models.

Example 3.2 (Training Loop). Consider the MNISTGrid query
again, except now we want to train the CNNs in the TVF from
scratch by providing examples of ⟨input, output⟩ pairs from our
queries. We can simply embed the query within a PyTorch gradient
descent training loop, as shown in Listing 5. Note that doing this
naïvely will not work in practice because the SQL query is not
end-to-end differentiable. However, in §4 we will show how we
bypass this limitation by introducing trainable queries.

Listing 5: Training loop for the MNISTGrid query.

1 def train(compiled_query, num_iterations, optimizer,
mnist_grids, target_counts):

2 for i in range(num_iterations):
3 optimizer.zero_grad()
4
5 # Register MNISTGrid and perform inference with the query
6 tdp.sql.register_tensor(mnist_grids[i], "MNIST_Grid")
7 predicted_counts = compiled_query.run()
8
9 # Compute loss. Here we use MSE between the counts.
10 loss = ((predicted_counts - target_counts[i])**2).mean()
11
12 # Backpropagate and perform optimization step
13 loss.backward()
14 optimizer.step()
15
16 optimizer = Adam(compiled_query.parameters(), lr=0.01)
17 train(compiled_query, 10, optimizer, mnist_grids, target_counts)

Declarative, inference-oriented experience. We want users
to enjoy the full flexibility of PyTorch to express ML transforms,
while leveraging SQL to express data operations. In fact, expressing
relational operations like group by and count is unnatural
in PyTorch, while implementing the parse_mnist_grid TVF in
pure SQL is tedious, if not infeasible. The MNISTGrid example
demonstrates how we can use the right language for the right task,
while seamlessly blending the two in a single unified runtime. We
use SQL as a higher-level abstraction or orchestrator between data
operations (ingestion, post-processing, relational operators) and
machine learning transforms (expressed through UDFs).

This declarative way of expressing hybrid ML-SQL inference can
lead to a deployment-first experience, since the query can be directly
deployed as-is, i.e., without having to carve out the loss function,
training loop, or other components that are only necessary for
training, as instead is required in other SQL-first solutions [16, 26].
Additionally, we believe that it brings improved readability and
code sharing across tasks, as well as new perspectives by adding a
vocabulary of relational operators in expressing ML inference, as
we will show in §5.

4 DIFFERENTIABLE SQL IN TDP

Another powerful implication of using PyTorch as our runtime
is that the database has access to automatic differentiation [25].
Since TDP can embed PyTorch ML models within SQL queries
using UDFs/TVFs, and has access to automatic differentiation, it
introduces a new class of queries, that we refer to as trainable
queries. A trainable query: (1) contains tunable parameters; and
(2) can be compiled down to an execution plan that is end-to-
end differentiable, i.e., a PyTorch model that is composed only
of differentiable operators. The latter requirement allows us to
backpropagate through the query operators, and therefore, train
these models using gradient descent optimization schemes. The
end result is that users can optimize parameters embedded in a
trainable query using gradient-based optimization, as we showed
in Example 3.2. The feature is enabled in TDP by passing a flag at
compilation time; Listing 6 shows an example using MNISTGrid.
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Listing 6: Enabling trainable queries in TDP.

compiled_query = tdp.spark.query("SELECT Digit, Size, COUNT(*)
FROM parse_mnist_grid(MNIST_Grid) GROUP BY Digit, Size",
extra_config={tdp.constants.TRAINABLE : True})

Amissing detail here is how tomake SQL operators differentiable.
For example, the MNISTGrid query contains a group by statement
with count aggregation. It is unusual to think about differentiating
traditionally discrete operators like count. However, past work
has shown that we can often relax discrete operators to continuous,
differentiable approximations [27, 42]. A simple example is the
logistic function that can approximate a step function while still
being differentiable or using softmax as a smooth, differentiable
proxy for the argmax function. Past work on differentially private
data generation has explored creating differentiable relaxations of
counting queries on PE data using only addition and multiplication
[6]. We use a similar approach to implement our soft_count
operator in PyTorch, shown in Fig. 1, and generalize it to grouped
aggregation with our soft_groupby operator. At inference time,
we swap the approximate differentiable operators with exact
implementations, and thus, eliminate approximation errors.

5 USE CASES

Next, we present some applications and experimental results
showcasing TDP’s integration with PyTorch. In the experiments we
use an Azure NV6 v3 VM equipped with a Intel Xeon CPU E5-2690
v4 @ 2.6GHz (6 virtual cores), and an NVIDIA Tesla V100 GPU.

5.1 Multi-modal Queries

We start by showing an example of how we can use SQL with UDFs
to filter or search through images using a natural language criterion.
This is similar to vector similarity search [35, 36] where similarity
between semantic vector representations (or embeddings) of queries
and search candidates is used to fulfill search queries. However,
note that TDP provides additional flexibility as, beyond search, we
can perform full SQL queries on top of the results of the vector
similarity kernel. To support these multimodal use cases, we create
a UDF image_text_similarity that computes the similarity score
between text and images. This UDF leverages the pre-trained CLIP
model [29] from OpenAI which is trained to embed images and text
with similar semantic meaning to similar vector representations.
Listing 7 shows how easy it is to leverage and embed state-of-the-art
pre-trained models within a query through TDP’s UDFs.

Listing 7: UDF to compute similarity scores between a natural

language query and a column of images.

from transformers import CLIPProcessor, CLIPModel
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor =

CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

@tqp_udf("float")
def image_text_similarity(query: str, images: torch.Tensor) ->

torch.Tensor:
inputs = processor([query], images, return_tensors="pt",

padding=True)
outputs = model(**inputs)
scores = outputs.logits_per_image.flatten() / 30
return scores

As an example application, suppose we are trying to run queries
against a dataset of email image attachments. Fig. 2 shows a
sample dataset of email attachments created from 100 images of
photographs, 50 receipts, and 50 company logos. In the middle, we
see three examples of multimodal queries we may want to run on
this dataset. From top to bottom: the first query implements a filter
query on the attachments; the second combines relational aggregate
operations on top of the results of the filter query; finally, the third
query implements a top-k image search query as is common in
vector similarity search engines like Milvus [35].

Since TDP can seamlessly leverage PyTorch for GPU acceleration,
we compare the performance on CPU and GPU. Specifically, we
run a workload of 30 queries containing a mix of queries as shown
in Fig. 2 on a dataset of 1,000 200x300 images, and measure the
average query execution time. Fig. 2 (right) shows the results with
GPU execution being around 5× faster. We are currently integrating
approximate indexing [35] into TDP for speeding up top-k queries.

5.2 SQL Queries over OCRed Documents

Next, we push the boundary a little bit further and show how
with TDP we can execute SQL queries over tables extracted from
images. Specifically, in this scenario we start with a set of images
and related metadata, and we want to execute queries over the data
stored into the tables in the images, and filter the images based
on some metadata information. This scenario non-trivially mixes
scalar filters with operations over multidimensional data storing
the raw images. We implemented this scenario by generating 100
images, using the dataframe_image Python library, from Pandas
dataframes of the Iris dataset, and attaching to each a timestamp
specifying when the image was generated. We then load the data
in TDP and query them as shown in listing 8.

Listing 8: Querying tables stored on Document images.

SELECT AVG(SepalLength), AVG(PetalLength)
FROM (SELECT extract_table(images)

FROM Document WHERE timestamp = "2022:08:10")

This query fetches a single image using the filter over the
timestamp, and computes the average over two columns. To extract
the data from the tables we use a UDF, extract_table, which
internally employs a pipeline of ML models to: (1) recognize where
the table is in the image; and (2) OCR the image and convert it into
a plain tensor. Note that the query above is executed end-to-end on
GPU in TDP. As far as we know, no other database system is able to
support such scenario natively, so we compared our implementation
to a version in which all images are first run through the models
for extracting the data, and then the data is loaded into a DuckDB
instance and queried. As we can see from Fig. 3 (left), our approach
is 2 orders of magnitude faster, because we only require to convert a
single image, instead of bulk-convert all of them. Note that loading
the raw images in TDP takes approximately the same time as saving
and loading the extracted table data into DuckDB. Conversely,
DuckDB query execution time is only few milliseconds, while in
our case it requires around 1 second to fetch the image, convert it,
and query it. Data conversion takes the majority of the time.
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5.3 Learning from Label Proportions (LLP)

Learning from Label Proportions (LLP) [41] is an ML problem
setting where we learn from proportions (or equivalently counts)
of classification labels over a set of instances. More specifically,
in LLP, training data comes in the form of bags, where each bag
is a collection of instances. The goal is to train a classifier on the
individual instances in the bag, given only the aggregated count
annotations per bag. LLP has a broad set of real-world applications,
including: learning from medical data where often the standard
practice is to release counts instead of individuals’ data for privacy
[14, 38], learning in settings with instrumentation limitations such
as high-energy physics where aggregates observations may bemore
reliable than instance-level observations [9, 21], learning from noisy
counts for label differential privacy [30], learning from aggregates
where instance-level labels are much more expensive to collect
[20, 40], and learning from aggregate clickstream data [34].

Interestingly, SQL provides natural declarative syntax to model
the process of obtaining count labels for bags in LLP. A user can
simply provide a UDF to classify instances in a bag and then
use a group-by-count query to obtain the counts for each class
in the bag. As an example, we show an application of SQL for
LLP using the Adult Income Dataset, as has been explored in
past LLP literature [41]. The Adult Income Dataset includes a
subset of the 1994 US Census data, where for each record, there
is an associated binary classification label indicating whether the
individual’s income is >50K. While the dataset does provide labels
per individual it is common to use this dataset to benchmark LLP

methods by generating bags with classification label counts at
different granularities. When training, we provide only aggregate
count labels per bag and not the individual labels. We perform
experiments by varying the bag sizes ∈ {1, 8, 16, 32, 128, 256, 512}.
For testing, we compute the classification error on the individual
labels in the test set. The SQL query and the TVF are presented in
Listing 9.

Listing 9: Linear classifier TVF and TDP query used to

implement LLP inference on the Adult Income Dataset.

linear_model = torch.nn.Linear(len(num_feature_cols, 2))

@tdp_udf("Income float")
def classify_incomes(x: torch.Tensor) -> torch.Tensor:

return linear_model(x)

query = tdp.spark.query("SELECT Income, COUNT(*) FROM
classify_incomes(Adult_Income_Bag) GROUP BY Income",
extra_config={tqp.constants.TRAINABLE : True})

The blue LLP line in Fig. 3 (middle) shows the classification errors
of our experiments. For comparison, the flat dashed (Non-LLP) line
shows the results of training a model in a typical classification
setting, where individual classification labels are available for
training. Observe that the LLP experiment errors are quite close to
the Non-LLP results for small bag sizes. As is typical in LLP [41],
the error gradually increases as we increase the bag size, since with
larger bag sizes, we dilute the finer, instance-level signal. Still, the
error remains relatively stable even for relatively large bag sizes.
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5.4 Label Differential Privacy with LLP

Learning from aggregates lends itself well to privacy-preserving
ML. The gold standard of privacy today is differential privacy
(DP), a mathematical framework that defines and provides privacy
guarantees for algorithms that access data [10, 11]. A commonly
used mechanism in differential privacy is to add noise to a query’s
answer. When differential privacy is applied to machine learning,
privacy of both the features and the labels must be preserved.
This kind of all-or-nothing privacy, while powerful, may not
be strictly necessary in certain settings. Furthermore, existing
learning methods that comply with differential privacy often suffer
considerably in model accuracy compared to their non-private
counterparts [33]. For these reasons, there has been a search for
alternative definitions of privacy.

One such standard is label differential privacy (or Label-DP),
which relaxes differential privacy to only apply to the labels in a
dataset [33]: there are settings where we care about the privacy of
labels but not necessarily the features. For example, in a university
student survey asking about vaccination status, while the student
information may already be publicly available, the vaccination
status is sensitive and should remain private. Similarly in the Adult
Income census data described above, we may deem the income level
classification labels as sensitive, while treating the other features
as not sensitive. Previous work has extended LLP with the Laplace
mechanism to learning from noisy counts in order to preserve label
differential privacy [30]. We apply the same approach to the Adult
Income Dataset, learning from noisy counts with our trainable SQL
query, instead of actual counts. Following [30], we set the privacy
loss parameter 𝜖 = 0.1 where 𝜖 controls the scale of the Laplace
noise added to the count labels.

The gray LLP-DP line in Fig. 3 (middle) shows the results of our
experiments. Here, for small bag sizes, the error is very high, as the
noise overpowers the label signal. This is expected as a smaller bag
size requires a higher proportion of noise to ensure to the privacy of
individuals. For larger bag sizes, just as in the non-noisy LLP case,
we see a gradual increase in error due to the dilution of individual
label information through aggregation. Thus, for LLP-DP there is a
trade-off between these two factors, with optimal bag size in our
case being 64.

5.5 Learning to Answer Queries over Images

We revisit the MNISTGrid example, that we introduced in §3 and §4,
to demonstrate the combination of unstructured data processing
and differentiable SQL capabilities of TDP. This example has
connections to LLP since we are supervising from label counts
too. However, MNISTGrid generalizes the LLP Adult Income
example in three ways: (1) we perform the query on images
rather than tables; (2) we group the counts by more than one
class; (3) we train a multi-class classifier for each class rather
than just a binary classifier. This generalizability is one of the
strengths of the SQL abstraction. In addition, our approach to
solve the MNISTGrid example also has relations to neurosymbolic
programming (e.g., [15, 39]). We use our TVF (with neural networks)
to parse the image into a structured (or symbolic) representation.
This symbolic representation is then further processed by relational
operators. In this way, we can think of TDP’s SQL as being a

declarative language for expressing neurosymbolic computation
that can be made end-to-end differentiable.

Past neurosymbolic works [15, 39] have found that by embedding
symbolic knowledge into the model inference leads to better
training efficiency and generalization. To understand this better,
let us consider the alternative approach: modeling this problem
as a multiple regression problem using deep learning. Here we
treat the 20 grouped counts as regression outputs, and train one
CNN to predict these outputs. There are a few disadvantages to this
approach compared to the neurosymbolic approach: (1) the CNN
must learn not only how to classify the tiles but also learn the group
by and count operations from scratchmaking training less efficient;
(2) since this uses a single, monolithic CNN to learn the whole
query task, it entangles learning of the classification and relational
operations, disallowing generalization to other tasks (something
we purposely try to avoid in TDP, as previously described in §3).
Next we describe two experiments showing the above differences.

Experiment 1: More efficient training.We compare the training
behavior of our approach against two pure deep learning models: (1)
CNN-Small with 850K trainable parameters; and (2) Resnet-18 with
11.1M trainable parameters. We choose the first as it has similar
architecture to the CNNs we use in the MNISTGrid TVF, and has
similar number of trainable parameters. We choose Resnet-18 as it
is often used as the backbone architecture in state-of-the-art CNNs.
We train each of the three approaches for 40,000 iterations and with
similar hyperparameters, and our results are the average of 5 runs.
The training set contains 5,000 images while the test set contains
1,000 images. Fig 3 (right) plots the MNISTGrid test error for each
training iteration for the three approaches. As expected, the TDP
neurosymbolic approach converges to a close-to-zero error very
quickly. The two deep learning approaches learn much slower and
asymptote to much higher errors compared to the TDP approach.

Experiment 2: Better generalization. As shown in Fig 1, our
approach allows us to decompose the query execution into clear
subcomponents, any one of which can be reused in a future query
without losing generality. For example, after training the query on
the MNISTGrid task, we can pull out the trained digit_parser
CNN and embed it into a completely new query that requires
digit classification. To show this, we extract the digit_parser
CNN from our TDP query and test the classification performance
of this model on the MNIST dataset: the model achieves 98.15%
classification accuracy on average, without ever explicitly being
trained using the MNIST classification labels.

6 RELATEDWORK

Integrating ML and databases is a research area that has received
a lot of attention for quite some time. While early works tried
to optimize the hand-off of data between separate ML and DB
systems [13, 43], recently we are seeing more works trying to
execute ML workloads directly on databases, e.g., decomposing ML
operations into SQL queries [7, 16, 26, 31]. In contrast to previous
approaches, we instead propose a data platform built on TCRs.
Therefore, by construction, we are able to leverage features such
as hardware acceleration, differentiability, and multi-modal data
support, as well as native training of and prediction withMLmodels.
While similarly to previous approaches we leverage UDFs/TVFs to
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switch to ML operations from within SQL, our context switch does
not introduce any overhead since functions and SQL operators are
executed on the same tensor runtime. Furthermore, we find our
approach to be more usable for data scientists rather than a purely
SQL-centric approach where both ML and relational operations are
expressed directly in SQL.

In the past few years, we have been working on several projects
targeting mixed SQL/ML workloads [5, 12, 18, 24], and how ML
systems can be leveraged beyond pure deep learning workloads [19,
22]. TDP is the next step in this journey. We believe that AI-centric
database systems are required to target the next generation of data-
driven applications such as agriculture [8], chemistry [37], photo
fraud detection [3], andmuchmore. Custom-built data management
systems (e.g., [17, 35, 36]) have been proposed lately to address
this new set of challenges. Conversely, we believe that AI-centric
database systems can be flexible enough to support these new
workloads while also being performant on more legacy ones [12].

7 CONCLUSION

In this paper we have proposed an AI-centric database. We
demonstrate that a tight integration between ML and SQL can
bring value to both the ML and the database communities. For the
database community, building a database on a tensor runtime allows
us to leverage hardware acceleration, automatic differentiation
and multi-modal data representation and processing. For the ML
community, we showed how complex tasks such as LLP and visual
reasoning can be declaratively expressed in SQL. While we are in
the early stages of this journey, we are excited about the potential
benefits that an AI-centric database system can bring to end users.
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