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@entity
class Item:

def __init__(self, item_name: str, price: int):
self.item_id: str = item_id
self.stock: int = 0
self.price: int = price

def __key__(self):
return self.item_id

def price(self) -> int:
return self.item_id

def update_stock(self, amount: int) -> bool:
self.stock += amount
return stock>=0

@entity
class User:

def __init__(self, username: str):
self.username: str = username
self.balance: int = 1

def __key__(self):
return self.username

@transactional
def buy_item(self, amount: int, item: Item) -> bool:

total_price: int = amount * item.price()

if self.balance < total_price:
return False

# Decrease the stock.
available: bool = item.update_stock(-amount)

if not available:
item.update_stock(amount)
return False 

self.balance -= total_price
return True

Figure 1: Two stateful entities: User and Item. The content of imperative functions is split into multiple functions that access
the common state of a given entity. Those functions are then encoded into a stateful dataflow graph that can be executed in a
distributed streaming dataflow engine. As a result, 𝑖) imperative code is executed in an event-based manner without the need to
block, and 𝑖𝑖) the code retains exactly-once processing guarantees without the need for programmers to write failure-handling
code such as state management, call retries or idempotency.

ABSTRACT
While there are multiple approaches for distributed application
programming (e.g., Bloom [2], Hilda [14], Cloudburst [12], AWS
Lambda, Azure Durable Functions, and Orleans [3, 4]), in practice
developers mainly use libraries of popular general purpose lan-
guages such as Spring Boot in Java, and Flask in Python. None of
these approaches offers message processing guarantees, failing to
support exactly-once processing: the ability of a system to reflect
the changes of a message to the state exactly one time. Instead, all
of the above approaches offer at-most- or at-least-once process-
ing semantics. Programmers then have to “pollute” their business
logic with consistency checks, state rollbacks, timeouts, retries, and
idempotency [8, 9].

We argue that no matter how we approach cloud programming,
unless an execution engine offers exactly-once processing guaran-
tees, wewill never remove the burden of distributed systems aspects
from programmers. In short, exactly-once processing should be as-
sumed at the level of the programming model. To the best of our
knowledge, the only systems able to guarantee exactly-once mes-
sage processing [5, 11] at the time of writing, are batch [1, 7, 15]
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and streaming [6, 10, 13] dataflow systems. However, their pro-
gramming model follows the paradigm of functional dataflow APIs
which are cumbersome to use, and require training, and heavy
rewrites of the typical imperative code that developers prefer to
use for expressing application logic.

For these reasons, we believe that the dataflow model should be
used as low-level IR for the modeling and execution of distributed
applications, but not as a programmer-facing model. Technically,
one of the main challenges in adopting a dataflow-based inter-
mediate representation, is that the dataflow model is essentially
functional, with immutable values being propagated across oper-
ators that typically do not share a global state. Hence, adopting a
dataflow-based IR entails translating (arbitrary) imperative code
into the functional style. Compiler research has systematically ex-
plored only the opposite direction: to compile code in functional
programming languages into a representation that is executable on
imperative architectures – like virtually all modern microproces-
sors. Yet, the translation from imperative to functional or dataflow
programming remains largely unexplored.

To this end, we report on Stateful Entities a prototypical program-
ming model (exemplified in Figure 1), compiler pipeline, and IR that
compiles imperative, transactional object-oriented applications into
distributed dataflow graphs and executes them on existing dataflow
systems. The proposed system presented in this paper can be found
at: https://github.com/delftdata/stateflow. Our preliminary exper-
iments showed that the translation of imperative programs into
dataflow graphs yields very promising performance results, of less
than 50ms latency.
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