
WarpGate: A Semantic Join Discovery System for Cloud Data
Warehouses

Tianji Cong∗
University of Michigan

Ann Arbor, Michigan, USA
congtj@umich.edu

James Gale
Sigma Computing

San Francisco, California, USA
jlg@sigmacomputing.com

Jason Frantz
Sigma Computing

San Francisco, California, USA
jason@sigmacomputing.com

H. V. Jagadish
University of Michigan

Ann Arbor, Michigan, USA
jag@umich.edu

Çağatay Demiralp
Sigma Computing

San Francisco, California, USA
cagatay@sigmacomputing.com

ABSTRACT
Data discovery is a major challenge in enterprise data analysis:
users often struggle to find data relevant to their analysis goals or
even to navigate through data across data sources, each of which
may easily contain thousands of tables. One common user need is to
discover tables joinable with a given table. This need is particularly
critical because join is a ubiquitous operation in data analysis, and
join paths are mostly obscure to users, especially across databases.
Furthermore, users are typically interested in finding “semantically”
joinable tables: with columns that can be transformed to become
joinable even if they are not joinable as currently represented in
the data store.

We present WarpGate, a system prototype for data discovery
over cloud data warehouses.WarpGate implements an embedding-
based solution to semantic join discovery, which encodes columns
into high-dimensional vector space such that joinable columns map
to points that are near each other. Through experiments on several
table corpora, we show that WarpGate (i) captures semantic rela-
tionships between tables, especially those across databases, and (ii)
is sample efficient and thus scalable to very large tables of millions
of rows. We also showcase an application of WarpGate within an
enterprise product for cloud data analytics.

1 INTRODUCTION
Three major correlated forces act on enterprise data analysis to-
day. First, more and more enterprise data are stored on the cloud.
Second, the size and the diversity of data available to enterprises
increase faster than ever as a growing number of data sources feed
into enterprises’ cloud data warehouses (CDWs). Third, the number
of users in enterprises who would like direct access to cloud data
for decision-making is also rapidly growing, boosting the demand
for easy-to-use cloud data analysis systems such as Sigma Work-
books [15]. Hence enabling easy and effective data discovery is
increasingly more valuable. However, existing commercial solu-
tions such as data catalogs are typically inaccessible from business
∗Work done when Tianji was interning at Sigma Computing.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2023. 13th Annual Conference on
Innovative Data Systems Research (CIDR ’23). January 8-11, 2023, Amsterdam, The
Netherlands.

intelligence tools, inadequate for surfacing relationships unknown
to users, and inflexible in capturing data semantics.

Not surprisingly, recent years have seen a rising interest in data
discovery, especially for Open Data [2, 19, 21, 25]. This is a chal-
lenging problem due to the unstructured/semi-structured nature of
Open Data and the lack of high-quality metadata. However, we ob-
serve that modern organizations also face data discovery challenges
when dealing with structured data (i.e., databases in CDWs) for
similar reasons: (i) in large CDWs, few people have a good under-
standing of data and their relationships; (ii) data is added in a much
less modeled state as cloud computing power and storage become
easily accessible; and (iii) business users who do not have com-
prehensive knowledge of underlying schema designs, are usually
unaware of relationships between datasets (e.g., PK/FK relationship
between two tables). There is a need for surfacing such relationships
to help users connect related datasets within and across databases.
We also observe that CDW data tends to have more structure than
Open Data, sometimes has high update rates, and usually has far
more stringent requirements for completeness of discovery results.

Consider a business user Joey who has access to a CDW that
comprises hundreds of databases and thousands of tables (Figure 1).
In the interest of launching a sales campaign and finding potential
customers, she starts with the ACCOUNT table in their SALESFORCE
database, which contains member and billing data of their customer
companies. To select ideal customers for the campaign, she wants
to augment the ACCOUNT table with additional information such as
sectors in which companies are engaged in their business activities.
Now she has two options to find that complementary information:
either she manually browses tables in the same database (even
wanders through the entire data warehouse), or she can ask internal
data teams for support. Either way, her workflow is significantly
delayed. There is also a fair chance that she cannot go through all
databases as it is a tedious and laborious process, and the data team
does not have that particular piece of knowledge.

Despite efforts in prototyping data discovery for real-world appli-
cations [1, 3, 12], aspects of data discovery pertaining to enterprise
settings are overlooked. For example, previous works assume a full
pass of underlying data in the indexing/profiling phase. However,
it is computationally and monetarily expensive to pull all data out
of CDWs. In addition, existing solutions, including those for Open
Data, focus on improving index lookup time for the scale of Open
Data lakes or Web table corpora, which usually consist of a very

CIDR’23, January 8-11, 2023, Amsterdam, The Netherlands Tianji Cong∗ , James Gale, Jason Frantz, H. V. Jagadish, and Çağatay Demiralp

Figure 1: The interface of SigmaWorkbooks connecting to a CDW. Consider a business user Joey who is interested in launching
a sales campaign and identifying ideal customers. She first opens up the ACCOUNT table in their SALESFORCE database, which lists
all customer companies. Next, she wants to augment the table with relevant columns to help make customer selections.

large number (million scale) of small tables. In contrast, we observe
that Sigma customers’ CDWs have several thousand tables on av-
erage but can have billions of rows. Due to the relatively smaller
number of tables but larger table sizes, index lookup time becomes
less dominant compared to data loading time and profiling time,
both of which can now bottleneck end-to-end query response time
in the pipeline. So, the main challenge in the Sigma scenario shifts
in part from searching over a massive number of small tables to
optimizing the entire pipeline for a fair number of very large ta-
bles (e.g., reducing data loading time and using efficient profiling
methods).

In this work, we introduce a data discovery system WarpGate
and share our progress. WarpGate prototypes semantic join dis-
covery in Sigma, an enterprise platform for cloud data analytics.
Specifically, we make the following contributions:

• We present WarpGate, a semantic join discovery system,
which demonstrates a real-world usage scenario of data dis-
covery within an enterprise product.

• We identify unique challenges in Sigma and propose an
embedding-based solution to capture semantic relationships
between tables, especially those across databases.

• We evaluate WarpGate on three cross-domain table cor-
pora, including one collected from a CDW, and show our
embedding-based approach is effective and robust to sam-
pling. We also discuss further optimization opportunities for
deployment and larger-scale discovery.

2 PROBLEM DEFINITION
In this section, we first briefly introduce Sigma and describe the
data discovery needs of Sigma users. Then we formally define our
problem.

2.1 Data Discovery Need in Sigma
Sigma is a web-based SaaS platform for cloud data analytics and
business intelligence. It features Sigma Workbooks, which provides
a spreadsheet-like interface for business users to perform interactive
visual analysis of data in CDWs.

Among many features familiar to business users who are more
skilled in spreadsheet functions than SQL, Lookup enables users
to write a spreadsheet formula and add a column from another
data source (i.e., another table) to enrich the dataset at hand. Under
the hood, Workbooks translates spreadsheet formulas into SQL
queries required to fetch data from cloud databases and performs
cardinality-preserving joins on related tables.

A major limitation of Lookup is that users have to specify the
join path in formulas. In other words, it requires users to have
prior knowledge about relationships between datasets. However,
users often lack such knowledge and have to rely on their data
teams for help or manually browse tables in databases to find a
clue. This limitation has become a bottleneck in fully utilizing the
Lookup functionality, significantly delaying their data exploration
and analysis workflows. We believe this sort of data discovery will
be a challenge for all cloud analytics products and hence has to be
addressed.

2.2 Semantic Join Discovery
Problem Statement (Top-𝑘 Semantic Join Discovery). Given a
corpus of tablesS, a query column cq from a tableQ, and a constant
𝑘 , find up to 𝑘 candidate columns from S such that they are most
likely to be joinable with cq.

Traditionally, joinable tables have been discovered through syn-
tactic analysis, which canmiss many join opportunities, particularly

WarpGate: A Semantic Join Discovery System for Cloud Data Warehouses CIDR’23, January 8-11, 2023, Amsterdam, The Netherlands

when data are independently sourced. High dimensional embed-
dings have recently been shown to capture semantics effectively
in many domains [8, 23]. We expect that the semantic similarity of
two columns can be quantified by some similarity measure between
their embeddings, which we expect can serve as a proxy for their
join-ability as well.

Definition (Semantic Column Join-ability). Given two columns 𝐴
and 𝐵, we define semantic column join-ability J (𝐴, 𝐵) as

J (𝐴, 𝐵) = M(T (𝐴),T (𝐵))
where T (·) is an embedding function that projects a given column
into a vector space andM(·, ·) is a similarity measure between two
embeddings in the vector space.

Based on this metric, we can attempt to solve the semantic join
discovery problem by returning candidate tables in descending or-
der of semantic column join-ability J relative to the query column
cq. How to do this effectively is the central challenge addressed in
this paper.

3 WARPGATE OVERVIEW

Indexing

Cloud Data
Warehouse

Load

Column
Embeddings

Index

Search

Query Table

Select

Query Column

Embed

Query Column
Embedding

Joinable Column
Candidates

Table Corpus

Embed

Search

LSH Indexing

Return0.1
0.6
...

-0.7

0.2

...

0.5

0.4

...

0.1

-0.8

...

Figure 2:WarpGate pipeline.

We discuss key challenges to implementing an embedding-based
approach to the semantic join discovery problem, along with our so-
lutions to these challenges in Section 3.1. Then we describe our sys-
tem prototype WarpGate incorporating these ideas in Section 3.2.

3.1 Embedding-Based Solution
Figure 2 gives an overview of theWarpGate architecture, which
consists of two main pipelines: indexing and search, which we
consider in turn below. But first, we discuss the embedding step
common to both pipelines.

3.1.1 Column Embeddings. We consider embeddings at the column
level an effective encapsulation of semantics for join discovery.
Intuitively, embeddings can capture semantic relationships between
columns across databases where value formatting may vary widely
despite semantic proximity.

However, the effectiveness of embeddings depends on the embed-
ding model. We consider several factors in choosing an embedding
model:

(i) Whether the model is (pre-)trained over tabular data;
(ii) The size of the training corpus;

(iii) The efficiency of model inference.

We observe two primary paradigms in applying embeddings for
data management tasks. Early work [4] leverages off-the-shelf em-
bedding models from the natural language processing (NLP) field.
Recent work [8, 17] adapts NLP model architectures and training
algorithms for tabular data. As demonstrated in their work, embed-
dings from models trained on tabular data manifest better perfor-
mance in downstream tasks. For instance, using the same training
algorithm, [17] shows that models trained on sequences extracted
from tables outperform the model trained on an unstructured text
corpus. The performance uplift is attributed to the serialization
of tabular data, which considers the table structure in the embed-
ding process. With this observation, we prefer embedding models
designed for tabular data.

Empirically, more training data usually lead to better model
performance and generalizability, given enough model capacity.
In the database community, Web table corpora [11, 18] extracted
from the Common Crawl contribute the largest publicly accessible
relational table datasets. Efforts exploring representation learning
for relational tables [8, 17] have trained embeddings on variousWeb
table corpus, which also exhibits the impact of Web tables beyond
Web applications. Thus, we favor embedding models derived from
those large table corpora.

The embedding process for tabular data generally involves table
serialization, input encoding (e.g., tokenization and transformation),
and model inference. It is worth noting that although more complex
models (in terms of the number of parameters) give embeddings
that tend to yield better results in the downstream tasks, they also
carry a larger inference cost (i.e., longer inference time, which di-
rectly affects query response time) compared to simple models. For
interactive applications such as join discovery and recommendation
in Sigma, we need to choose models that balance the embedding
quality and model inference time.

3.1.2 Indexing. We employ locality-sensitive hashing (LSH) [5, 16]
to turn the high-dimensional embedding similarity search problem
into nearest neighbor search in a low-dimensional space. The basic
idea of LSH is to maximize hash collisions for similar inputs. With
respect to a similarity measure, LSH applies a specific family of
hash functions that assign two similar inputs to the same “buckets”
with high probability that is equal to the similarity score between
them.

In our case, we consider the semantic join-ability of two columns
to be the cosine similarity of their embeddings. To approximate the
cosine similarity of two vectors, we rely on SimHash (also known as
random projection) [5] that essentially uses hyperplanes in the vec-
tor space as hash functions. We hash all column embeddings from
the table corpus into a SimHash LSH index. When a query comes
in, the LSH index hashes the query embedding and only searches
within the sub-universe of embedding vectors (much smaller than
the entire universe) that share the same hash as the query, hence
reducing the search time.

3.1.3 Sampling. Existing data discovery systems [2, 3, 12] run a
one-pass data scanning step to read all datasets once and retrieve
profiling information (e.g., MinHash for each column). Reading full
tables of millions of rows or even billions of rows from CDWs is

CIDR’23, January 8-11, 2023, Amsterdam, The Netherlands Tianji Cong∗ , James Gale, Jason Frantz, H. V. Jagadish, and Çağatay Demiralp

expensive in terms of both computation time and monetary cost
because CDW vendors that adopt a usage-based pricing model (i.e.,
pay-as-you-go) charge per GB of data scanned. It is then intuitive
to use sampling to reduce the cost. But one side effect of sampling
is potential disruptions to column profiles. For instance, profiling
methods like MinHash are shown to be sensitive to the sample
size [6]. It also remains unclear what a good sample size is for
embeddings to preserve the similarity for data discovery.

3.2 WarpGate Interface
We have implemented the ideas described above in a prototype
system we call WarpGate. As shown in Figure 3, we integrate
WarpGate into Sigma Workbooks as a functionality called Add
column via lookup.

Continuing the example of a business user Joey who wants to
identify customers for a sales campaign, she opens up the Account
table and sees a full list of companies (the Name column highlighted
in Step 1 of Figure 3). To help make the decision, she wants to aug-
ment the table with additional information so that she can know
which companies fall into the scope of the sale campaign. In the
current interface, she right-clicks on the Name column and chooses
the Add column via lookup option in the menu. A window shows
up (Step 2 in Figure 3) and displays top-𝑘 join path recommenda-
tions. Each recommendation gives the candidate join column, the
table, and the database from which the candidate column comes, as
well as a similarity score relative to the Name column (i.e., the query
column). Although recommendations are ranked in descending
order of the similarity score, Joey can pick one that fits her interest
most. Once she chooses a candidate, the window will display a
list of all the columns from the candidate table. Joey can browse
and select the most relevant columns. For now, the interface will
add user-selected columns to the Account table right at the side
of the Name column for information complement and also load the
candidate table into Sigma Workbooks for further inspection. In
Step 3, we simply add and show the first recommended column,
which is a foreign key in the same database.

The current interface design is based on the consideration that it
is less desirable to simply join two wide tables with many columns
and overwhelm users with a display of an even wider table that
does not really help users with their information needs. In this case,
Joey can first add the most relevant columns at first glance based
on her domain knowledge while having the flexibility to see the
entire candidate table for more careful examination.

4 EXPERIMENTS
We evaluate WarpGate on effectiveness and efficiency in com-
parison with two existing data discovery systems that support
enterprise use cases. We obtain promising results of our embedding-
based approach and show that it is sample-efficient and scales well
to tables of millions of rows.

4.1 Datasets
We use three repositories for evaluation. Table 1 gives a summary
of dataset characteristics.

NextiaJD. [14] composes four testbeds of datasets from open
repositories such as Kaggle and OpenML. Datasets are divided into

Table 1: Basic statistics of evaluation datasets. XS is shorthand
for testbedXS in the NextiaJD repository, similarly for S, M,
and L.

Tables # Columns Avg. # Rows # Queries Avg. # Answers
XS 28 257 1,938 35 2.8
S 46 2,553 209,646 177 3.6
M 46 1,067 3,175,904 188 4.4
L 19 541 12,288,165 92 3.6

Spider 70 429 7632 60 1.1
Sigma 98 1,343 2,243,932 TBD N/A

testbeds according to their file size. For instance, NextiaJD-XS con-
tains datasets of size smaller than 1 MB while NextiaJD-L consists
of datasets of size larger than 1 GB. They also label the join quality
of pairs of attributes based on a measure that considers both con-
tainment and cardinality proportion with empirically determined
thresholds. In experiments, we use attribute pairs with quality la-
beled as Good and High by [14].

Spider. Released as a large-scale semantic parsing and text-to-
SQL dataset, Spider [22] includes 5,693 SQL queries on 200 databases
across domains. We parse schema SQL files and retrieve join paths
between primary keys and foreign keys as ground truth. Spider has
both the training set and the development set, and we currently
use join paths from the development set for evaluation.

Sigma. The Sigma Sample Database is a collection of schema
and tables that are accessible to all Sigma Computing accounts
for exploration. It is stored in a Snowflake account managed by
Sigma Computing and changes over time. The datasets in this
database vary in origin; some data is real, publicly accessible data,
some is real-data that has been obfuscated, and some is completely
auto-generated data. The domain of the data ranges includes retail
(transactions, products and stores), financial (daily attributes of
many securities), demographic (census, restaurants and bikes) and
usage (cloud application usage and metering, server logs).

4.2 Baselines & Metrics
For comparison, we consider as baselines two system prototypes
Aurum [12] and D3L [2] that report on real-world data discovery
(see Section 6 for more information). Note that Aurum stores de-
tected relationships in a graph data structure and does not support
top-𝑘 search.

When ground truth is available, we report top-𝑘 precision and
recall with varying 𝑘 . At each value of 𝑘 , we average the precision
and recall numbers over all the queries. We also limit 𝑘 to a small
range since the average number of answers to a query is small in
evaluation datasets, and we don’t want to overwhelm users with
too many recommendations.

Besides effectiveness, we consider index lookup time and end-to-
end query response time for efficiency measurement. Index lookup
time refers to the time for the index data structure to return top-k
candidates, whereas end-to-end query response time is the total
amount of time for a discovery system to respond to a query, which
includes data loading and embedding inference time in our case.
We report both metrics in seconds averaged over all queries in a
dataset. It is crucial in our application scenario that the system
responds to queries at interactive speed.

WarpGate: A Semantic Join Discovery System for Cloud Data Warehouses CIDR’23, January 8-11, 2023, Amsterdam, The Netherlands

Figure 3:WarpGate is integrated into a functionality called Add column via lookup in Sigma Workbooks.

4.3 Experiment Results
Based on considerations in Section 3.1, we choose to use Web Ta-
ble Embeddings [17] as our underlying embedding model. We set
the similarity threshold of the SimHash LSH index to 0.7 and run
baselines with their default setting. All experiments are conducted
on an Amazon EC2 p3.8xlarge instance.

4.3.1 Join Discovery on nextiaJD Testbeds. We present discovery
results on NextiaJD testbedS and testbedM in Figure 4(a) and 4(b)
respectively (results on four testbeds have similar trends while
these two testbeds contain more tables and queries than the other
two). As shown,WarpGate consistently obtains higher precision
and recall compared with two baselines as 𝑘 increases.

Table 2: End-to-end query response time in seconds/query
(for 𝑘 = 10) along with index lookup time reported in parathe-
ses forWarpGate.

Aurum D3L WarpGate
testbedS 0.18 4.77 3.12 (1.04)
testbedM 0.03 57.69 38.73 (8.39)

Table 2 shows end-to-end query response time. Aurum is signifi-
cantly faster because it indexes detected relationships in another
graph data structure for result retrieval. In contrast, D3𝐿 is the slow-
est since it uses an ensemble approach and aggregating multiple
types of signals takes longer. As we can also see here, given the
equal number of tables in two testbeds, when the average number
of rows increases by an order of magnitude, query response time
increases linearly and becomes unacceptable for interactive pur-
poses. Moreover, index lookup time accounts for less than 25% of

query response time on testbedS and less than 13% on testbedM.
This suggests that there are other bottlenecks in the pipeline and
improving only index lookup time (as many earlier works focus
on) is not enough to reduce overall query response time. Upon in-
spection, we found loading large datasets from disk to memory and
embedding inference take most of the time besides index lookup.
We show in Section 4.4 that sampling is an effective mitigation and
our embedding approach is robust to sample size.

4.3.2 PK/FK Detection on Spider. Figure 4(c) shows the top-𝑘 pre-
cision and recall of three systems on the Spider dataset. We use this
dataset mainly to demonstrate that for PK/FK detection within each
independent database, the embedding measure alone (WarpGate)
can compare favorably against the ensemble approach (D3L) and
outperform the syntactic-only approach (Aurum) by a large margin.
As to D3L, the jump of recall from 𝑘 = 5 to 𝑘 = 10 is attributed to the
column name similarity measure in D3L, and we indeed observe in
Spider that many PK/FKs share syntactically similar column names.
Since Spider has a small number of tables that contain thousands of
rows on average, the search time is fast for all three systems, which
is no more than 2 seconds for running all the queries.

4.3.3 Ad-Hoc Discovery in Sigma. Since Sigma Sample Database
is a corpus without ground truth, we ask four colleagues to pick
columns of interest as queries. Here we describe one of the most
interesting discoveries. In future work, we plan to conduct a user
study to evaluate the value ofWarpGate in a principled manner.

Continuing our running example of the business user Joey, who
is interested in looking for additional information to help make the
decision of customer selection. Figure 3 displays the top-3 recom-
mendations from WarpGate. The first candidate is the Company
column of the LEAD table from the same database as the query

CIDR’23, January 8-11, 2023, Amsterdam, The Netherlands Tianji Cong∗ , James Gale, Jason Frantz, H. V. Jagadish, and Çağatay Demiralp

2 3 5 10
K

0.1

0.2

0.3

0.4

0.5

Pr
ec

isi
on

Aurum
D3L
WarpGate

2 3 5 10
K

0.3

0.4

0.5

0.6

0.7

Re
ca

ll

(a) testbedS

2 3 5 10
K

0.0

0.1

0.2

0.3

0.4

Pr
ec

isi
on

Aurum
D3L
WarpGate

2 3 5 10
K

0.0

0.1

0.2

0.3

0.4

Re
ca

ll

(b) testbedM

2 3 5 10
K

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ec

isi
on

Aurum
D3L
WarpGate

2 3 5 10
K

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll

(c) Spider

Figure 4: Top-𝑘 precision and recall.

column, which contains information on contact points in each com-
pany (e.g., name, title, and address of each contact point). Upon
browsing columns in the LEAD table, Joey does not find auxiliary
information for her need. She moves to inspect the second candi-
date, which is the Company Name column of the INDUSTRIES table
from the STOCKS database. In the same table, the Industry Group
column has sector information of US public companies, which can
(partially) enrich the query table. Joey then acts on her customer
selection by filtering companies with their sectors. Even more in-
terestingly, she can add to the query table the TICKER column from
the INDUSTRIES table, which can be further used as the join key to
add columns of stock prices from the same STOCKS database. This
way, Joey can track down high-performing companies in targeted
sectors as her sales campaign customers.

4.4 Sample Efficiency
We runWarpGate over NextiaJD-S and NextiaJD-M with sample
size 10, 100, and 1000. For all sample sizes, the embedding approach
remains as effective as using full values with ±1%/2% variation
at different 𝑘 values. In the meanwhile, index lookup time is re-
duced by up to two orders of magnitude (e.g., from about 1 second
to about 10 milliseconds on NextiaJD-S), and end-to-end query
response time also comes down to interactive speed (under 35 mil-
liseconds per query on NextiaJD-S and under 65 milliseconds per
query on NextiaJD-M). We discuss further optimization opportuni-
ties in Section 5.

To see if sample efficiency is unique to Web Table Embeddings,
we also evaluate BERT [9] as our underlying embedding model.
We observe that the effectiveness of BERT Embeddings is robust to
sample size as well. Although BERT is a significantly more complex
model, we do not see much improvement in effectiveness (mostly
on par with Web Table Embeddings). Nevertheless, index lookup
time and query response time are 10x slower without sampling due
to more expensive embedding inference costs.

5 DISCUSSION
5.1 Sigma Customer Data Scale
The scale of enterprise CDWs is a challenge for any deployment
of join discovery. The median Sigma customer warehouse has 450
tables for analysis, but the average is over 12,700 tables with an

average of 25.7 columns per table. The size of enterprise tables is
also a challenge. The median table in these warehouses has just
7,700 rows, but the average is 1.7 billion rows. Actively sampling this
large number of tables incurs usage costs in CDWs, so a passive
sampling of user queries is beneficial. Likewise, samples can be
shared across ML applications in Sigma to amortize their cost.

5.2 Optimization Opportunities
5.2.1 Contextual Embeddings. Existing approaches generally fol-
low a two-step process: they first build profiles for each column in-
dependently and then determine join-ability of two columns based
on some notion of similarity between their profiles (e.g., contain-
ment or Jaccard similarity). Typically, the context of a column is not
taken into account when building those profiles. However, context
(e.g., other columns in the same table, user activities, query logs)
can potentially provide auxiliary information that is critical to find
semantically related candidates. We plan to explore the option of
incorporating context information into the underlying embedding
model ofWarpGate.

5.2.2 Data Management for Data Discovery. CSV is a common file
format for tabular data in Open Data Lakes and table repositories
on the Web. Despite the flexibility and human readability of CSV
files, the flat-file format is not ideal for storage and query purposes.
We note that (1) loading giant CSV files and running embedding
inference can incur heavy memory usage and crash programs on
small machines; (2) operations in join discovery like embedding
inference are column-oriented; (3) what is unique in our scenario
is that our data are pulled from CDWs, thus more structured and
much better data quality than those in the wild. (1) and (2) make us
think it is more memory and storage efficient to take advantage of
(in-memory) column stores for data pulled out of CDWs, and (3)
can make the process easier. This change will also have significant
implications for deployment as we need to provision CPU and
memory usage in Sigma’s Kubernetes cluster.

5.2.3 Efficient Search. To further improve query response time for
Sigma customers with a massive number of tables in their CDWs,
we are considering two directions: (1) a block-and-verify strategy
in [10], which employs pivot-based filtering to prune dissimilar
vectors; (2) fine-tune off-the-shelf embedding models in a self-
supervised way that pushes embeddings of joinable columns to

WarpGate: A Semantic Join Discovery System for Cloud Data Warehouses CIDR’23, January 8-11, 2023, Amsterdam, The Netherlands

have higher cosine similarity so that an index data structure like
SimHash can be better utilized [7].

6 RELATEDWORK
Data Discovery Systems for Enterprise. Aurum [12] presents a
data discovery system that models syntactic relationships between
datasets in a graph data structure. In a two-step process of profil-
ing data and computing the relationship between data signatures,
Aurum builds up a graph with nodes representing column profiles
and weighted edges indicating syntactic relationships between two
nodes (e.g., content similarity). With an in-memory index of the
graph, Aurum can efficiently support varied discovery needs such
as how similar two columns are, which can be used to find join-
able datasets. SEMPROP [13] further employs word embeddings in
Aurum to surface semantically related objects in the graph.

Voyager [3] built on top of D3L formalizes and supports three
tasks routinely performed by data scientists using their platform. It
profiles data with a full scan and indexes columns with MinHash.
Voyager also drops the embedding measure in D3L and relies only
on syntactic measures.
Join Discovery over OpenData. JOSIE [25] considers the problem
of finding joinable tables in modern data lakes. They formulate the
problem as a top-k overlap set similarity search problem where
columns are treated as sets and matching values as intersection
between sets. By using a cost model for estimating the reading costs
of data structures, JOSIE contributes an exact overlap set similarity
search algorithm that can adapt to different data distributions.

JUNEAU [24] targets on search and management problems in-
cluding finding joinable tables in interactive data science environ-
ments (e.g., Jupyter Notebook). It combinesmultiple table-relatedness
measures (e.g., column and row overlap, provenance and etc.) for
related table search.

D3L [2] proposes a distance-based framework that uses five types
of evidence to determine column similarity: (i) column name simi-
larity; (ii) column extent overlap; (iii) word-embedding similarity;
(iv) format representation similarity; and (v) domain distribution
similarity for numerical attributes. Their aggregated approach is
shown to be more effective and efficient than Aurum on table union
search, which is a problem that has significant overlapping with
join path discovery.

In contrast to the search paradigm, [20] proposes building a
navigation graph over data lakes. By leveraging a probabilistic
model, they show that navigation can help users find relevant tables
that cannot be found by keyword search.

7 CONCLUSION
We presentWarpGate, a system prototype for semantic join dis-
covery in SigmaWorkbooks. In future work, we expect to share our
experience and lessons of deploying WarpGate in the production
environment and conduct a user study to further evaluate its value
for end users.

ACKNOWLEDGMENTS
We thank Siva Obulam, Jade Fleishhacker, and Qing Feng for con-
tributing to the first demonstration ofWarpGate in Sigma Summer
Hackathon 2022. We thank Oscar Bashaw for sharing with us the

Sigma Sample Database and his description of this corpus. We also
thank Nipurn Doshi for designing the WarpGate interface. This
project is supported in part by NSF grant 1946932.

REFERENCES
[1] Sagar Bharadwaj, Praveen Gupta, Ranjita Bhagwan, and Saikat Guha. 2021. Dis-

covering Related Data At Scale. Proc. VLDB Endow. (2021), 1392–1400.
[2] Alex Bogatu, Alvaro A. A. Fernandes, Norman W. Paton, and Nikolaos Konstanti-

nou. 2020. Dataset Discovery in Data Lakes. In ICDE 2020. IEEE, 709–720.
[3] Alex Bogatu, Norman W. Paton, Mark Douthwaite, and André Freitas. 2022.

Voyager: Data Discovery and Integration for Onboarding in Data Science. In
EDBT 2022. OpenProceedings.org, 2:537–2:548.

[4] Rajesh Bordawekar and Oded Shmueli. 2017. Using Word Embedding to Enable
Semantic Queries in Relational Databases. In DEEM@SIGMOD 2017. ACM, 5:1–
5:4.

[5] Moses Charikar. 2014. Similarity estimation techniques from rounding algorithms.
In STOC 2014. ACM, 380–388.

[6] Zhimin Chen, Vivek R. Narasayya, and Surajit Chaudhuri. 2014. Fast Foreign-Key
Detection in Microsoft SQL Server PowerPivot for Excel. Proc. VLDB Endow.
(2014), 1417–1428.

[7] Tianji Cong, Fatemeh Nargesian, and H. V. Jagadish. 2022. Pylon: Semantic Table
Union Search in Data Lakes. Under review.

[8] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2020. TURL: Table
Understanding through Representation Learning. Proc. VLDB Endow. (2020),
307–319.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL-HLT 2019. Association for Computational Linguistics, 4171–4186.

[10] Yuyang Dong, Kunihiro Takeoka, Chuan Xiao, and Masafumi Oyamada. 2021.
Efficient Joinable Table Discovery in Data Lakes: A High-Dimensional Similarity-
Based Approach. In ICDE 2021. IEEE, 456–467.

[11] Julian Eberius, Maik Thiele, Katrin Braunschweig, and Wolfgang Lehner. 2015.
Top-k entity augmentation using consistent set covering. In SSDBM 2015. ACM,
8:1–8:12.

[12] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel
Madden, and Michael Stonebraker. 2018. Aurum: A Data Discovery System. In
ICDE 2018. IEEE Computer Society, 1001–1012.

[13] Raul Castro Fernandez, EssamMansour, Abdulhakim Ali Qahtan, Ahmed K. Elma-
garmid, Ihab F. Ilyas, Samuel Madden, Mourad Ouzzani, Michael Stonebraker, and
Nan Tang. 2018. Seeping Semantics: Linking Datasets Using Word Embeddings
for Data Discovery. In ICDE 2018. IEEE Computer Society, 989–1000.

[14] Javier Flores, Sergi Nadal, and Oscar Romero. 2021. Towards Scalable Data
Discovery. In EDBT 2021. OpenProceedings.org, 433–438.

[15] James Gale, Max Seiden, Deepanshu Utkarsh, Jason Frantz, Rob Woollen, and
Çagatay Demiralp. 2022. Sigma Workbook: A Spreadsheet for Cloud Data Ware-
houses. Proc. VLDB Endow. (2022), 3670–3673.

[16] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in
High Dimensions via Hashing. In VLDB 1999. 518–529.

[17] Michael Günther, Maik Thiele, Julius Gonsior, and Wolfgang Lehner. 2021. Pre-
Trained Web Table Embeddings for Table Discovery. In aiDM@SIGMOD 2021.
ACM, 24–31.

[18] Oliver Lehmberg, Dominique Ritze, Robert Meusel, and Christian Bizer. 2016. A
Large Public Corpus of Web Tables containing Time and Context Metadata. In
WWW 2016. ACM, 75–76.

[19] Renée J. Miller, FatemehNargesian, Erkang Zhu, Christina Christodoulakis, KenQ.
Pu, and Periklis Andritsos. 2018. Making Open Data Transparent: Data Discovery
on Open Data. IEEE Data Eng. Bull. (2018), 59–70.

[20] Fatemeh Nargesian, Ken Q. Pu, Erkang Zhu, Bahar Ghadiri Bashardoost, and
Renée J. Miller. 2020. Organizing Data Lakes for Navigation. In SIGMOD 2020.
ACM, 1939–1950.

[21] Fatemeh Nargesian, Erkang Zhu, Ken Q. Pu, and Renée J. Miller. 2018. Table
Union Search on Open Data. Proc. VLDB Endow. (2018), 813–825.

[22] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James
Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir R. Radev.
2018. Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-
Domain Semantic Parsing and Text-to-SQL Task. In EMNLP 2018. Association for
Computational Linguistics, 3911–3921.

[23] Dan Zhang, Yoshihiko Suhara, Jinfeng Li, Madelon Hulsebos, Çagatay Demiralp,
and Wang-Chiew Tan. 2020. Sato: Contextual Semantic Type Detection in Tables.
Proc. VLDB Endow. (2020), 1835–1848.

[24] Yi Zhang and Zachary G. Ives. 2020. Finding Related Tables in Data Lakes for
Interactive Data Science. In SIGMOD 2020. ACM, 1951–1966.

[25] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. 2019. JOSIE:
Overlap Set Similarity Search for Finding Joinable Tables in Data Lakes. In
SIGMOD 2019. ACM, 847–864.

	Abstract
	1 Introduction
	2 Problem Definition
	2.1 Data Discovery Need in Sigma
	2.2 Semantic Join Discovery

	3 WarpGate Overview
	3.1 Embedding-Based Solution
	3.2 WarpGate Interface

	4 Experiments
	4.1 Datasets
	4.2 Baselines & Metrics
	4.3 Experiment Results
	4.4 Sample Efficiency

	5 Discussion
	5.1 Sigma Customer Data Scale
	5.2 Optimization Opportunities

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

