
PredictingQuery Execution time for JIT Compiled Database
Engines

Kostas Chasialis 1, Srinivas Karthik 1, Bikash Chandra1#, Anastasia Ailamaki1,2
1: EPFL 2: Raw Labs

Predicting query execution time in a database is essential in
a wide variety of scenarios such as query scheduling, resource
allocation, query progress monitoring, and admission control of
queries. Modern database systems use in-memory data processing
and incorporate novel technologies such as code generation. These
systems present new challenges and opportunities for accurate
prediction of execution times. For instance, a majority of the total
execution time for analytical queries is spent on memory access
and branch misprediction [2].

Prior works in query performance prediction have focused on
using hefty machine learning - requiring large training times before
the models become usable - or lightweight analytical models which
are highly inaccurate. In this paper, we propose a novel light- weight
analytical cost model, JIT-Prediction, using active learning for
predicting query execution times for JIT code generation based
systems, as described next.

JIT-PREDICTION. We build on the analytical model introduced in
[1] as to support ad-hoc queries. The key idea in JIT-Prediction
is to learn many of the underlying hidden architecture parameters
through active learning – by executing a carefully designed set of
calibration queries based on query data access patterns. Through
these queries, we introduce a fudge factor to the erroneous param-
eters in the model, and infer them mathematically. These fudge
factors essentially play a role of corrective measure for the errors
induced by the model. This phase is designed to take a small frac-
tion of the total execution time, as opposed to ML techniques which
run for several hours.

Let us see JIT-Prediction for a simple scan query which uses
Sequential Traversal (𝑆𝑡𝑟𝑎𝑣). As the name suggests, the underlying
access pattern on a memory 𝑅, sequentially sweeps over 𝑅, access-
ing the contiguous blocks in the memory. For a 3-level cache, the
memory access time, 𝑇𝑚𝑒𝑚 , is given by

𝑇𝑚𝑒𝑚 = 𝑀𝑠
1 ∗ 𝑙𝑠2 +𝑀𝑠

2 ∗ 𝑙𝑠3 +𝑀𝑠
3 ∗ 𝑙𝑠4 (1)

Here, 𝑀𝑠
1 , 𝑀

𝑠
2 and 𝑀𝑠

3 are the estimated cache misses from the
Manegold Model [1]; 𝑙𝑠2 , 𝑙

𝑠
3 and 𝑙

𝑠
4 are the sequential access latencies

for L2 cache, L3 cache and DRAM, respectively.
In order to infer the fudge factors, we use the projection-based

calibration queries which emit only 𝑆𝑡𝑟𝑎𝑣 of the form:
select sum(attr[s]) from table;.

We introduce the fudge factors, F𝑖 for each cache level 𝑖 , as a
corrective measure for cache misses. Then the new equation is

𝑇𝑎
𝑚𝑒𝑚 = F1 ∗𝑀𝑠

1 ∗ 𝑙𝑠2 + F2 ∗𝑀𝑠
2 ∗ 𝑙𝑠3 + F3 ∗𝑀𝑠

3 ∗ 𝑙𝑠4 (2)

Currently at Meta Platforms, Inc.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2023. 13th Annual Conference on
Innovative Data Systems Research (CIDR ’23). January 8-11, 2023, Amsterdam, The
Netherlands.

1

Calibration
Queries

Execution
Engine

Profiler Calibrator

New
Query

Estimator

Profile runtime
statistics model as linear

least square
problem => infer

fudge factors

Fudge factors +
Analytical model

Pick calibration
queries for different

access patterns

Run calibration queries
on a sample database

Figure 1: JIT-Prediction’s Workflow

We obtain the actual memory access time, 𝑇𝑎
𝑚𝑒𝑚 , using the Intel

VTune profiler. Since we need a basic profiler, other execution
profiling tools can also be used. The 3 unknowns in Equation 2
can be solved by running 3 projection queries. However, since the
measured results are somewhat noisy, we model the problem as a
linear least-squares problem with bounds on the variables, and solve
it using Trust Region Reflective algorithm.

This is the first step in our offline calibration phase, other opera-
tors which contains more complex access patterns are calibrated
progressively. For example, hashing and sorting induce random
access patterns. Hence, Equation 1 is extended to include random
misses and latency – JIT-Prediction also infers fudge factors for
these additional terms. With filters, cost from branch misprediction
plays an important role, which is handled with JIT-Prediction
similarly. We omit the details here in the interest of space.

Results. We evaluate our proposed technique, JIT-Prediction,
on SPJ queries from the SSBM Benchmark, and compare against
the actual execution time and the state-of-the-art approach, i.e.
Manegold Model [1]. For our technique, all the access patterns work
in combination, and the inferred fudge factors from the calibration
queries (capturing individual access patterns) are applied to these
queries. With the calibration, the overall average Q-error reduces by
93% in comparison to the Manegold Model, and the average Q-error
for JIT-Prediction is 2.26 in comparison to the ideal. We also
performed experiments to show that the fudge factors are nearly
scale-independent. Thus, one can apply the calibration phase on a
smaller sample of the database.

Future Work. Extending the framework to include more work-
loads and execution environments such as scale-up, scale-out, or
even with accelerators such as GPUs is an area of future work.

REFERENCES
[1] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. 2002. Generic Database

Cost Models for Hierarchical Memory Systems. In PVLDB. 191–202.
[2] Utku Sirin and Anastasia Ailamaki. 2020. Micro-architectural Analysis of OLAP:

Limitations and Opportunities. PVLDB 13, 6 (2020), 840–853.

	References

