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ABSTRACT1	
ETL	 and	 ELT	 are	 required	 to	 prepare	 comprehensive,	 clean,	
and	correct	derived	data	that	can	fuel	successful	analytics	and	
ML.	Based	on	our	observations	 from	thousands	of	customers	
processing	data	in	the	cloud	at	Databricks,	the	preparation	of	
derived	 data	 typically	 involves	 a	 complex	 DAG	 of	
transformations,	which	are	split	into	two	activities:	

	
(a) Ingestion:	At	 the	 sources	 of	 the	 DAG,	 raw	 data	 are	
fetched	 from	 streaming	 platforms,	 like	 Apache	 KafkaTM	 and	
Amazon	Kinesis,	and	from	cloud	storage	that	stages	incoming	
data.	This	data	is	typically	in	blob	stores	such	as	AWS	S3.	The	
majority	of	our	customers	store	it	in	Delta	Lake	tables,	the	data	
format	that	enables	transaction	processing	on	data	lakes	[1,2].	
(b) Downstream	 ELT:	 Multiple	 transformations	 clean,	
enrich,	and	aggregate	the	ingested	data.	The	downstream	ELT	
typically	 leads	 to	 many	 transformations,	 using	 popular	
frameworks	such	as	DBT,	or	individual	jobs	that	transform	the	
data.	 In	 the	 former	 case,	 the	 transformations	are	 typically	 in	
SQL	as	CREATE-TABLE-AS	(CTAS)	statements.	In	all	cases,	the	
underlying	 processing	 engine	 sees	 a	 series	 of	 seemingly	
independent	SQL	queries.	
Delta	 Live	 Tables	 (DLT)	 [5]	 takes	 a	 different	 approach	 by	
introducing	 the	 concept	 of	 a	 declaratively	 specified	 pipeline.		
These	pipelines,	which	are	often	quite	complex,	have	a	series	of	
incrementally	 maintained	 SQL	 Materialized	 Views	 (MVs),	
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instead	of	CTAS,	 to	produce	derived	data.	 (See	Figure.)	They	
open	 up	 opportunities	 for	 a	 wide	 spectrum	 of	 novel	
optimizations	and	functionality:	
(1)	The	 large	 scope	of	needed	 transformations	 requires	MVs	
that	have	the	full	SQL	expressiveness	(and	even	more).	At	the	
same	time,	the	large	volume	of	base	data	requires	that	the	large	
SQL	scope	is	combined	with	automated	incrementalization	(see	
survey	 [3]).	 The	 incrementalization	 planner	 builds	 upon	 the	
strength	of	the	Catalyst	query	rewriter	[4]	to	solve	the	problem.		
(2)	 The	 large	 number	 of	 operations	 (ingestions	 and	
derivations)	 are	 efficiently	 orchestrated	 and	 auto-scaled.	
Conventional	 optimizers	 are	 not	 privy	 to	 the	 pipeline	 and	
merely	 optimize	 the	 steps	 one-at-a-time.	 In	 contrast,	 DLT	
holistically	 optimizes	 the	 full	 pipeline,	 reducing	 latency	 and	
maximizing	 infrastructure	 utilization.	 In	 the	 case	 of	 fully	
incremental	downstream	ELT,	the	pipeline-aware	parallelism	
and	autoscaling	deliver	>50%	cost	reduction	in	comparison	to	
the	 same	 incrementalization	 operations	 executing	 as	
independent	statements.	
(3)	The	typical	pipeline	has	a	large	number	of	lines	of	code	and	
often	more	than	one	engineers	collaborate	on	this	code.2	This	
requires	 the	 enablement	 of	 software	 engineering	 practices	
such	 as	 version	 control	 and	 Continuous	 Integration	
/Continuous	 Deployment	 (CI/CD).	 For	 CICD	 purposes,	 DLT	
treats	the	pipeline	as	one	declarative	specification.	When	a	few	
lines	are	modified	it	falls	on	DLT’s	optimization	to	find	which	
MVs	are	the	same,	which	ones	have	changed,	and	how	to	evolve	
the	prior	MVs	into	the	new	ones.		
(4)	Dirty	data	are	 frequent	 in	 the	sources.	The	user	achieves	
high	 data	 quality	 by	 providing	 (i)	 declarative	 correctness	
expectations,	 which	 are	 automatically	 and	 efficiently	
monitored,	 and	 (ii)	policies	 for	 the	management	of	data	 that	
violate	the	correctness	expectations.	
In	 conclusion,	 similar	 to	 how	 SQL	 did	 for	 query	 processing,	
declarative	pipelines	open	up	multiple	research	opportunities	
in	enabling	optimizations	and	improving	productivity.		
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