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Overview

Database Gyms: an integrated environment providing a
unified API of pluggable components to obtain high-
quality training data for autonomous DBMSs
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Self-Driving Capabilities



Architecture

What components are needed for self-driving?
 Workload forecasting

Behavior modeling

e Action planning

How have recent papers focused on these problems?

h Data Management Track Paper SIGMOD 21, June 20-25, 2021, Virtual Event, China
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Modern ML

ML = Models + Training Data

If you do know what model you want,
* 1 month, 1k LOC

If you do not know what model you want,
* Foundation models
« Automated model design (e.g., AutoML)




Modern ML 's Implications

Training data is what matters today
With systems knowledge, generate training data that is
» Better (higher quality)

e Faster (less time taken)

Leave the ML to the ML people



How do we collect
training data?



Obtaining Training Data

Choice #1: Do it live!
e Performance degradations in production ‘
Choice #2: Simulator (via a gym) Ve

« Approximates the behavior of an entity when it would Sl
otherwise be too costly, time-consuming, or dangerousto =
experiment on the real system

« Packaged into toolkits for developing and evaluating
different models and algorithms




Obtaining Training Data via Simulation

Building a DBMS simulator is difficult

Key idea: Use the DBMS to simulate itself

* Requires solving systems and ML problems hand-in-hand
« We call this integrated solution the Database Gym




Architecture



Using the DBMS as a Simulator

I:
Decider
Planner

| Wi w2l
Synthesizer d.b

Trainer

DATABASE GYM




Synthesizer

Manages and manipulates the inputs to the database gym
» Snapshot : backups (e.g., pg_dump)
» Workload : timeseries of SQL queries

Goal: what-if scenarios without replaying the workload

« Example: “create a snapshot with 2x the data and increase
the queries in the workload by 5x”



Trainer

Given the workload and snapshot, coordinate workload
execution to produce training data

* Observability
e Execution

Workload replay tools
» pgreplay supports speed factor tor replay



Trainer

Choice #1: Foreign Data Wrappers
e Save on storage

Compute tuples
on-demand

Choice #2: RAMDISK

e Save on disk access time T Intercept read()

Choice #3: Query Progress Estimation

e Save on query execution time Fast-forward
> once stable



Planner

Suggests a list of promising actions

Extensible Rule-based Action Generation
» Inspired by query optimizers (Exodus, Starburst)
« Example rule: “columns that occur together in a WHERE clause”

Snapshot
ﬁ P Action

i \ W Workload Engine Rules Actions

Training Data

111




Decider

Pick the best action out of a list of candidate actions

By building on the OpenAl Gym, this component is free!
» Leverage what already exists in the ML community
« Various RL libraries integrate easily with gyms



Takeaways

Stop spending our time on ML problems, focus on
database problems

Database Gym: systems for machine learning for systems
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