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ABSTRACT

There are three dominent themes in building high transaction rate multiprocessor systems, namely
shared memory (e.g. Synapse, IBM/AP configurations), shared disk (e.g. VAX/cluster, any multi-ported
disk system), and shared nothing (e.g. Tandem, Tolerant). This paper argues that shared nothing is the pre-
ferred approach.

1. INTRODUCTION

The three most commonly mentioned architectures for multiprocessor high transaction rate systems

shared memory (SM), i.e. multiple processors shared a common central memory

shared disk (SD), i.e. multiple processors each with private memory share a
common collection of disks

shared nothing (SN), i.e. neither memory nor peripheral storage is shared among processors



DBMS Market (Revenue): $80B /year [Gartner]

Cloud and On Premises DBMS Revenue
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source: https://blogs.gartner.com/merv-adrian/2022/04/16/
dbms-market-transformation-2021-the-big-picture/
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This Talk

1. Improve conceptual clarity by mapping the distributed OLTP landscape
2. Understand why fully distributed systems have not become standard

3. Discuss research opportunities to get there
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Methodology:
= Distill 4 paradigmatic architectures (“archetypes”)
= Scalability of data access path: uniform/skewed reads/writes

= Elasticity: scaling compute and storage separately



Archetype #1: Single-Writer
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examples: AWS Aurora, Azure SQL Hyperscale, Google AlloyDB

uniform reads = uniform writes skewed reads skewed writes elasticity



Archetype #2: Partitioned-Writer
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examples: System R*, CockroachDB, Spanner

uniform reads uniform writes skewed reads skewed writes elasticity



Archetype #3: Shared-Writer (Without Cache)

RW Node RW Node RW Node

A

 /
Shared-
Storage

examples: NAM-DB, Sherman

uniform reads uniform writes skewed reads skewed writes elasticity



Archetype #4: Shared-Writer With Coherent Caches (“Shared-Cache”)

examples: Oracle RAC, ScaleStore

uniform reads uniform writes skewed reads skewed writes elasticity



The Case For Shared-Cache

+ good scalability properties
+ supports arbitrary workloads (no user-defined partitioning)
+ supports arbitrary data structures (e.g., B-trees)

— difficult implementation, little research



Research Challenges For Shared-Cache Architecture
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No, but there's a path to getting there
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