Is Scalable OLTP in the Cloud a Solved Problem?
Analyzing Data Access for Distributed OLTP Architectures

Tobias Ziegler, Philip A. Bernstein™®, Viktor Leier, Carsten Binnig

Technische Universitat Darmstadt, Microsoft Research®, Technische Universitat Mi]nchenJr

The Case for Shared Nothing

Michael Stonebraker
University of California
Berkeley, Ca.

ABSTRACT

There are three dominent themes in building high transaction rate multiprocessor systems, namely
shared memory (e.g. Synapse, IBM/AP configurations), shared disk (e.g. VAX/cluster, any multi-ported
disk system), and shared nothing (e.g. Tandem, Tolerant). This paper argues that shared nothing is the pre-
ferred approach.

1. INTRODUCTION

The three most commonly mentioned architectures for multiprocessor high transaction rate systems

shared memory (SM), i.e. multiple processors shared a common central memory

shared disk (SD), i.e. multiple processors each with private memory share a
common collection of disks

shared nothing (SN), i.e. neither memory nor peripheral storage is shared among processors

DBMS Market (Revenue): $80B /year [Gartner]

Cloud and On Premises DBMS Revenue

2017 2018 2019 2020 2021

mCloud mOnPremises

source: https://blogs.gartner.com/merv-adrian/2022/04/16/
dbms-market-transformation-2021-the-big-picture/

https://blogs.gartner.com/merv-adrian/2022/04/16/dbms-market-transformation-2021-the-big-picture/
https://blogs.gartner.com/merv-adrian/2022/04/16/dbms-market-transformation-2021-the-big-picture/

RW Node R Node R Node
T y g
e e O
§ [Writes 3 &
o 04 o
\
¥ = \

Data Copies Data Copies Data Copies

Shared-Storage

This Talk

1. Improve conceptual clarity by mapping the distributed OLTP landscape
2. Understand why fully distributed systems have not become standard

3. Discuss research opportunities to get there

This Talk

1. Improve conceptual clarity by mapping the distributed OLTP landscape
2. Understand why fully distributed systems have not become standard

3. Discuss research opportunities to get there

Methodology:
= Distill 4 paradigmatic architectures (“archetypes”)
= Scalability of data access path: uniform/skewed reads/writes

= Elasticity: scaling compute and storage separately

Archetype #1: Single-Writer

RW Node R Node R Node

Shared-
Storage

examples: AWS Aurora, Azure SQL Hyperscale, Google AlloyDB

uniform reads = uniform writes skewed reads skewed writes elasticity

Archetype #2: Partitioned-Writer

’ S 7 ~ 4 S
I 1 I 1] 1
1 1 1 1 1 1
| RW Node |+ | RW Node | | RW Node |:
1 1 1 1 1 1
1 A L | A L | A I
CV Y VY Y
[~ I~ I~
'| Partition 1|' | Partition2|' | Partition3|’
— T

- = o = = - = = = = - o o = =

examples: System R*, CockroachDB, Spanner

uniform reads uniform writes skewed reads skewed writes elasticity

Archetype #3: Shared-Writer (Without Cache)

RW Node RW Node RW Node

A

 /
Shared-
Storage

examples: NAM-DB, Sherman

uniform reads uniform writes skewed reads skewed writes elasticity

Archetype #4: Shared-Writer With Coherent Caches (“Shared-Cache”)

examples: Oracle RAC, ScaleStore

uniform reads uniform writes skewed reads skewed writes elasticity

The Case For Shared-Cache

+ good scalability properties
+ supports arbitrary workloads (no user-defined partitioning)
+ supports arbitrary data structures (e.g., B-trees)

— difficult implementation, little research

Research Challenges For Shared-Cache Architecture

= Cache coherence: v/

= Altruistic eviction: 7

= Elasticity: 7

= Transactions (ACID):

= A+C: vV
= |27

= D: 7

Throughput

smaller than

aggregated cache *
= HW/Cloud: emerging network | Data size)

technologies (EFA, RDMA), cloud

services

10

So, Is Scalable OLTP in the Cloud a Solved Problem?

11

So, Is Scalable OLTP in the Cloud a Solved Problem?

uniform skewed
reads writes reads writes elasticity
Single-Writer
Partitioned-Writer
Shared-Writer
Shared-Cache

11

So, Is Scalable OLTP in the Cloud a Solved Problem?

uniform skewed
reads writes reads writes elasticity
Single-Writer
Partitioned-Writer
Shared-Writer
Shared-Cache

No, but there's a path to getting there

11

