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The Rise of Eclectic Data

* Eclectic data: b d
— Heterogeneous — spanning many schemas
— Evolving — schemas change over time D

* Increasingly common due to: &
— loT, monitoring £

— Relating independent data sets

* Poses new challenges for ingestion, storage, querying, and introspection

/

what schemas are present?
what fields does each have?
etc.




Existing Data-Processing Approaches

Two common approaches today: the relational model and document model

Relational Model
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X difficult to handle changing schemas

efficient storage and querying

some support for data introspection

Document Model (e.g., JSON)

{“temp”: 68,
“timestamp”: “9:01 PM"}

o

X inefficient storage and querying
X no support for data introspection

easy to mix eclectic data 3



The Limitations of Hybrid Approaches

relational columns JSON columns
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» Still require cleaning data into the relational model

* Users must decide which model(s) to use for each piece of data
* Limited introspection

— Only in the relational model

— No holistic way to refer to schemas



Zed: A Unified Approach

Goals:

— Unify the relational and document models, embodying both simultaneously

— Enable data introspection
Requirements:
— Specify the complete type of each piece of data
— Be flexible about which types of data can coexist
Key idea: new data type abstraction
— Associated directly with individual data values
— First-class — holistic way to refer to types

Zed
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Zed Components and Design Questions

* Data model

— Should types be open or closed? Partial or complete?

— What should the scope of a type definition be?
 Query language

— What operators are necessary for data introspection?
* Family of data formats

— How to represent type information?



Zed Data Model

* Ordered sequence of typed data values

— Int32, string, bool, record, array, set, etc. named type
L J \ J
primitive types complex types /
{ts:09:01:00(time),temp:68(int32)}(=temperature)
{ts:time, {ts:10:12:00(time),percent_humidity:43.7(float32)}(=humidity) inline type
temp:int32} > {ts:17:29:00(time),temp:71(int32)}(=temperature) < definition

{ts:17:45:00(time),temp:80(int32),unit:"F"(string)}(=temperature)
{ts:18:02:00(time),temp:28(int32),unit:"C"(string)}(=temperature)

* Types are associated with individual data values

new definition of
temperature type

* First-class types (type type)
* Type definitions are stored inline
 Types are complete and closed

« Type definitions may change in a data stream ;



Zed Query Language

e Subsumes query languages for the relational and document models

* Enables data introspection
* Key new features:

— Type introspection
* Obtain the type of an individual data value with typeof()

— First-class types
* Functions can return types — typeof () returns a type (e.g., <ts:time,temp:int32}>)

* Types can be arguments to functions — is(<temperature>)
* Types can be tested for equality — typeof (this)==<temperature>
* Support for type literals — e.g., <ts:time,temp:int32}>



Zed Format Family

* No single format is best for all uses 7SON 7NG
e Zed provides a family of formats lossless
— ZSON: text-based transformations
— ZNG: binary row-based VNG

— VNG: binary vector, generalizes existing columnar formats
* Lossless transformations between formats
* Binary formats encode types efficiently, once per file



Data Processing with Zed

* @Generate data in Zed formats or other formats
 Store in ZNG, VNG, and indexes
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I Querying and Introspection in Zed

 Querying — supports search and analytics

$ zq -f table "count() by temp" sensor_data.vng
temp count

68 29
71 82
80 41 first-class types in

00 the query language
* Introspection /

$ zq -f table "count() by typeof(this)" sensor_data.vng

first-class typeof clelllife
types in <temperature={ts:time,temp:int32}> 452
the data <humidity={ts:time,percent_humidity:float32}> 82
model
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Conclusion

 Zed: a new unified approach to data processing
— Designed to support eclectic data
— Centered around data types

 Work on Zed is ongoing
* Available open source at: https://github.com/brimdata/zed
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