
Zed: Leveraging Data Types to Process
Eclectic Data

Amy Ousterhout, Steve McCanne, Henri Dubois-Ferriere,
Silvery Fu, Sylvia Ratnasamy, Noah Treuhaft

UC Berkeley, Brim Data, 12th Ave Labs

The Rise of Eclectic Data

• Eclectic data:
– Heterogeneous – spanning many schemas
– Evolving – schemas change over time

• Increasingly common due to:
– IoT, monitoring
– Relating independent data sets

• Poses new challenges for ingestion, storage, querying, and introspection

2

what schemas are present?
what fields does each have?

etc.

Existing Data-Processing Approaches

• Two common approaches today: the relational model and document model

3

Relational Model

✓ efficient storage and querying
✓ some support for data introspection
✗ difficult to handle changing schemas

Document Model (e.g., JSON)

✗ inefficient storage and querying
✗ no support for data introspection
✓ easy to mix eclectic data

Temperature Humidity Motion

motion✗
sound✗

{“temp”: 68,
“timestamp”: “9:01 PM”}

The Limitations of Hybrid Approaches

• Still require cleaning data into the relational model
• Users must decide which model(s) to use for each piece of data
• Limited introspection

– Only in the relational model
– No holistic way to refer to schemas

4

open
dataset

closed
dataset

JSON

Parquet

JSON columnsrelational columns

ETL

(a) AsterixDB (b) Snowflake (c) Lakehouse with ETL (d) Zed

transformations

Zed
data

Data Model

document

relational

super-
structured

open
dataset

closed
dataset

JSON

Parquet

JSON columnsrelational columns

ETL

(a) AsterixDB (b) Snowflake (c) Lakehouse (d) Zed

transformations

Zed
data

Data Model

document

relational

super-
structured

AsterixDB

open
dataset

closed
dataset

JSON

Parquet

JSON columnsrelational columns

ETL

(a) AsterixDB (b) Snowflake (c) Lakehouse (d) Zed

transformations

Zed
data

Data Model

document

relational

super-
structured

Snowflake

open
dataset

closed
dataset

JSON

Parquet

JSON columnsrelational columns

ETL

(a) AsterixDB (b) Snowflake (c) Lakehouse (d) Zed

transformations

Zed
data

Data Model

document

relational

super-
structured

Lakehouse

Zed: A Unified Approach

• Goals:
– Unify the relational and document models, embodying both simultaneously
– Enable data introspection

• Requirements:
– Specify the complete type of each piece of data
– Be flexible about which types of data can coexist

• Key idea: new data type abstraction
– Associated directly with individual data values
– First-class – holistic way to refer to types

5

Zed

type temperature
type temperature

type temperature

type motion
type humidity

type motion

type motion

type humidity

type humidity

type sound

✓
✓

Zed Components and Design Questions

• Data model
– Should types be open or closed? Partial or complete?
– What should the scope of a type definition be?

• Query language
– What operators are necessary for data introspection?

• Family of data formats
– How to represent type information?

6

{ts:09:01:00(time),temp:68(int32)}
{ts:10:12:00(time),percent_humidity:43.7(float32)}
{ts:17:29:00(time),temp:71(int32)}

Zed Data Model

• Ordered sequence of typed data values
– Int32, string, bool, record, array, set, etc.

7

{ts:09:01:00(time),temp:68(int32)}(=temperature)
{ts:10:12:00(time),percent_humidity:43.7(float32)}(=humidity)
{ts:17:29:00(time),temp:71(int32)}(=temperature)

primitive types complex types

• Types are associated with individual data values
• First-class types (type type)
• Type definitions are stored inline
• Types are complete and closed
• Type definitions may change in a data stream

{ts:09:01:00(time),temp:68(int32)}(=temperature)
{ts:10:12:00(time),percent_humidity:43.7(float32)}(=humidity)
{ts:17:29:00(time),temp:71(int32)}(=temperature)
{ts:17:45:00(time),temp:80(int32),unit:"F"(string)}(=temperature)
{ts:18:02:00(time),temp:28(int32),unit:"C"(string)}(=temperature)

{ts:time,
temp:int32}

named type

inline type
definition

new definition of
temperature type

Zed Query Language

• Subsumes query languages for the relational and document models
• Enables data introspection
• Key new features:

– Type introspection
• Obtain the type of an individual data value with typeof()

– First-class types
• Functions can return types – typeof() returns a type (e.g., <ts:time,temp:int32}>)
• Types can be arguments to functions – is(<temperature>)

• Types can be tested for equality – typeof(this)==<temperature>
• Support for type literals – e.g., <ts:time,temp:int32}>

8

Zed Format Family

• No single format is best for all uses
• Zed provides a family of formats

– ZSON: text-based
– ZNG: binary row-based
– VNG: binary vector, generalizes existing columnar formats

• Lossless transformations between formats
• Binary formats encode types efficiently, once per file

9

ZNGZSON

VNG

lossless
transformations

Data Processing with Zed

• Generate data in Zed formats or other formats
• Store in ZNG, VNG, and indexes

10

ZNG

VNGData sources

ZSON, ZNG, VNG

JSON, CSV, etc.

UserZSON

ZSON

Querying and Introspection in Zed

• Querying – supports search and analytics

• Introspection

11

$ zq -f table "count() by typeof(this)" sensor_data.vng
typeof count
<temperature={ts:time,temp:int32}> 452
<humidity={ts:time,percent_humidity:float32}> 82
...

$ zq -f table "count() by temp" sensor_data.vng
temp count
68 29
71 82
80 41
...

first-class types in
the query language

first-class
types in
the data
model

Conclusion

• Zed: a new unified approach to data processing
– Designed to support eclectic data
– Centered around data types

• Work on Zed is ongoing
• Available open source at: https://github.com/brimdata/zed

12

Relational Model Document Model Zed

