Zed: Leveraging Data Types to Process
Eclectic Data

Amy Ousterhout, Steve McCanne, Henri Dubois-Ferriere,
Silvery Fu, Sylvia Ratnasamy, Noah Treuhaft

UC Berkeley, Brim Data, 12t Ave Labs

The Rise of Eclectic Data

* Eclectic data: b d
— Heterogeneous — spanning many schemas
— Evolving — schemas change over time D

* Increasingly common due to: &
— loT, monitoring £

— Relating independent data sets

* Poses new challenges for ingestion, storage, querying, and introspection

/

what schemas are present?
what fields does each have?
etc.

Existing Data-Processing Approaches

Two common approaches today: the relational model and document model

Relational Model

Temperature

Humidity

Motion

[

[

]

[

l

[

]

[

)

[

)

[

]

[

]

X [motion

X

l

X difficult to handle changing schemas

efficient storage and querying

some support for data introspection

Document Model (e.g., JSON)

{“temp”: 68,
“timestamp”: “9:01 PM"}

o

X inefficient storage and querying
X no support for data introspection

easy to mix eclectic data 3

The Limitations of Hybrid Approaches

relational columns JSON columns
L

e N e \ 71 ~N s ~N
Data Model Ly~ | open
dataset > JSON
D document __ R
|:| relational) —_—
closed ‘ ETL
dataset
Parquet
N Y, N Y, \ Y,
AsterixDB Snowflake Lakehouse

» Still require cleaning data into the relational model

* Users must decide which model(s) to use for each piece of data
* Limited introspection

— Only in the relational model

— No holistic way to refer to schemas

Zed: A Unified Approach

Goals:

— Unify the relational and document models, embodying both simultaneously

— Enable data introspection
Requirements:
— Specify the complete type of each piece of data
— Be flexible about which types of data can coexist
Key idea: new data type abstraction
— Associated directly with individual data values
— First-class — holistic way to refer to types

Zed

TP

type motion
type humidity
type temperature
type temperature
type motion
type humidity
type temperature
type humidity
type motion

type sound

Zed Components and Design Questions

* Data model

— Should types be open or closed? Partial or complete?

— What should the scope of a type definition be?
 Query language

— What operators are necessary for data introspection?
* Family of data formats

— How to represent type information?

Zed Data Model

* Ordered sequence of typed data values

— Int32, string, bool, record, array, set, etc. named type
L J \ J
primitive types complex types /
{ts:09:01:00(time),temp:68(int32)}(=temperature)
{ts:time, {ts:10:12:00(time),percent_humidity:43.7(float32)}(=humidity) inline type
temp:int32} > {ts:17:29:00(time),temp:71(int32)}(=temperature) < definition

{ts:17:45:00(time),temp:80(int32),unit:"F"(string)}(=temperature)
{ts:18:02:00(time),temp:28(int32),unit:"C"(string)}(=temperature)

* Types are associated with individual data values

new definition of
temperature type

* First-class types (type type)
* Type definitions are stored inline
 Types are complete and closed

« Type definitions may change in a data stream ;

Zed Query Language

e Subsumes query languages for the relational and document models

* Enables data introspection
* Key new features:

— Type introspection
* Obtain the type of an individual data value with typeof()

— First-class types
* Functions can return types — typeof () returns a type (e.g., <ts:time,temp:int32}>)

* Types can be arguments to functions — is(<temperature>)
* Types can be tested for equality — typeof (this)==<temperature>
* Support for type literals — e.g., <ts:time,temp:int32}>

Zed Format Family

* No single format is best for all uses 7SON 7NG
e Zed provides a family of formats lossless
— ZSON: text-based transformations
— ZNG: binary row-based VNG

— VNG: binary vector, generalizes existing columnar formats
* Lossless transformations between formats
* Binary formats encode types efficiently, once per file

Data Processing with Zed

* @Generate data in Zed formats or other formats
 Store in ZNG, VNG, and indexes

D
)
ZSON, ZNG, VNG —
D ZNG
(GD)
:(:LZ: & JSON, CSV, etc. -
A -—
VNG

Data sources

ZSO/\/

750N

User

10

I Querying and Introspection in Zed

 Querying — supports search and analytics

$ zq -f table "count() by temp" sensor_data.vng
temp count

68 29
71 82
80 41 first-class types in

00 the query language
* Introspection /

$ zq -f table "count() by typeof(this)" sensor_data.vng

first-class typeof clelllife
types in <temperature={ts:time,temp:int32}> 452
the data <humidity={ts:time,percent_humidity:float32}> 82
model

11

Conclusion

 Zed: a new unified approach to data processing
— Designed to support eclectic data
— Centered around data types

 Work on Zed is ongoing
* Available open source at: https://github.com/brimdata/zed

Relational Model Document Model Zed

l)| |C)

) (|
[J|)

Ty
g

12

