
Two is Better Than One:
The Case for 2-Tree for Skewed Data Set

Xinjing Zhou, Xiangyao Yu, Goetz Graefe, Michael Stonebraker

MIT University of
Wisconsin-M

adison

Google MIT

Background

2

● Tree data structures in data systems

○ Access method and storage

○ Buffer-managed

B-tree

Block Storage

Memory

L0

L1

L2

compaction

…
LSM-tree

Block Storage

Memory
Write Buffer Block Cache

flush

Buffer Pool

Buffer Pool Utilization Issue: B-tree

3

● Buffer pool memory utilization issue on skewed workloads for B-tree

● A few hot records in a B-tree page with many cold ones

…

● Records keyed on domains with no spatial locality could spread across the key

space

○ e.g., user-id

B-tree node

R/W

Buffer Pool Utilization Issue: LSM-tree

4

● Partially mitigates the memory utilization issue

● Frequently-updated data tend to cluster around the top of tree hierarchy

○ Good buffer pool utilization on skewed reads

● Stationary data get migrated down to the bottom

○ Poor utilization on skewed reads compaction

…

LSM-tree

LN

Memory
Write Buffer

L0

L1

L2

…

Block Cache

flush

How to improve the memory utilization of
buffer pool for tree structures on skewed

workloads?

5

This Work

6

● Principles

○ Multi-structuring to physically separate hot data from cold data

○ Actively migrate data at record-level in both direction

● Applications to B-tree and LSM-tree

● Compose two b-trees

○ Exposing single tree interface logically

● Record migration between two trees

● Size the hot tree to be close to buffer pool

capacity

● Intuition: vast majority of the accesses go

to the hot b-tree => increased utilization

1. 2B-tree for Disk-based DBMS

7Hot B-tree

Storage

Buffer Pool
…

Cold B-tree

Record Migration

⬇Downward Data Migration

● Goal: evict cold records with low overhead
● Trigger: hot tree fills up
● Leverage efficient range scans to approximate a clock replacement

Cold Records

⬆Upward Data Migration

● Goal: Migrate only warm records upwards to the hot tree to
reduce churns

● Probabilistic approach
○ Migrate a sampled set of accesses to the cold tree
○ Intuition: warm records will be more likely to be sampled

Experimental Setup

10

● 2B-tree implemented using LeanStore buffer pool/B-tree
● 1GB buffer pool and 5GB data set

○ 20M records, 256-byte each.
○ 16KB page size.

● Hot tree sized to be about 90% of the buffer pool capacity
● Probabilistic sampling rate: 0.5
● Workloads:

○ YCSB hotspot
■ Vary the working set size

○ YCSB zipfian
■ Working set covers all data with zipfian access distribution

Point Operations

YCSB-Hotspot

YCSB-Zipfian

Range Scan Operations

● On-par with single b+tree throughput for range scan.

Summary: 2B+tree Improves upon Point Operations

13

Point Read Point Update Range Scan

B+tree ★ ★ ★★★

2B+tree ★★★ ★★★ ★★★

● Augment LSM-tree with upward record migration

for reads

○ Actively bring stationary but warm records

closer to the top of hierarchy

2. Generalize to a N-Tree using LSM-tree

14

● A specific N-tree design using LSM-tree

○ Write-optimized

○ Better skew reads

L0

L1

L2

compaction

…

LSM-tree
LN

flush

Block Cache

Memory

Write Buffer

…

Upward
Record
Migration

Upward Migration in LSM-tree

15

● How to identify stationary and warm records?

● Two heuristics:

○ 1. Upon block cache miss: Likely in the bottom of the hierarchy

○ 2. Apply the probabilistic upward migration to identify warm records

Experimental Setup

16

● We call our proposal UpLSM-tree, built on RocksDB

● Comparison using 1 GB memory budget

○ UpLSM-tree: 1GB block cache

○ Vanilla LSM-tree: 1GB block cache

○ LSM-tree with in-memory row cache for level files on disk

■ 90% memory allocated to row cache

■ 10% memory allocated to block cache

Point Operations

YCSB-Hotspot

17

w/ w/

YCSB-Zipfian

w/ w/

Range Scan Operations

● On-par with vanilla LSM-tree
● Much better than LSM-tree with row caching

○ Row cache only helps point read operations
○ Block caching is more versatile

18

w/

-tree

Summary: UpLSM-tree Dominates both Baselines

19

Point Read Point Update Range Scan

LSM-tree ★ ★★★ ★★★

LSM-tree w/ RC ★★★ ★ ★

UpLSM-tree ★★★ ★★★ ★★★

● Extend the architecture to non-tree-based structures

○ Hashing

○ Heap file with secondary indexes

Future Work

20

Conclusion

● We studied improving memory utilization for tree data structures in

data systems

○ Multi-structuring

○ Record-level migration

● Applications

○ 2B+tree for Traditional DBMS

○ A better LSM-tree

● Source Code: https://github.com/zxjcarrot/2-Tree
21

BACKUP SLIDES

22

Durability and Recovery of Migration

● No logical data changes
● Migration operation uses lightweight systems transaction

○ does not need to force log records to disk
○ Log persistence piggybacked on user commits
○ Analogy: btree split

23

2. Optimizing 2-Tree for Main-Memory DBMS

24

● Hot tree could stay completely in main-memory

○ Spill cold records out to disk

○ Serve larger-than-memory dataset

● A better Anti-Caching implementation

○ Scale to larger data set

○ Efficient range scan

● More details in the paper

Cold B-tree

Storage

Memory

…

Small Buffer Pool

Hot tree

Record Migration

Comparison

25

● Hot tree implemented using an in-memory btree, no buffer pool overhead

● Baseline: Original Anti-Caching implementation

○ LRU-based record eviction

○ Records stored unordered on disk

Point Operations

YCSB-Hotspot

YCSB-Zipfian

26

Range Scan Operations

● Significantly outperformed Anti-Caching original design

27

